Mass and Gas Profiles in A1689: Joint X-ray and Lensing Analysis

Doron Lemze1, Rennan Barkana1, Tom J. Broadhurst1 & Yoel Raphaeli1

1School of Physics and Astronomy, Tel Aviv University, Tel Aviv, 69978, Israel

4 July 2013

\textbf{A B S T R A C T}

We carry out a comprehensive joint analysis of high quality HST/ACS and Chandra measurements of A1689, from which we derive mass, temperature, X-ray emission and abundance profiles. The X-ray emission is smooth and symmetric, and the lensing mass is centrally concentrated, indicating a relaxed cluster. Assuming hydrostatic equilibrium, we deduce a 3D mass profile that agrees simultaneously with both the lensing and X-ray mass profiles. However, the projected temperature profile predicted with this 3D mass profile exceeds the observed temperature by 30\% at all radii, a level of discrepancy comparable to the level found for other relaxed clusters. This result may support recent suggestions from hydrodynamical simulations that denser, more X-ray-luminous small-scale structure can bias observed temperature profiles downward at the same level (30\%) level. We determine the gas entropy at $0.1r_{200}$ (where r_{200} is the virial radius) to be 800 keV cm^2, as expected for a high temperature cluster, but its profile at $>0.1r_{200}$ has a power-law form with index 0.8, considerably shallower than the 1.1 index advocated by theoretical studies and simulations. Moreover, if a constant entropy \textit{core} exists at all, then it is within a small region in the inner core, $r<0.02r_{200}$, in accord with previous theoretical studies of massive clusters.

\textbf{Key words:} clusters: A1689 \{ clusters: lensing, X-ray \} clusters: DM, gas, temperature, abundance, entropy

1 INTRODUCTION

As the largest gravitationally bound systems displaying a range of distinct observational phenomena, clusters of galaxies provide information of central importance in cosmology. Total gas and dark matter masses and their profiles provide significant insight into the formation and evolution of clusters and the relationship between baryons and dark matter. It has become increasingly clear that much more can be learned from careful comparison of cluster observables including galaxy motions, gas properties from X-ray and Sunyaev-Zel'dovich (SZ) measurements, and mass profiles from lensing distortions and multiple lens images, providing new insight and tighter constraints on the dynamical state of a cluster and the nature of dark matter.

Chandra and XMM observatories have provided very detailed information on the physical state of the ubiquitous X-ray emission that is found in clusters. It has become clear that, broadly speaking, there are two classes of clusters, those showing some evidence of interaction, evidenced by complex structures in the gas, and those for which the gas emission is symmetric with a smooth radial variation in temperature and abundance, indicating the gas is probably relaxed and in a hydrostatic equilibrium with the overall gravitational potential. For lensing work the HST/ACS allows the inner caustic structure and central mass distribution to be examined in detail (Gavazzi et al. 2002; Broadhurst et al. 2005a; Sharon et al. 2005). The wide field images such as those from the Subaru and CFHT telescopes permit a statistically significant detection of weak lensing distortion and magnification effects on the background galaxies to be traced out to the outskirts of the cluster (Gavazzi et al. 2004; Kirkby et al. 2005; Broadhurst et al. 2005b).

In the case of interacting clusters it has proved very interesting to compare their lensing-based mass distribution with their disturbed gas distribution. Clear evidence has emerged in the most favorable case of 1E0657-56 (the "bullet cluster") that two massive clusters have recently collided in the plane of the sky with a high relative velocity, leaving the gas lying in-between a bimodal distribution of galaxies and dark matter, traced by weak lensing (Markevitch et al. 2002; Clowe et al. 2004; Markevitch et al. 2006). This particular case demonstrates that the bulk of the mass is dark and relatively collisionless, as anticipated in CDM dominated cosmologies (Markevitch et al. 2004; Clowe et al. 2006, McNamara et al. 2007, Rands et al. 2007), al-
Doron Lenz et al.

though the estimated relative velocity between the two massive components may be exceptional in the context of CDM simulations (Hayashi & W hite 2006). Other examples are coming to light, with collisions closer to the line of sight (Czoske et al. 2002, J ee et al. 2007, D upke et al. 2007). A detailed lensing and X-ray study of a larger sample of interacting clusters by O kabe & F uetsu (2007) spans the full range of dynamical interactions, from premergers where the gas is clearly unacted by the major gravitational attraction, to cases where both mass components are still readily distinguishable but the gas heavily disrupted and shock heated, and nally the postmerger phase where the gas shows only local signs of interaction, with a relatively small degree of substructure visible in the dark matter as probed by lensing.

Strong lensing based mass estimates of the central regions of massive clusters have often been signi cantly higher than central mass deduced from X-ray analysis, by factors of 2-4 (M imba-Escude & Bulbul 1995, W u & Fang 1997; A llen 1998, W u et al. 1998, Voigt & Fabian 2006). Obvious reasons for the di erent mass estimates in addition to modeling and intrinsic observational uncertainties include possible deviations from hydrostatic equilibrium, sphericity, and gas isothermal ally (see A llen 1998). Lensing estimates are naturally biased upward in the case where the gravitational potential is signi cantly elliptical with the major axis preferentially aligned towards the observer. Evaluation of this effect in the context of CDM simulations shows that the inferred concentration of the cluster pro le, measured in terms of the Navarro, F renk, & W hite (1996, hereafter NFW) model, can be enhanced by up to 20% by this bias in the worst cases (Hannawi et al. 2005, O guri et al. 2005), falling well short of the reported discrepancies.

Motivated by the need to improve the precision of measured mass pro les of clusters, we have begun a program of joint X-ray, strong and weak lensing analyses of several clusters for which we can combine high quality resolved observations. The advantages of a simultaneous analysis of X-ray and lensing data are clear, given that strong lensing measurements are far less prone to the total mass pro le in the inner core locations while X-ray and weak lensing measurements cover a much larger region of the cluster. The increasing quality and degree of detail of such data allows for more model-independent determination of the relevant pro les along with redundancy so that self-consistency can be checked. Under the assumption of spherical symmetry and hydrostatic equilibrium the projected temperature and gas density pro les as well as the total luminosity distribution can be determined directly without resorting to assumed models or ideal parametrizations of the pro les.

Here we apply a model-independent approach to derive the density pro le of a relaxed cluster from a simulated data set to both the X-ray and lensing data. We apply our technique to A1689 (z = 0.183) cluster that has been extensively observed in the optical, near infrared and X-ray regions, and is the rst cluster in our sample. The cluster has a cD galaxy whose center is within 15” of the X-ray centroid; this fact, and the low degree of X-ray ellipticity (z = 0.28, Xue & W u 2002, hereafter XW 02) indicate that the cluster is likely to be well relaxed and nearly spherical. Previous estimates of mass amass obtained from the analysis of observed arcs and amelts produced by strong lensing (Broadhurst et al. 2005a), from the distortion of the background galaxy luminosity function and number density (Taylor et al. 1998, D ye et al. 2001), and from weak lensing observations (Broadhurst et al. 2003a,b, M dezinski et al. 2007). Here we derive the X-ray surface brightness and temperature pro les from an analysis of the full set of Chandra observations, which can be compared with a smaller subset of Chandra observations analyzed by XW 02, and an independent study based on XM M (Anderson & M adejski 2004; hereafter AM 04).

The X-ray and lensing observations and data reduction are described in Section 2, followed by a detailed account of the spectral and spatial data analysis in Section 3. In Section 4 we describe the methodology of deriving the gas and mass pro les, and in Section 5 we present the results of our deduced mass, total gas, and entropy pro les. Our results are discussed and assessed in Section 6.
bin. The center of the cluster was found by IRAF to be at 13°11′ 29″ 575′′ ± 01′′20″/2759, in agreement with the position determined by AM 04 (13°11′ 29″ 1′′ 0 ± 0′′20). The spectrum of each observation was not checked in order to identify possible problematic features, and to assess the consistency between the model parameters obtained from the different observations. We reduced the spectrum with a circular radius of 3″ (corresponding to a physical radius of 387 h⁻¹ kpc), and binned each spectrum to have at least 20 counts per bin. Using XSPEC we tried the O3 10 keV data to an optically thin thin absorber model with Galactic photoelectric absorption, WABS(MEKAL), with N_H = 2.10⁸ cm⁻², the mean absorption along the line of sight to A1689 (Dickey & Lockman 1990). The resulting parameter values were consistent between the ts, but the t quality varied, with 2σ = 1.231, 1.366, and 1.478 for observation ID 540, 1663, and 5004, respectively. Deviations between the data and model were high in two energy bands. Indeed, in the 7–10 keV band the count rate is signiﬁcantly higher than the model prediction, as noted also by AM 04 (and as also seen in g. 2 of KW 02). This could partly be due to a background of high energy particles, but lowering the background of observation ID 540 using a smaller time binning did not lower the diﬀerence in the count rate. Uncorrected instrumental eﬀects can also be invoked, such as an imprecise correction for the contamination lines from the external calibration source [1].

The second problem atic band was 0.3–0.5 keV, where the data in all three observations are higher than the model values (even if absorption is ignored). As mentioned in AM 04, there is extra absorption caused by molecular contamination of the ACIS optical blocking lenses which causes the data to be lower than the model. A correction is implemented in the analysis software (starting with version CIAO 3.0), but because of the large uncertainty in the ACIS gain at energies below 350 eV, the recomended procedure is to ignore events in the 0.3–0.5 keV band [2]. We do not know if a substantial uncertainty extends also to 0.25–0.5 keV, so to be safe, we ignored the 0.3–0.5 keV data, and used only the 0.5–7 keV measurements.

The change in energy interval for the ID 5004 observation resulted in only < 1% diﬀerence in values of the ts, but the ts quality varied, with 2σ = 1.231, 1.366, and 1.478 for observation ID 540, 1663, and 5004, respectively. Deviations between the data and model were high in two energy bands. Indeed, in the 7–10 keV band the count rate is signiﬁcantly higher than the model prediction, as noted also by AM 04 (and as also seen in g. 2 of KW 02). This could partly be due to a background of high energy particles, but lowering the background of observation ID 540 using a smaller time binning did not lower the diﬀerence in the count rate. Uncorrected instrumental eﬀects can also be invoked, such as an imprecise correction for the contamination lines from the external calibration source [1].

The second problem atic band was 0.3–0.5 keV, where the data in all three observations are higher than the model values (even if absorption is ignored). As mentioned in AM 04, there is extra absorption caused by molecular contamination of the ACIS optical blocking lenses which causes the data to be lower than the model. A correction is implemented in the analysis software (starting with version CIAO 3.0), but because of the large uncertainty in the ACIS gain at energies below 350 eV, the recomended procedure is to ignore events in the 0.3–0.5 keV band [2]. We do not know if a substantial uncertainty extends also to 0.25–0.5 keV, so to be safe, we ignored the 0.3–0.5 keV data, and used only the 0.5–7 keV measurements.

2 For more on this, see http://cxc.harvard.edu/cal/A_ciao/Cal-prod/bkgmd/current/
3 http://www.astro.psu.edu/users/chartas/xcontdir/xcont.htm 1

A1689 Mass and Gas Proﬁles 3

deriving the tem perature proﬁle using CIAO 3.4. The deduced value is systematically set higher by 15% than the value obtained from the earlier observations, and from values obtained from measurements with other instruments. A 1σ, the proﬁle from the new observations does not show a decrease at large radii but rather an increase. The problem is even more severe using CIAO 3.3 and is due to improper background. These results indicate that there is still a problem with the matched background. We have therefore not included these observations in our work.

2.2 Lensing measurements

An analysis of strong lensing measurements of A1689 was carried out using deep HST/ACS images with a total of 20-orbit exposures shared between the GR8 passbands. Over 100 lensed background images have been identiﬁed, corresponding to 30 multiply-imaged background galaxies, including m any radiating arcs and small m agnitudes in images inside the marked curve, close to the center of m asers (Broadhurst et al. 2005a). For a given lens model, Broadhurst et al. projected the lensed images onto a sequence of source planes at various radial distances. They then generated m asers in images by lensing these source planes and superposing the detailed internal structures of observed images falling near the predicted m aser positions, where the unknown m aser source distance is a free parameter for each source. As new images were identiﬁed they were incorporated into the lens model to ensure it, enhancing the prospects of nding additional lensed images. This relatively rich lensing eﬀect allows a much better mapping of the mass in the inner core.

At larger radius the statistical eﬀects of weak lensing have been used to explore the entire mass proﬁle of A1689 using wide-eld V and I-band images taken with the Subaru/Suprime-cam (Broadhurst et al. 2005b). In practice this work is diﬃcult, requiring careful analysis of large sets of wide-eld images, with corrections for seeing, tracking, and instrumental distortion. Broadhurst et al. obtained a mass constraint on the m aser proﬁle by examining the eﬀect of lensing on the background number counts of red galaxies, as advocated by Broadhurst, Taylor & Peacock (1995). Broadhurst et al. found a clear detection of both the weak distortions and a deﬁcit in the number counts to the limit of the Subaru images, which corresponds to an outer radius of r 15 h⁻¹ Mpc (Broadhurst et al. 2005b).

Combining the inner mass proﬁle derived from strong lensing with the outer mass proﬁle from weak lensing we see that for A1689, the projected mass proﬁle continuously attains towards the center like an NFW proﬁle, but with a steeply rising outer proﬁle (Broadhurst et al. 2005b, Mekkizien et al. 2007) compared with the much m ore diﬀuse, low concentration halos predicted for massive CDM dominated halos, (e.g., Bullock et al. 2002).

3 Spectral and spatial data analysis

The X-ray ux was measured in two bands - 0.5–7 keV, which was used to check overall consistency with previous observations, and the narrow band 0.5–7 keV used in this work (see section 2.1). In a 3″ aperture the measured ux in the latter band was F_0.5–7 keV = 2.17 x 10⁻⁹.
Table 1. Chandra Observation Log for A1689

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>Start time</th>
<th>M o de</th>
<th>Duration</th>
<th>Good time interval (GTI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1663</td>
<td>2001-01-07 08:18:34</td>
<td>FA INT</td>
<td>10.87</td>
<td>10.62</td>
</tr>
<tr>
<td>5004</td>
<td>2004-02-28 07:18:29</td>
<td>V FA INT</td>
<td>20.12</td>
<td>18.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>41.44</td>
<td>39.38</td>
</tr>
</tbody>
</table>

10^{44} erg cm$^{-2}$ s$^{-1}$, slightly lower than in the wider band, $F_{0.5-8 keV} = (2.84 \pm 0.01) \times 10^{44}$ erg cm$^{-2}$ s$^{-1}$. The corresponding luminosities were $L_{0.5-8keV} = (1.00 \pm 0.004) \times 10^{44}$ erg s$^{-1}$, and $L_{0.5-8keV} = (1.12 \pm 0.004) \times 10^{44}$ erg s$^{-1}$. These values are consistent with previous findings. We used the SEextractor utility to estimate the ellipticity of the X-ray emission to be 0.03 ± 0.02, which is in very good agreement with the value reported by XMM 02.

We measured the cluster gas temperature from the spectral energy distributions (Figure 1). To check consistency of the mean temperature T with previously determinined values, we analyzed the combined dataset in the 0.3–9 keV band (which is, as noted above, wider than the more uniform 0.5–7 keV dataset used in the rest of our work). The T (with $i = 1.24$) yielded $kT = 9.36 \pm 0.18$ keV, and a metal abundance $A = 0.04 \pm 0.04$ in solar units, consistent with $kT = 9.02^{+0.18}_{-0.11}$ keV (Mushotzky & Scharf 1997), and $kT = 8.4 \pm 0.1$ keV, $A = 0.02 \pm 0.04$ (XW 02). In the 0.5–7 keV band, the corresponding values are $kT = 9.25 \pm 0.18$ keV, and $A = 0.01 \pm 0.04$, and $i = 1.03$. If Galactic absorption is treated as a free parameter, an unrealistically low value is determined, and $kT = 10.66^{+0.42}_{-0.37}$ keV. In Table 2 we list kT for each observation and the value from the combined dataset with Galactic absorption either not fixed at the observed value, or treated as a free parameter.

In the following subsections we present the X-ray derived properties of the metal abundance, surface brightness, and temperature.

3.1 Heavy element abundances
Before assessing the observed temperature profile, it is important to determine the gas metallicity. In principle, these two quantities may be decoupled with high quality data; however, the limited spectral resolution and signal-to-noise ratio means that the abundance is generally hard to constrain independently with radius, and one must adopt a mean value for the cluster. V. Khilin et al. (2005) took advantage of the superior spatial resolution of Chandra to show that for a sample of nearby relaxed clusters there is a metallicity gradient such that the abundance increases toward the center. However, the high roughly solar abundance level is actually in a region coinciding with the central galaxy. On the other side, A. Riehl, R. Rephaeli & N. Norman (in preparation) have performed a high resolution hydrodynamical simulation which uses a new approach to incorporate feedback from galaxies in the intracluster gas, and have shown that including physical processes such as galactic winds and gas stripping yields a flat metallicity profile out to large radii (600 h$_{70}^{-1}$ kpc). Based on XMM data, AM 04 showed that there is no abundance gradient in A1689. Our deduced abundance gradient is shown in Figure 2. There is a systematic trend toward a higher value of A in the Chandra data (in accord with the result of XW 02) than the corresponding XMM value, but this difference is not significant from a statistical point of view, since most of the data points agree within the 1σ range. The two sets of observations have the same exposure time, so the XMM data are more precise (due to the larger effective area). Our analysis indicates a fairly constant abundance over the region probed. In what follows we use the mean value of 0.04 solar for the central 3 arcmin region.

3.2 Surface brightness and temperature analysis
An HST/ACS image of A1689 overlaid on the X-ray map is shown in Figure 3: the central galaxy lies at the X-ray centroid.

The properties of the surface brightness distribution allowed us to construct an azimuthally averaged profile in radial bins. We determined an azimuthally averaged u_F in
each radial bin by fitting the model to the data in each annulus and extracting the flux, from which the surface brightness S was found by dividing by the angular area of the bin. The error in S was calculated from that in the normalization parameter of the fitted model. Note that our profile of the surface brightness is 4 times higher than that obtained by XW 02 (see their Figure 6), but is consistent with that obtained by M01, M99, and Evrard et al. (1999, hereafter MME99; see their Figure 13).

The full extraction region consists of 50 annuli, each of width $\Delta r = 0.1$, plus nine annuli with varying widths (to keep adequate S/N) beyond $200\,h^{-1}\text{kpc}$, all centered on the cluster X-ray center (section 2.1). The maximum aperture of the data reduction region was limited by the outer edges of CCDs in practically all three observations. We wound the innermost string because it corresponds to the inner region of the cD galaxy (see also Vikhlinin et al. (2005); e.g., the abundance in it was measured to be 0.9, contrary to our assumption of a constant abundance in each annulus.

The reduction of the temperature profile was done in a similar way, but with a smaller number of annuli due to the lower signal-to-noise ratio.

<table>
<thead>
<tr>
<th>Obs. ID</th>
<th>$N_G = 2 \times 10^2 \text{ cm}^{-2}$</th>
<th>\bar{T} [keV]</th>
<th>N_G as a free parameter</th>
<th>\bar{T} [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>540</td>
<td>1.16</td>
<td>$9.9_{-0.8}^{+0.9}$</td>
<td>1.16</td>
<td>$10.0_{-0.9}^{+1.0}$</td>
</tr>
<tr>
<td>1663</td>
<td>1.1</td>
<td>$9.3_{-0.7}^{+0.8}$</td>
<td>1.01</td>
<td>$10.2_{-0.8}^{+0.9}$</td>
</tr>
<tr>
<td>5004</td>
<td>1.19</td>
<td>$9.4_{-0.4}^{+0.5}$</td>
<td>1.13</td>
<td>$10.5_{-0.4}^{+0.5}$</td>
</tr>
<tr>
<td>combined</td>
<td>1.03</td>
<td>$9.4_{-0.3}^{+0.4}$</td>
<td>0.95</td>
<td>$10.1_{-0.3}^{+0.4}$</td>
</tr>
</tbody>
</table>

Figure 2. The abundance profile as derived from the spectral deprojection tting. We compare our Chandra analysis (circles), which gives a mean value of 0.42 (horizontal solid line), to the XMM analysis of AM 04 (triangles) which gave a mean value of 0.27 (horizontal dashed line).

![Figure 2](image)

Figure 3. HST/ACS image of A 1689 overlaid on an ooneth color rendering of the X-ray emission (obs. ID 5004). The CD galaxy is seen to coincide with the X-ray centroid. The scale in the image is $0.5^\circ \times 65\,h^{-1}\text{kpc}$.

4 Derivation of the Gas and Mass Profiles

4.1 Methodology

In this section we present our procedure for studying the structure of the cluster using all the available data sets in combination. Since we have both lensing and surface brightness proles, we do not need to assume any particular parametrization or tting formula, such as the commonly adopted NFW mass profile or the model for the gas density profile. We employ a model-independent approach that is limited only by the resolution and accuracy of the data. As mentioned in the introduction, the cluster has only a small ellipticity, so the model assumption of spherical symmetry is reasonable. This basic assumption allows us to reconstruct three-dimensional profiles from the observed two-dimensional ones. The lensing data yields in this way the density profile of the total mass (dark matter plus gas), while the surface brightness profile depends on a combination of the gas density and temperature. Thus, with one
additional relation, we can reconstruct the full gas and dark matter density profiles. We derive this additional relation by assuming hydrostatic equilibrium, consistent with the indications discussed in section 1 that A 1689 is well relaxed. Hydrostatic equilibrium involves the gravitational forces and thus inserts a dependence on the total mass profile that couples the constraints from lensing and from the X-ray data.

We determined the best-fit values of our free parameters by fitting the lensing and X-ray surface brightness data simultaneously. It is in port to note that we did not include the temperature profile data for reasons that are explained later in this section. In our model-independent approach, our free param eters are the values of the 3D profile of the total mass density and the gas mass density at several xed radii (logarithmically spaced). The radial ranges of the free parameters of the total mass density and the gas density were demet ined by the range of the lensing data and the X-ray surface brightness data, respectively. Within these ranges the density values were linearly interpolated (in log-log) in-between the xed radii. Beyond the last data point, each profile (i.e., of the total mass density and the gas density) was extrapolated. The total mass density profile was extrapolated as \(\rho \propto r^{-3} \), in accordance with the asymptotic behavior of the NFW profile and also close to our best-fit core plus power-law model (section 5.2 below). The gas density was also extrapolated as \(\rho \propto r^{-3} \), in order to have a constant \(\rho_{\text{gas}} \) at large radii; this is also consistent with the predicted density index of 2.9 (Eke & W 2000).

In spherical symmetry, the hydrostatic equilibrium equation for an ideal gas can be integrated from a given three-dimensional radius \(r \) out to infinity (or some maximum, cut-o radius). This yields the relation

\[
\rho_{\text{gas}}(r) = \rho_{\text{gas}}(r) \frac{GM_{\text{tot}}(6r^2) + \rho_{\text{gas}}(6r^2)}{kr^2};
\]

where \(\rho_{\text{gas}} \) is the gas mass density, \(T \) is the gas tem perature, \(M_{\text{tot}}(6r) \) is the total mass within \(r \), and \(\rho_{\text{gas}}(6r) \) is the proton mass. Of course, depends on the abundances; the typical elemental abundances are \(\frac{1}{4} \) (which is expected when ejecta are from Type Ia supernovae winds (Sim 2003)). In A 1689, \(A = 0.2 \pm 0.49 \) was found by XW 02.

For a given model param eters, the com parisons of the lensing and X-ray data was performed by first projecting the 3D profile of the total mass density using a Abel integration

\[
\rho(r) = \frac{2}{\text{crit}} \int_{r}^{\text{crit}} \rho(r) dr;
\]

where \(\text{crit} \) is the three-dimensional total mass density and \(\text{crit} = \frac{G M_{\text{tot}}(6r^2) + \rho_{\text{gas}}(6r^2)}{kr^2} \) is the critical density for lensing, written in terms of angular diameter distances \(D_{\text{los}} \) (observer-source), \(D_{\text{los}} \) (observer-lens), and \(D_{\text{los}} \) (lens-source). Simultaneously, we calculated the mass profile using

\[
M_{\text{tot}}(6r^2) = 4 \int_{0}^{r} \rho(r) dr;
\]

We then used the mass profile and the gas density profile in the hydrostatic equilibrium equation (1), obtaining the tem perature profile \(T(r) \). The temperature and gas density profiles were then used (with the associated abundances) to determine the em issivity:

\[
\epsilon(r) = n_{\text{e}}(r)n_{\text{H}}(r) (T(r));
\]

where \(\epsilon(T) \) is the cooling function, which was obtained by considering all the relevant physical processes in the \(9 \times 10^8 \) to \(10^9 \) K range. The cooling function was calculated by MEKAL (consistent with our fitting of the observed spectra in section 2.4). We use the usual de nitions, \(n = \rho_{\text{gas}}(6r^2) \), and \(n_{\text{e}} = \rho_{\text{gas}}(6r^2) \), which for \(A = 0.4 \) solar yield \(0.55 \), \(c = 1.05 \), and \(\gamma = 1.30 \).

Having thus obtained the em issivity, we re-projected it using the Abel integral and obtained the X-ray surface brightness

\[
S(R) = 1d^2 \int_{0}^{1} \frac{1}{1+(1+z)^2} \frac{\epsilon(r) dr}{R^2};
\]

where \(S(R) \) is the em issivity in erg s \(^{-1} \) cm \(^{-2} \), \(S \) is the X-ray surface brightness in erg s \(^{-1} \) cm \(^{-2} \) arcsec \(^{-2} \), and we converted the units from erg s \(^{-1} \) cm \(^{-2} \) to erg s \(^{-1} \) cm \(^{-2} \) arcsec \(^{-2} \) by multiplying by \(\frac{D_{\text{los}}}{D_{\text{los}}} \), using \(D_{\text{los}} = (1+z)^2 \) (where \(D_{\text{los}} \) and \(D_{\text{los}} \) are the angular diameter and luminosity distance, respectively), and upon conversion of radians \(^2 \) to arcsec \(^2 \).

The em issivity was calculated in each annulus-shaped bin within the surface brightness data. The mean surface brightness \(S_{\text{bin}} \), in a bin with inner and outer radii \(R_{\text{in}} \) and \(R_{\text{out}} \), respectively, is

\[
S_{\text{bin}} = \frac{2}{R_{\text{out}} - R_{\text{in}}} \int_{R_{\text{in}}}^{R_{\text{out}}} R S(R) dR;
\]

Finally, we compared this to the surface brightness data. Having calculated the observed quantities for each possible set of model param eters, we then com pared to the data using a \(\chi^2 \) measure. The total \(\chi^2 \) is the sum of two terms, one from the lensing data and one from the X-ray surface brightness data:

\[
\chi^2 = \chi^2_{\text{lens}} + \chi^2_{\text{X-ray}};
\]

where

\[
\chi^2 = \frac{N}{\sum_{i=1}^{N} \left[\frac{(R_{\text{in}} - R_{\text{out}})}{R_{\text{in}}} \right]^2} \int_{R_{\text{in}}}^{R_{\text{out}}} \left[\frac{(R_{\text{in}} - R_{\text{out}})}{R_{\text{in}}} \right]^2;
\]

and

\[
\chi^2 = \frac{N}{\sum_{i=1}^{N} \left[S_{\text{obs}} - S_{\text{data}}(R_{\text{in}}) - S_{\text{data}}(R_{\text{out}}) \right]^2} \int_{R_{\text{in}}}^{R_{\text{out}}} S_{\text{obs}} - S_{\text{data}}(R_{\text{in}}) - S_{\text{data}}(R_{\text{out}})^2;
\]

Here \(\chi^2 \) is the \(\chi^2 \) of the lensing data, obtained by com paring the model of equation (2) with the \(N \) data points \(S_{\text{data}} \) and their errors \(\text{data} \). Similarly, \(\chi^2 \) is the \(\chi^2 \) of the X-ray surface brightness data, obtained by com paring the model of equation (6) with the \(N \) data points \(S_{\text{data}} \) and their errors \(\text{data} \). The best-fit param eters, which are the 3D profile of the total mass density and the 3D gas density profile, were obtained by minimizing the total \(\chi^2 \). From these two models we then derived the three-dimensional temperature profile using equations (3) and (4). In order to perform an independent consistency check with the two-dimensional temperature data (which were not used in the analysis), we projected the three-dimensional temperature, weighting it by the em issivity for com parison with the observed temperatures:
4.3 The effect of the cD galaxy

A massive cD galaxy dominates the inner region of A1689. Thus, it is important to check the effect of the cD galaxy on the cluster, and especially on the 2D temperature observed in the central region. Its mass profile can be analytically expressed as follows.

The mass profile is given by:

$$ M_{\text{cD}} = M_{\text{stars}} + M_{\text{DM}} $$

where the gas mass is neglected since it is dominated by the stellar mass at all radii and by the DM mass at large radii. We assume an NFW profile for the dark matter, and express the stellar mass profile as:

$$ M_{\text{stars}} = M_{\text{stars}}^0 \left(\frac{r}{r_s} \right)^{-3} $$

where M_{stars}^0 is the mass of the stars in the cD galaxy and r_s is a characteristic length-scale (Hernquist 1990). Typical values for the effective radius, R_e, with $a = R_e = 1$, are $R_e = 5 \times 10^2$ kpc.

Typical values for the characteristic radius of the NFW profile of the DM (see also section 5.2 below) are $5 \times 25 \times 10^2$ kpc.

5 RESULTS

In this section we present the results of our model-independent analysis of the lensing and X-ray data. The number of data points used in the analysis were N = 26 and N_s = 58 for lensing and surface brightness, respectively. Accordingly, the ratio of the number of free parameters for the total mass to that for the gas mass profile was set to 1:1.

Based on our standard case, we chose 6 free parameters for the total mass density and 14 free parameters for the gas mass density. These relatively small number of model parameters ensures a good fit to the data and a reduced χ^2, i.e., $\chi^2 = \text{df}$.

The reduced χ^2 of the data was $28.1/64$. The contribution of each data set within the total, i.e., X-ray and SZ observations, is $\chi^2 = 47$-20 and $\chi^2 = 23.55$-44. This shows that we achieved a good fit to both data sets, and thus did not need a larger number of model parameters.

The low χ^2, especially in the...
large radii on the values obtained for the total mass density and the gas mass density. We checked the results for large changes in the extrapolation power-law index, i.e., 2 and 4 (compared to our standard assumption of $\propto r^{-2}$).

We used our standard number of free parameters, 6 and 14 for the total mass density and for the gas mass density, respectively. In each case the same extrapolation index was used for the total mass and the gas mass density in order to ensure a constant gas fraction at large radii. We expected a large change in the free parameter at the largest radius, which is closest to the extrapolation. Using an extrapolation index 2 gave a value which is lower by 21% and 11% for the total mass density and gas mass density, respectively, at this last point. For an extrapolation index 4 there was a 1% change in the total mass density value and 8% in the gas mass density. In the gas mass density there was also a change in the innermost radius, 29% and 36% for an extrapolation index of 2 and 4, respectively; this change is not very significant due to the large errors at this radius. Taking a smaller number of free parameters lowers the errors of the gas mass density at the smaller radius and as a consequence also weakens the dependence on the extrapolation index. Thus, our results in general are not strongly dependent on the extrapolation index.

5.1 Total mass density

The values of our six free parameters of the total mass density and the deduced 3D mass are shown in Table 3. As mentioned above the X-ray temperature data were not used. The surface density data were used, but their exact on the total mass profile is limited since ρ_{gas} appears on both sides of equation (4). Thus, the lensing data basically determine the derived 3D total mass density and the 3D mass profiles.

We also compared the total mass density profile obtained by the model-independent method to the that obtained by fitting particular models. We tested the NFW profile,
Table 3. Values of 3D mass density; errors are 1-con

dence.

<table>
<thead>
<tr>
<th>r [h⁻¹ kpc]</th>
<th>r_{total} [10^{-25} h^2 gr/cm^3]</th>
<th>M_{total} [10^{12} h^{-1} M_{sun}]</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1</td>
<td>90^{+51}_{-40}</td>
<td>0.91 0.58</td>
</tr>
<tr>
<td>27.7</td>
<td>39.13</td>
<td>7.3 2.5</td>
</tr>
<tr>
<td>75.9</td>
<td>10.55</td>
<td>48.3 3.9</td>
</tr>
<tr>
<td>208</td>
<td>2.94</td>
<td>252.15</td>
</tr>
<tr>
<td>568</td>
<td>0.73</td>
<td>6.69 0.82</td>
</tr>
<tr>
<td>1554</td>
<td>0.00221</td>
<td>956.180</td>
</tr>
</tbody>
</table>

Table 4. The values of the parameters of the two total mass density models, NFW and core. The errors are 1-con
dence.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>NFW</th>
<th>core</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ [h^{25} h^2 gr/cm^3]</td>
<td>966 168</td>
<td>244 445</td>
</tr>
<tr>
<td>r_{vir} [h^{-1} kpc]</td>
<td>175 18</td>
<td>91 17</td>
</tr>
<tr>
<td>n</td>
<td>-</td>
<td>1.43 0.42</td>
</tr>
<tr>
<td>\sigma^2/dof</td>
<td>15.3=(25 2)</td>
<td>13.3=(25 3)</td>
</tr>
</tbody>
</table>

\[\rho(r) = \frac{\rho_c}{(1 + \frac{r}{r_s})^2} \]

(11)

and a core model,

\[\rho(r) = \frac{\rho_c}{(1 + \frac{r}{r_s})^3} \]

(12)

where \(r_s \) is a scale radius, In the NFW profile \(\sigma \) and \(r_s \) were free parameters, and in the core profile \(\sigma \), \(r_s \), and \(n \) were free parameters. We chose these two profiles since they are frequently used and are signi cantly di erent both at small and large radii. For simplicity, we tested the two profiles only to the lensing data.

A comparison of the profiles to the six values we obtained in our main analysis (Figure 4 and Table 3) yields a fairly close agreement and in places that neither of the profiles is strongly excluded. Still, the measured profile as sampled by the six points is steeper at large radii than both models, in agreement with Broadhurst et al. (2005b). The core profile is too shallow at small radii and thus seems not to be a good t to our deduced values of the mass density in this region.

The NFW t gave a concentration parameter \(C_N = 122^{+20}_{-28} \), where \(C_N = r_{vir}/r_s \) in terms of the virial radius \(r_{vir} \) and the characteristic radius \(r_s \) of the NFW profile. This is close to the value obtained by Broadhurst et al. (2005b), \(C_N = 137^{+17}_{-15} \), which was based only on a t to the strong and weak lensing information. We also obtained from the NFW t two characteristic radii for the cluster: \(r_{200} \), the radius inside which the average density is 200 tmes the critical density, and \(r_{vir} \), de ned with a relative density of 116, which is the expected density theoretically at \(z = 0.183 \) in the CDM model. The t yielded \(r_{200} = 1.91 h^{-1} M_{pc} \) and \(r_{vir} = 2.44 h^{-1} M_{pc} \).

In Figure 8 we plot our derived 3D total mass profile from eq. (3) and the one derived in AM 04 from XMM data. They used an NFW profile based on data out to 693 h⁻¹ kpc. The two profiles agree at the sm all radii but disagree at larger radii. Our highest-radius point agrees with their profile, but at this radius we had to extrapolate the AM 04 3D mass profile beyond their data range.

5.2 2D mass profile

The deduced 2D mass profile \(M_2(R) = 2 \sigma_{crit} \int_0^{r_{200}} (R') R'' dR' \), is compared with previous results in Figure 9. These include results from strong lensing (Tyson & Fischer 1995), the lensing mass cation measured by the distortion of the background galaxy luminosity function (Dye et al. 2001), the lensing mass cation measured by the de c of red background galaxies (Taylor et al. 1998), the projected best-t NFW model from X-ray data (AM 04 via XMM), and the best-t NFW model from weak gravitational shear analysis (Clowe & Schneider 2001; King...
The value of the derived gas mass density are shown in Figure 9. The derived 2D mass profile (6 diamonds) is compared to the gravitational lensing results from strong lensing (square, Tyson & Fischer 1999), distortion of background galaxy luminosity function (3 circles, Dye et al. 2001), de Vaucouleurs bar counts of red background galaxies (dashed curves, Taylor et al. 1998), projected best-tNFW model from weak gravitational shear (triangles, King et al. 2002), and projected best-tNFW model from X-ray data (solid curve, AM 04).

Table 5. Deduced values of the 3D gas mass density, and derived tem peratures using the gas and total mass pro files together with the hydrostatic equilibrium equation. The errors are 1- confidence.

<table>
<thead>
<tr>
<th>r [h$^{-1}$ kpc]</th>
<th>M_{gas} [10$^{11}h^{-2}M_{\odot}$]</th>
<th>T_{3D} [keV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9</td>
<td>9.27$^{+0.43}_{-0.38}$</td>
<td>10.1$^{+0.15}_{-0.15}$</td>
</tr>
<tr>
<td>17.6</td>
<td>7.57$^{+0.22}_{-0.17}$</td>
<td>12.7$^{+0.15}_{-0.14}$</td>
</tr>
<tr>
<td>24.0</td>
<td>6.4$^{+0.2}_{-0.2}$</td>
<td>13.0$^{+0.7}_{-0.7}$</td>
</tr>
<tr>
<td>32.7</td>
<td>5.86$^{+0.15}_{-0.12}$</td>
<td>14.0$^{+1.8}_{-1.8}$</td>
</tr>
<tr>
<td>44.5</td>
<td>4.12$^{+0.18}_{-0.18}$</td>
<td>14.1$^{+1.9}_{-1.9}$</td>
</tr>
<tr>
<td>60.7</td>
<td>3.09$^{+0.11}_{-0.11}$</td>
<td>14.7$^{+0.75}_{-0.75}$</td>
</tr>
<tr>
<td>82.7</td>
<td>1.96$^{+0.055}_{-0.055}$</td>
<td>17.1$^{+0.7}_{-0.7}$</td>
</tr>
<tr>
<td>113</td>
<td>1.25$^{+0.33}_{-0.33}$</td>
<td>17.8$^{+0.7}_{-0.7}$</td>
</tr>
<tr>
<td>154</td>
<td>0.97$^{+0.23}_{-0.23}$</td>
<td>16.65$^{+0.78}_{-0.78}$</td>
</tr>
<tr>
<td>209</td>
<td>0.567$^{+0.015}_{-0.015}$</td>
<td>16.94$^{+0.96}_{-0.96}$</td>
</tr>
<tr>
<td>285</td>
<td>0.35$^{+0.012}_{-0.012}$</td>
<td>14.8$^{+1.9}_{-1.9}$</td>
</tr>
<tr>
<td>388</td>
<td>0.29$^{+0.079}_{-0.079}$</td>
<td>13.2$^{+1.2}_{-1.2}$</td>
</tr>
<tr>
<td>529</td>
<td>0.0982$^{+0.00057}_{-0.00057}$</td>
<td>11.3$^{+1.7}_{-1.7}$</td>
</tr>
<tr>
<td>721</td>
<td>0.0586$^{+0.00057}_{-0.00057}$</td>
<td>7.29$^{+0.47}_{-0.47}$</td>
</tr>
</tbody>
</table>

Figure 10. Our derived gas mass density profile (points with error bars) compared to the profile derived by MME 99 (solid curve).

Table 6. Deduced values of the 3D gas mass at various radii. The errors are 1- confidence.

<table>
<thead>
<tr>
<th>r [h$^{-1}$ kpc]</th>
<th>M_{gas} [10$^{11}h^{-2}M_{\odot}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.9</td>
<td>0.20$^{+0.40}_{-0.37}$</td>
</tr>
<tr>
<td>17.6</td>
<td>0.27$^{+0.30}_{-0.30}$</td>
</tr>
<tr>
<td>24.0</td>
<td>0.71$^{+0.57}_{-0.57}$</td>
</tr>
<tr>
<td>32.7</td>
<td>1.94$^{+0.86}_{-0.86}$</td>
</tr>
<tr>
<td>44.5</td>
<td>2.93$^{+0.64}_{-0.64}$</td>
</tr>
<tr>
<td>60.7</td>
<td>5.86$^{+0.66}_{-0.66}$</td>
</tr>
<tr>
<td>82.7</td>
<td>10.93$^{+0.85}_{-0.85}$</td>
</tr>
<tr>
<td>113</td>
<td>19.46$^{+0.86}_{-0.86}$</td>
</tr>
<tr>
<td>154</td>
<td>34.63$^{+0.87}_{-0.87}$</td>
</tr>
<tr>
<td>209</td>
<td>59.3$^{+0.74}_{-0.74}$</td>
</tr>
<tr>
<td>285</td>
<td>96.83$^{+0.88}_{-0.88}$</td>
</tr>
<tr>
<td>388</td>
<td>151$^{+1.3}_{-1.3}$</td>
</tr>
<tr>
<td>529</td>
<td>224.8$^{+2.5}_{-2.5}$</td>
</tr>
<tr>
<td>721</td>
<td>328.4$^{+3.7}_{-3.7}$</td>
</tr>
</tbody>
</table>

5.3 Gas density profile

The values of the derived gas mass density are shown in Table 5. We compared our gas density profile to the one obtained by MME 99. They used a single model to the surface brightness profile in clusters where they suspected the presence of cooling. In this way, the profile was to a double model (though with the same in both elements). They used two types of clues for the presence of cooling. First, when looking at a single model, the surface brightness data points must be higher than the fitted curve in the inner region. Second, the cluster must appear relaxed, i.e., lacking obvious asphericity or substructure that would indicate a recent merger. Judging by their successful fit to a single model, they concluded that A 1689 is not likely to have a cooling. Their tH=thos modelled the surface brightness based on an assumed isothermal profile, and 0.3 solar abundance. Figure 9 shows excellent agreement between our obtained gas density profile and the one obtained by MME 99.

5.4 Gas mass fraction

Having derived the total and gas mass densities, the gas fraction, $f_{gas} = M_{gas}/M_{total}$, can then be determined upon integration. We can compare our values, $f_{gas}(r = 0.25D_{200}) = 0.0326 \pm 0.0023 h^{-3}$, to Sanderson et al. (2003). They obtained for the $\Omega = 0.17$ keV range (see their figure 6).
than the value in Sanders et al. (2003), just as our gas pressure derived by Sanders et al. (2003) at that radius. With our value of s still somewhat lower than their 8 ± 2 keV. However, note that the mass gas measured via X-ray is $M_{\text{gas}}(X) / C$, i.e., the actual gas mass is lower than that apparently observed if the cluster is clumpy but this is not corrected for. The gas mass measured via X-ray is proportional to the clump size. Thus, correcting for clumps would further decrease $M_{\text{gas}}(X) / M_{\text{gas}}(SZ)$ by a factor of C. This may indicate that the level of clumping in this cluster is low.

Finally, we also compared our results for the gas fraction to the simple theoretical models. In Figure 12 we show the f_{gas} obtained by the parametrized models, NFW (solid curve) or core (dashed curve) for the total mass density and (in both cases) a double M model for the gas mass density, computed from the prole obtained from our model-free method (points with error bars). In general the models are not far from our reconstructed values. At very large radii, extrapolated beyond the data points, the gas fraction derived by the models would diverge from the real, supposedly constant value at large radii, since $f_{\text{gas}} / (n+1)$ and $M = \text{constant}$ / r^{3}. Instead, in our model-independent method the extrapolation of the gas density is $f_{\text{gas}} / (n+1)$, in order to give an asymptotic $f_{\text{gas}} = \text{constant}$ at large radii. At radii of 200 $500 h^{-1}$ kpc the f_{gas} obtained by the model-independent method tends to be slightly lower than the one obtained by the parametrized models. At smaller radii the NFW model is better than the core model, though the core gives a better overall fit to the lensing data (see Figure 4).

\[5.5 \text{D mass profile}\]

In Figure 13 we compare the 2D mass profile obtained by our model-free method to the measured 2D mass profile. The measured 2D mass profile is substantially lower. It has been found in numerical simulations that the spectroscopic mass profile is typically lower than the one determined by hydrostatic equilibrium by a factor of 0.7 ± 0.5 (Rasia et al. 2005). Thus we also show in the figure the measured 2D mass profile divided by 0.7 (upper solid curve). This factor explains most of the discrepancy in A1689. Kawahara et al. (2006) used cosmological hydrodynamical simulations to explain this discrepancy. They found that local inhomogeneities in the gas are largely responsible.
Figure 12. A comparison between the f_{gas} profile derived by our model-independent method (points with error bars) to the profile derived using parametrized models. We consider two simple models, NFW (solid curve) and a core profile (dashed curve) for the total mass, in each case with a double beta profile for the gas mass.

Figure 13. A comparison between the 2D temperature profile obtained from our model-independent method (dashed curve) to the profile measured from the X-ray spectrum (lower solid curve). Also shown are the measured temperature divided by 0.7 (upper solid curve) and the measured 2D temperature profile from AM 04 (circles with error bars).

Figure 14. Our fit to the lensing data. The profile obtained by our model-independent method (solid curve) is compared to the measured profile (points with error bars), where κ is the 2D surface density in units of the critical density for lensing.

Figure 15. Our fit to the surface brightness data. The X-ray surface brightness profile obtained by our model-independent method (solid curve) is compared to the measured profile (points with error bars).

5.6 The entropy and polytropic index

Previous theoretical work has shown that the entropy profiles of non-radiative clusters approximately follow a power law $K(r)/r^{1.5}$ (Tozzi & Norman 2001; Boragni et al. 2002; Voit et al. 2003). More recent detailed hydrodynamic simulations by Voit, Kay & Bryan (2005) confirm the power law behavior of the entropy at $r > 0.1r_{200}$. They also determine the normalization N, where $K(r) r_{200} = 0.13 (1+r/1) N_{\odot}$, which was found to be 1.32 ± 0.03 and 1.11 ± 0.03 for SPH and AMR simulations, respectively. In the central region of the cluster, $< 0.1r_{200}$, there are some claims for the existence of an entropy "floor", i.e., a limiting constant value. Voit et al. (2003) showed theoretically how an entropy floor can be attained; Voït, Kay & Bryan (2005) used simulations to find the level of this entropy floor. They found an entropy floor using an AMR code, but the value obtained with an SPH code was substantially lower (if at all present).

Observational comparisons of the entropy of clusters at small and at large radii show a departure from the predicted self-similarity. In the inner regions of low-mass clusters there appears to be a "floor" in entropy of 135 keV cm^2, with a higher value for high-mass clusters (Lloyd-Davies, Ponman, & Cannon 2000). This may represent a "preheated" minimum level which Kaiser (1991) speculated may be due to the effect of star formation in early galaxies which preheat the IGM through galactic winds. This is strengthened by the ubiquitous presence of gas outflows in observations of high-redshift galaxies (Franx et al. 1997, Frye & Broadhurst 1998, Frye, Broadhurst & Benitez 2002, Pettini et al.
Thus it seems natural to link this entropy profile with the winds from galaxy formation.

In Figure 16, we plot $K = K_{200}$, where K_{200} is the entropy at $r = r_{200}$. We find $r_{200} = 170 \, h^{-1} \, \text{Mpc}$ and $K_{200} = 0.25 \, \text{keV cm}^2$.

The value of our derived entropy at $0.1r_{\text{vir}}$ agrees well with the one found by Lloyd-Davies, Ponman, and Cannon (2000), who used ROSAT and ASCA data. They assumed spherical symmetry and hydrostatic equilibrium, and a single beta model for the gas density along with a linear function for the temperature. For the DM density they used an NFW profile. Our derived entropy at $0.1r_{\text{vir}}$, $K (r = 0.1r_{\text{vir}}) = 786 \, 33 \, h^{-3} \, \text{keV cm}^{-2}$, also agrees well with Ponman, Sanderson, and Finoguenov (2003), who also used ROSAT and ASCA data, assumed spherical symmetry and hydrostatic equilibrium, and a single beta model for the gas density, and a linear function or a polytrope for the temperature. We tested a power law to our entropy profile at all radii where we obtained the gas mass density (which includes points at $r < 0.1r_{\text{vir}}$). This fitted power law, which is shown in Figure 16, is $K (r) = K_{200} = (0.95 \, 0.05) (r/r_{200})^{0.82} \, 0.02$.

Our X-ray data go up to $0.34r_{\text{vir}}$, so obtaining a fit to the $(0.1 \, 1)r_{\text{vir}}$ range is not possible. In the available range ($0.006 \, 0.34)r_{\text{vir}}$ the power law is a close fit, though the index is somewhat lower than the theoretical value of 1.1. Excluding the entropy points at small radii, $r < 0.1r_{\text{vir}}$, would not substantially change the value of the power index, but then there are only four data points at $r > 0.1r_{\text{vir}}$. In the inner part ($r < 0.1r_{\text{vir}}$) if the entropy is attenuated then this occurs only at $r < 0.02r_{\text{vir}}$. This is consistent with Tozzi and Norman (2001) who found that the entropy region in massive clusters ($10^{15} \, \text{M}_\odot$) only occurs at $r < 0.01r_{\text{vir}}$. Comparing our obtained values of the entropy at $r < 0.1r_{\text{vir}}$ to those in Voit, Kay, and Bryan (2005), they are closer to the values obtained in the SPH simulations than in the AMR simulations. Our derived normalisation is $0.95 \, 0.05$ is somewhat lower than obtained by Voit, Kay, and Bryan (2005) in both types of simulations.

The deduced power law index is slightly lower than that obtained from simulations (Tozzi and Norman 2001; Borgani et al. 2002; Voit et al. 2003; Voit, Kay, and Bryan 2005). The disagreement can be explained by the fact that we did not assume an NFW profile. Assuming an NFW profile gives $K (r) = K_{200} = (1.1 \, 0.03) (r/r_{200})^{1.02}$. This is in good agreement with the "expected" power law index of 1.1. There is also a good agreement with the normalization obtained by simulations (Voit, Kay, and Bryan 2005). It has also been shown in simulations that as the amount of preheating increases, the power law index becomes steeper at radii beyond the inner region (Borgani et al. 2005).

In Figure 17 we plot the adiabatic index. The solid curve is taken from Tozzi and Norman (2001). They used an NFW profile for the DM and assumed no cooling. They also assumed an external, adiabatic, entropy and temperature profile, and assumed an isobaric, adiabatic, entropy and temperature profile. Our derived adiabatic index profile is in reasonable agreement with the profile derived by Tozzi and Norman (2001).

5.7 The effect of the cD galaxy

Figures 16 and 17 show that the 2D and 3D temperature profiles peak at $0.1r_{\text{vir}}$ and decline at large radii. At
smaller radii the temperature profile also declines. This decline of the temperature profile at small radii occurs within the region that includes emission from the CDM galaxy. Since the gas in the CDM is denser and cooler than the cluster gas, it might be the cause of this decline at small radii. In order to evaluate the extent of the CDM on the cluster we modeled the emission of the CDM. We estimated the mass density profile by taking the profile of M 87, which is the CDM in the nearest cluster of galaxies. We thus tried a double beta model (as Matsuura et al. 2002 did) to the surface brightness data in M 87. The values of the best-fit parameters from the gas number density of the CDM are shown in Table 7. Our obtained values agree well with the ones in Matsuura et al. (2002). For the evaluation of the CDM mass profile we took $r_s = 75 h^{-1}_7$ kpc, $r_e = 10 h^{-1}_7$ kpc, $M_{\odot} = 10^{11} M_{\odot}$, and $M_{\star} = 5 \cdot 10^8 M_{\odot}$ (for the mass profile see Section 5). We checked the innermost part of the cluster $r_e = 10 h^{-1}_7$ kpc. This is out of the data range and requires an extrapolation, so we extrapolated using partial proles. We used NFW for the DM profile and a double beta model for the gas profile. In Figure 19 we plot the emission of the CDM galaxy and compare it to the emission of the cluster. The gure shows that the CDM is dominant only at $r < 4 h^{-1}_7$ kpc. Since the innermost surface brightness data point is at $4 h^{-1}_7$ kpc, the e of the CDM galaxy is likely minor, as expected in a rich cluster like A 1689.

We checked for an indication in the abundance profile that the CDM contributes only at $< 4 h^{-1}_7$ kpc (if at all). Note that the spatial resolution of Chandra is 0.5", which for the redshift of A 1689 is $15 h_7^{-1}$ kpc. A low CDM galaxy coincides with the X-ray centroid within $15 h_7^{-1}$ uncertainties (XW 02). Figure 20 indicates that the abundance may be higher, 0.9, in the core than in the outer region. However, this is not statistically significant due to the narrow annulus used, which gives high errors. The errors were calculated here after freezing the temperature and the normalization. If these parameters are allowed to vary, this will of course increase the errors in the abundance. As expected from the low emission of the CDM galaxy compared to that of the cluster, it is hard to see spectroscopically an indication of the CDM. We fitted a double beta temperature model, WABS(M EK A L + M EK A L), to the 3" aperture, where the abundance of the host component (the CDM galaxy) was fixed to solar and the second (the cluster) to 0.4 solar (the average value in the cluster). We also fixed the Galactic absorption to be $2 \cdot 10^{20}$ cm$^{-2}$ as appropriate for this direction (Dickey & Lockman 1990). The resulting best-fit value was two temperatures, a cold one 0.5 keV and a hot one 10 keV. This, however, might be due to the real multi-temperature nature of the cluster gas. Extracting a smaller region, where the CDM should be less diluted by the cluster, was about the same two temperature parameters but with higher errors. Thus, spectroscopic titling was inconclusive.

6 DISCUSSION

The increasing quality of X-ray and optical imaging data motivates renewed and more thorough examination of the physical nature of galaxy clusters as revealed by the very different processes of bremsstrahlung radiation and the gravitational dection of light. In this paper we have examined the apparently relaxed cluster A 1689, where only minor substructure is evident from the dark matter, galaxy, and X-ray distributions and where the X-ray emission is smooth and symmetric. The longstanding claim of discrepancies in the total cluster mass estimated from different kinds...
of analysis can now be investigated with greater precision, fewer assumptions, and in a more model-independent way. There is a strong incentive to develop a model of general nature of the total mass, gas, and temperature profiles. These quantities are inextricably bound up with the process of structure formation, including the nature of dark matter and the cooling history of the gas including interaction and merging of substructure. Thus, having an analytical form of the profiles is very useful. The most common model examined profile for the dark matter, based on N-body simulations of collisionless dark matter, is the NFW profile. In contrast, the most common model tested gas mass density or surface brightness profile, the model, is essentially empirically based. The temperature profile is often derived from the analytical expression of the gas density using the polytropic equation of state, or the gas is taken to be isothermal since the temperature gradient was undetectable with the old X-ray satellites. This way of analyzing the cluster can lead to substantial errors in the DM density, gas density, and temperature values and the derived quantities such as the total mass.

As we discussed in the Introduction, the total mass profile can be independently determined from lensing measurements, or from X-ray measurements of the gas density and temperature profiles based on the assumption of hydrostatic equilibrium. Clearly, the latter can be done also with spatially resolved S-Z measurements, when available. The second basic assumption adopted in our analysis is spherical symmetry. Obviously, elongation along the line of sight is possible, but as we have mentioned in the Introduction - this typically can introduce a 20% bias in the mass estimate. For a detailed discussion of the impact of triaxial cluster morphology, see Gavazzi (2005).

We have suggested a model-independent method which uses free parameters and does not assume a specific profile for any mass component. The only hidden assumption is a linear (in log-log) interpolation between the free parameters; this just assumes a reasonable degree of smoothness in the profiles. The profiles are also extrapolated beyond the data, but we showed that the results are insensitive to the detailed extrapolation. We specifically used a simple power law extrapolation for both the total mass density and for the gas mass density, with the same power law index assumed in order to approach a constant gas fraction at large radii. Our model-independent method is the best way to obtain the values of the important parameters of clusters at radii where there are good quality data. Our model-independent method can and will be applied to joint analyses of measurements of other clusters.

Within the data range, the highest value of the 3D temperature \(T = 2 \times 10^7 \) K was observed for the lowest value. Specifically, the temperature profile peaks at \(r = 0.1 \) Mpc and declines at both smaller and larger radii. The density environment at the center of a cluster should naturally cause a decrease in the temperature there. We indeed did in this cluster that the 2D temperature decreases toward the center of the cluster, at \(r < 0.1 \) Mpc (Figure 3). This can be due to several mechanisms. Firstly, the high gas number density in the center of the cluster causes a rapid loss of energy and a decrease in the temperature. As pressure support decreases, the gas should gravitate toward the bottom of the cluster potential well, i.e., the center of the cluster, in a so-called "cooling flow" (Fabian 1994). A cooling flow should manifest in a detectable surface brightness enhancement in the X-ray emission from the central region of a cluster, 100-200 kpc. Many studies have failed to detect these cooling flows in M 87, if not the standard hypothesis regarding cooling flows in low-mass stars, an inhomogeneous metallicity distribution (which is not the situation in A 1689, at least not in terms of a radial gradient: \(g_{\alpha} \)), or disruption of cooling flows by a recent subcluster merger (see discussion in Fabian et al. 2001; Peterson et al. 2001).

There are uncertainties about the criteria for judging cooling flows, and even with such criteria the decision whether cooling \(g_{\alpha} \) is still data dependent. At times the "solution" has been to exclude the inner, problematic region. Finding the value of the gas mass density in the model-independent approach bypasses this two problems, the unknown physical processes and the data dependence, as it allows for an analysis with fewer prior assumptions. Another way to reduce the core temperature is through the effect of the CDM galaxy that is often anchored at the cluster center. The CDM galaxy has a lower temperature and is denser than the cluster so it can intrinsically reduce the temperature in the cluster center. However, based on our initial, limited study it seems unlikely that the CDM has a significant effect in A 1689, since the emissivity of the CDM is much less than the expected only down to \(r = 4 \) kpc (Figure 9).

We have found a good fit to the observed 2D profiles of the lensing surface density and the X-ray surface brightness. Due to the smoothness of the profiles, we were able to use the data with a relatively small number of free parameters. We have found a good agreement with previous results for all the parameters we have checked for A 1689, including gas mass density, gas fraction profiles, measured temperature, adiabatic index, and abundance (except certain panel A05). The total mass density profile we obtained was essentially determined directly by the lensing data alone, with 1% differences introduced by using the X-ray data as well. This is the case since we did not use the X-ray temperature as part of the fit.

We have shown that it is possible to obtain a model-independent 3D mass profile for which very good agreement is found between the lensing mass profile and the X-ray emission profile. However, there is still a discrepancy between the temperature derived directly from (X-ray) measurements, and that derived from a solution to the HEE, which is the latter 30% higher at all radii, as has already been determined by Mazzotta et al. (2004) and Rasia et al. (2005). Other phenomena, such as bulk motions, turbulence, and nonthermal degree of freedom may contribute to the pressure, and thus reduce the temperature with respect to the one obtained from assuming that the gal gas pressure is the only contributor. Specifically, Faltenbacher et al. (2005) claim that based on their high-resolution cosmogical simulations - in which they identified and analyzed eight clusters at \(z = 0 - about 10\% of the total pressure support may be attributable to random gas bulk motions, which may account per se
by up to 20%. It has also been suggested that X-ray luminous clusters of relatively low temperature may bias projected temperature measurements downward (Kawahara et al. 2006). In any case, as we have already mentioned this temperature discrepancy is much smaller than the mass discrepancy by a factor of 2−4 encountered in previous separate X-ray and lensing analyses.

The derived entropy profile for A1689 has a power law form with no obvious central attening, at least at r > 0.02r_{500}, as expected for massive clusters from theoretical work (Tozzi & Norman 2001). The existence and the level of the entropy core is still not completely clear in simulations, since different simulation methods give different results (Voit, Kay, & Bryan 2005). This is probably due to the limited resolution of simulations which is especially critical in the core of the cluster. Upon simulating with spatial resolution of 5 kpc should give a better understanding of the entropy core. Our derived radial slope is around 0.8 rather than 1.1, after the prediction. Since using simple parametrized models for the DM and the gas gave a power-law index of 1.1, we believe the value of 0.8 might be an accurate result, which might be a reaction of a more complex dynamical and preheating history. Indeed, it has been suggested from simulations that preheating decreases the power-law index in the region of our data (Borgani et al. 2005).

ACKNOWLEDGMENT

We thank Shaik Apeksh and Sharon Sadeh for any contributing discussions, Karl Anderson for the useful communication, and the referee, Raphael Gavazzi, for useful comments. We also thank Brian Broadhurst for useful communications. We thank the Chandra helpdesk team Samantha Stevenson, Elizabeth Galile, Tara Gokas, Priya Desai, and Joan Hagler. We also thank Craig Gordon, Keith Auda, and M. Mathias Ehle for useful XSPEC tips. We acknowledge support by Israel Science Foundation grants 629/05 and 1218/06.

REFERENCES

Fabian, A. C. 1994, 32, 277
Hallman, E. J., Bums, J. O., Motl, P. M., & Noman, M. L.
APPENDIX A: CORRELATIONS BETWEEN PARAMETER VALUES

In our model-independent approach we have determined parameter values by fitting the projected mass and gas density, and temperature. Projection of the 3D quantities builds up correlations between their best-fit values in different radial bins. An illustration of this degree of such correlations is shown in Table A1, which lists the parameter matrix of the free parameters taken from running four and nine free parameter sets for the total mass and gas mass density respectively. The correlation in the deduced 2D parameter matrix is shown in Table A2. The elements of the 2D parameter correlation matrix correspond to the 12 values of the 2D radii (g9). In both tables the correlations are quite strong between adjacent elements. In the 2D parameter correlation matrix there are also strong correlations between elements which are not adjacent but are at small radii, i.e. the upper left part of the table.

A1689 Mass and Gas Profiles 17

Silk, J. 2003, M N R A S , 343, 249
Voigt, L. M. , & Fabian, A. C. 2006, M N R A S , 368, 518
Voigt, G. M. 2005, Reviews of Modern Physics, 77, 207

APPENDIX A: CORRELATIONS BETWEEN PARAMETER VALUES
Table A1. The 13 correlation matrix for $i = 4, j = 9$ free parameters for the total mass and gas mass density, respectively.

<table>
<thead>
<tr>
<th></th>
<th>$i = 1$</th>
<th>$i = 2$</th>
<th>$i = 3$</th>
<th>$i = 4$</th>
<th>$j = 1$</th>
<th>$j = 2$</th>
<th>$j = 3$</th>
<th>$j = 4$</th>
<th>$j = 5$</th>
<th>$j = 6$</th>
<th>$j = 7$</th>
<th>$j = 8$</th>
<th>$j = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1$</td>
<td>1.0000</td>
<td>-0.342</td>
<td>0.197</td>
<td>-0.072</td>
<td>-0.026</td>
<td>0.036</td>
<td>0.034</td>
<td>0.028</td>
<td>0.040</td>
<td>0.026</td>
<td>0.026</td>
<td>0.001</td>
<td>-0.006</td>
</tr>
<tr>
<td>$i = 2$</td>
<td>-0.342</td>
<td>1.000</td>
<td>-0.825</td>
<td>0.273</td>
<td>0.004</td>
<td>-0.000</td>
<td>0.010</td>
<td>0.008</td>
<td>-0.051</td>
<td>-0.074</td>
<td>-0.005</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>$i = 3$</td>
<td>0.197</td>
<td>-0.825</td>
<td>1.000</td>
<td>-0.599</td>
<td>-0.002</td>
<td>0.002</td>
<td>-0.005</td>
<td>0.030</td>
<td>0.075</td>
<td>0.091</td>
<td>-0.001</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>$i = 4$</td>
<td>-0.072</td>
<td>0.273</td>
<td>-0.599</td>
<td>1.000</td>
<td>0.001</td>
<td>-0.002</td>
<td>-0.002</td>
<td>-0.003</td>
<td>-0.028</td>
<td>-0.045</td>
<td>-0.038</td>
<td>0.018</td>
<td>-0.074</td>
</tr>
</tbody>
</table>

Table A2. The 12 correlation matrix of the deduced 2D temperature for $i = 4, j = 9$ free parameters for the total mass and gas mass density, respectively. The raw and column numbers specify radial points (see Fig. 13).

<table>
<thead>
<tr>
<th></th>
<th>$i = 1$</th>
<th>$i = 2$</th>
<th>$i = 3$</th>
<th>$i = 4$</th>
<th>$j = 1$</th>
<th>$j = 2$</th>
<th>$j = 3$</th>
<th>$j = 4$</th>
<th>$j = 5$</th>
<th>$j = 6$</th>
<th>$j = 7$</th>
<th>$j = 8$</th>
<th>$j = 9$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 1$</td>
<td>1.0000</td>
<td>0.9085</td>
<td>0.2874</td>
<td>-0.1372</td>
<td>-0.0423</td>
<td>0.0604</td>
<td>-0.0008</td>
<td>-0.0233</td>
<td>-0.0206</td>
<td>0.0050</td>
<td>-0.0005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 2$</td>
<td>0.9085</td>
<td>1.0000</td>
<td>-0.3046</td>
<td>0.1364</td>
<td>-0.0854</td>
<td>-0.0382</td>
<td>0.0264</td>
<td>0.0081</td>
<td>0.0008</td>
<td>0.0044</td>
<td>0.0100</td>
<td>0.0093</td>
<td></td>
</tr>
<tr>
<td>$i = 3$</td>
<td>-0.3046</td>
<td>1.0000</td>
<td>-0.3047</td>
<td>0.1225</td>
<td>0.0123</td>
<td>-0.0773</td>
<td>0.0206</td>
<td>0.0515</td>
<td>0.0162</td>
<td>0.0111</td>
<td>0.0219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i = 4$</td>
<td>0.1364</td>
<td>-0.3047</td>
<td>1.0000</td>
<td>-0.3307</td>
<td>-0.1412</td>
<td>0.1199</td>
<td>0.0292</td>
<td>-0.0119</td>
<td>0.0156</td>
<td>0.0363</td>
<td>0.0304</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$j = 1$</td>
<td>-0.1372</td>
<td>0.1225</td>
<td>1.0000</td>
<td>0.2272</td>
<td>0.3046</td>
<td>0.2272</td>
<td>0.3046</td>
<td>0.1225</td>
<td>1.0000</td>
<td>0.3046</td>
<td>0.2272</td>
<td>0.1225</td>
<td></td>
</tr>
<tr>
<td>$j = 2$</td>
<td>-0.0423</td>
<td>0.0123</td>
<td>0.3046</td>
<td>1.0000</td>
<td>0.2272</td>
<td>0.3046</td>
<td>0.1225</td>
<td>1.0000</td>
<td>0.3046</td>
<td>0.2272</td>
<td>0.1225</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>$j = 3$</td>
<td>0.0604</td>
<td>0.0264</td>
<td>-0.3406</td>
<td>0.2874</td>
<td>1.0000</td>
<td>0.3046</td>
<td>0.1225</td>
<td>1.0000</td>
<td>0.3046</td>
<td>0.2874</td>
<td>1.0000</td>
<td>0.3046</td>
<td></td>
</tr>
<tr>
<td>$j = 4$</td>
<td>-0.0008</td>
<td>0.0206</td>
<td>0.0292</td>
<td>0.0566</td>
<td>0.0974</td>
<td>0.3025</td>
<td>0.1047</td>
<td>0.2234</td>
<td>0.2108</td>
<td>0.0204</td>
<td>0.7934</td>
<td>0.1000</td>
<td></td>
</tr>
</tbody>
</table>