Study of dielectron production in C + C collisions at 1AG eV

HADES Collaboration

a. Instituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy
b. LIP-Laboratório de Instrum. Estacao e F sica Experimental de Partículas, 3004-516 Coimbra, Portugal
c. Smoluchowski Institute of Physics, Jagellonian University of Cracow, 30-059 Krakow, Poland
d. Gesellschaft für Schwerionenforschung mbH, Darmstadt, Germany

Preprint submitted to Physics Letters B

11 April 2013
Abstract

The emission of e^+e^- pairs from $C+C$ collisions at an incident energy of 1 GeV per nucleon has been investigated. The measured production probabilities, spanning from the 0D Dalitz to the 1 invariant-mass region, display a strong excess above the cocktail of standard hadronic sources. The beam energy dependence of this excess is found to scale like pion production, rather than like eta production. The data are in good agreement with results obtained in the former DLS experiment.

Key words: Dilepton spectroscopy, heavy-ion reactions, excess yield, excitation function, DLS puzzle

PACS: 25.75.-q, 25.75.Dw, 13.40.Hq

1. Introduction

An enhanced yield of dileptons with masses below the vector π-meson (i.e., 0 and 1 meson) pole mass appears to be a general feature of heavy-ion reactions, from beam energies as low as 1 AGeV, studied by the former DLS experiment [1] at the Bevalac, through the range of SPS energies (40-158 AGeV) used by the CERES [2] and NA60 [3] experiments at CERN, up to the highest energies (with $\frac{E_{CN}}{N} = 200$ GeV) employed by the PHENIX experiment [4] at the RHIC collider. This enhancement is defined as the excess of the measured pair yield over the sum of the cocktail of dileptons from long-lived sources, namely the decays of 0, 1, and 2 mesons. It is hence expected to probe the early phase of the collision and, in particular, the in-medium behavior of short-lived hadronic resonances, as e.g., the ϕ and η'. However, while the dilepton enhancement observed at the SPS has been related to modifications of the meson spectral function in the hadronic medium [5], the large pair yields found by DLS in C+C and Ca+Ca collisions remain to be explained satisfactorily [6-12].

The High-Acceptance D\bar{E}lectron Spectrometer HADES at GSI, Darmstadt, has started a systematic investigation of dilepton production in the SIS/Bevalac energy regime of 1-12 AGeV. First results obtained in 2 AGeV C+C collisions [14] confirmed indeed the general observation of enhanced emission of e^+e^- pairs with invariant masses of 0.15 - 0.50 GeV/c2. In this Letter we report on a measurement of inclusive electron-pair emission from 12C+natC collisions at a kinetic beam energy of 1 AGeV, i.e., the energy of the DLS experiment. Together with our results obtained at 2 AGeV, this allows to discuss the beam-energy dependence of the pair yield. In addition, a direct comparison with the DLS results [1] becomes now possible.

2. Experiment

In the experiment, a 12C beam of 10^6 particles/s was incident on a target of natural carbon with a thickness corresponding to 4% of one nuclear interaction length. The configuration of the HADES spectrometer, described in detail in Refs. [15,16], was basically identical to the one used in the former 2 AGeV C+C run [14]. To increase the acquired pair statistics, besides a charged-particle multiplicity trigger (LVL1), an online electron identification (LVL2) has been operated as part of the two-level trigger system [14]. All results presented here were obtained from events with a positive LVL2 trigger decision, with a total statistics corresponding to 1.4 10^5 LVL1 triggered events. One major difference to the former run was the presence of up to four planes of tracking drift chambers (two inner and one or two outer), of which, however, only the two inner...
planes were used in the extraction of the results presented here. This was done to optimize the goal of simulating any contribution with the results of our 2 AG eV run obtained within a low-resolution module. In the latter reconstruction of outer track segments is based solely on the position information obtained from the Time of Flight and Pre-Shower detectors (see [14] for details). The lepton identification and drift-chamber plane swivel, however, be performed. All this resulted in a m om entum and mass resolution, as well as a pair acceptance very similar to those characteristic of the former run, m aking the com parison of the two data sets unproblematic. As will become apparent below, the achieved mass resolution of $m_{ee}=M_{ee} = 9\%$ at $M_{ee}=0.8$ GeV/c2 is largely sufficient to resolve all spectral features. Results from a high-resolution analysis based on all four drift-chamber planes will, however, be presented in another, forthcoming publication.

In the pair analysis [17], opposite-sign e^+e^-, as well as like-sign e^+e^- and e^+e^- pairs were formed and subjected to common on selection criteria, in particular to an opening-angle cut of $\theta_{ee}>90^\circ$. From the reconstructed like-sign distributions, e.g. the invariant mass dN^+/dM_{ee} and $dN^-=dM_{ee}$, the combinatorial background (CB) of uncorrelated pairs was calculated bin by bin as $N_{CB} = 2N^+N^-$. For $M_{ee}>0.2$ GeV/c2, where statistics is small, the CB was obtained by an event-mixing procedure. Finally, after subtracting the CB, a total of 18000 signal pairs (650 with $M_{ee}>0.15$ GeV/c2) was thus reconstructed.

Detector and reconstruction efficiencies (p; γ) were determined from Monte-Carlo simulations by embedding electronic and positron tracks into 12C+12C events generated with the UrQMD transport model [13]. The experimental data were then corrected on a pair-by-pair basis with the weighting factor $1/E_e$, with $E_e=m/e$. The geometrical pair acceptance of the HADES detector was obtained in analogy to the pair acceptance of the product of two single-electron acceptances A_{ee} (p; γ). The resulting matrices, together with a momentum resolution function, constitute the HADES acceptance A_{ee} (p; γ) (for more details see [14]). These acceptance matrices are available from the authors on request.

3. Results on pair production

Fig. 1a) shows the e^+e^- invariant-mass distribution of the signal pairs after e^+e^- correction and normalization to the average number of charged pions $N = \frac{1}{2}(N^+ + N^-)$, measured as well with HADES and extrapolated to 4 solid angle. In the isospin-symmetric system 12C+12C, and for small contributions from γ decays, N is also a good measure of the 0 yield, i.e. $N=N$. This way of normalizing the pair spectra conciliates with the first order of the in-plane centrality selection of our trigger. Indeed, simulations based on UrQMD events show that LVL1 events have an average number of participating nucleons $A_{part} = 8\%$, instead of 6 for true minimum bias events. The pion multiplicity per number of participating nucleons $M = A_{part} = 0.061 \pm 0.009$ obtained in our experiment agrees with previous measurements of charged and neutral pions [19, 20] within the quoted error of 15%. The latter is dominated by systematic uncertainties in the acceptance and efficiency corrections of the charged-pion analysis, and it represents our overall normalization error. In addition, the uncertainties caused by the lepton-energy correction and the CB subtraction add up quadratically to point-to-point systematic errors of 22% on dN^+/dM_{ee}.

In Fig. 1b) we compare the data with a pair cocktail calculated from free 0 e^+e^-, e^+e^-, e^+e^-, and e^+e^- meson decays only (cocktail A). This cocktail aims at representing all contributions from decays of mesons in vacuum after the chemical and the meson freeze-out of the quark. While the first two of these sources are directly constrained by published data [19] with uncertainties of 10% (0) and 25% (γ), respectively, the (small) multiplicity of the π^0 meson is taken from an α_γ scaling ansatz [21]. We followed here the same procedure as applied for our 2 AG eV data [14], making use of the PLUTO event generator [22]. Meson production was modeled assuming emission from a thermal source with an effective temperature $T = 55$ MeV; C+C being a very small system, zero radial expansion ($\rho=0$) has been assumed. Further, one, for 0 and mesons, an anisotropic polar distribution of the type $dN = \cos^2(\phi_M) \frac{1}{2} + a_2 \cos(2\phi_M)$ was used with $a_2 = 0.5$ for 0, consistent with our charged-pion analysis, and $a_2 = 0.8$ for γ, as inspired by transport calculations [21, 22]. Events due to a possible polarization of the virtual photon [23] were not
considered. For the ! we have simply assumed an isotropic decay pattern. The accepted ⁰() Dalitz yield was found to change by less than 15% (10%) when varying the source parameters over a broad range, namely 0.3 for , 0.08 for , and 40 for . The cocktail does not depend much on our particular choice of these parameters.

Whereas experimental data and simulated cocktail (solid line in Fig.1(a)) are in good agreement in the ⁰ region, the cocktail strongly undershoots the data for . This conclusion has also been reached by the authors of Ref. [12].

The features of the dielectron mass spectrum are to some extent obscured by its very steep fall, and in order to take this global trend out and make the characteristics of the excess pair yield more visible, we display in Fig.1(b) the ratio of the data and cocktail . This ratio is basically unity at low mass, and has a shoulder at above 15 GeV/c². At 1 GeV/c² it is very much larger, indicating the onset of processes not accounted for in our simple-minded cocktail calculation. Fig.1(b) also shows the corresponding ratio obtained from our previous 2 AGeV measurement [15], i.e. dividing those data by their respective cocktail. As already pointed out above, it is evident that at 1 GeV/c² the exponential slope of the data is much stronger than at 2 AGeV. To quantify this behavior in the plateau region of = 0.15 - 0.50 GeV/c², we define for this mass range an average enhancement above the known Dalitz contribution as .

This ratio, indicated in the curve by horizontal lines, amounts to . The ratio is 1.9 ± 0.2 (stat) ± 0.3 (sys) at 1 AGeV, and to .

To include in the dilepton cocktail pairs from ! N ee decays, we assume that in the beam-energy regime of 1 AGeV the yield scales with the yield measured at freeze-out, and we employ the decay rate calculated in [15]. To determine the -meson contribution, we used a similar prescription as for the !. For this broad resonance (= 0.15 GeV/c²), described in our simulation by a relativistic Breit-Wigner function with mass-dependent width (following [11]), scaling, as well as the additional ⁰ dependence of (imposed by vector dominance [23]) strongly enhance the low-m mass tail, resulting in the skewed spectral shape visible in Fig.1(a). Finally, Dalitz contributions from the heavier baryon resonances (N (1520), N (1535), etc.) turned out to be negligible in our analysis work. The full cocktail thus generated (cocktailB) is shown in the curve as a long-dashed line. One can see that the simulated yield increases somewhat above 15 GeV/c², but obviously our second calculation also remains far from reproducing the data.
2 AGeV. The third error, labeled (), gives the uncertainty caused by the quoted errors on the multiplicities. Due to a re-evaluation of our pion normalization, the value given here for F (2π) is by 10% lower than the one cited in . A assuming now that the excess pairs have in this mass region an overall acceptance close to that of Dalitz pairs, one can also compare F (1π) to the enhancement factor observed in C+C by DLS at beam energy of 1.04 AGeV []. As the HADES and DLS geometric acceptances do not fully overlap (see discussion below), this assumption is indeed necessary to make a meaningful comparison of the ratios obtained within the respective acceptances. U sing the DLS data and a DLS-PLUTO cocktail generated for 1.04 AGeV, we obtain a factor of F (1π) = 6.605(stat) 2.1(sys) 1.5). The DLS result is hence in good agreement with our 1 AGeV measurement. Table summarizes all pair excess factors, together with their uncertainties.

<table>
<thead>
<tr>
<th>E_b [AGeV]</th>
<th>F = Y_{tot}/Y</th>
<th>N_{exc} (10^-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.68 0.08 1.3 2.0 6.8 0.7 15 03</td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>1.9 0.2 0.3 0.3 18 4 7 4</td>
<td></td>
</tr>
<tr>
<td>1.04</td>
<td>6.5 0.5 2.1 15 84 0.7 34 03</td>
<td></td>
</tr>
</tbody>
</table>

Continuing the discussion of Fig. (b), at masses above 0.50 GeV/c², the ratio of data and cocktailA develops for both beam energies a pronounced maximum around M_{exc} 0.50 GeV/c². This is mainly due to the lack of yield in the cocktail at these masses and can hence be considered to be an artifact of the chosen way of presenting our data. On the other hand, the mass region around the Dalitz peak is expected to be dominated by the low-mass tail of the broad resonance, whose population is favored by the available phase space. CocktailB, which includes and decays, shows indeed some enhancement with respect to cocktailA, as visible in Fig. (b), but at larger masses it lies far below the observed pair yield.

4. Evolution with bombarding energy

It is interesting to compare the beam-energy dependence of the pair excess with that of neutral meson production in the C+C system. The latter has been investigated systematically with photon calorimetry, revealing that between 1 and 2 AGeV inclusive and multiplicities increase by factors N (2π) = 1 (10) = 2.4 0.3 and N (2π) = 1 (10) = 17 5, respectively. The excitation functions of inclusive and production are shown in Fig. (3), together with the corresponding pair multiplicity from Dalitz decays (with BR(e⁺e⁻) = 0.6%) within the 0.15-0.50 GeV/c² mass range, amounting to 11.6% of all such pairs. The energy scaling of the inclusive excess pair multiplicity, i.e., for full solid angle and minimum bias, (N_{exc}) has been obtained from the measured excess factors F (2π) and F (1π) and the corresponding inclusive, i.e., minimum bias multiplicities (assuming similar detector acceptances for Dalitz and excess pairs) in the following way: N_{exc} = N_{tot} N = (F 1) N. The resulting excess multiplicities are depicted in Fig. (3), for both energies studied with HADES, together with the 1.04 AGeV DLS point; they are also listed with their uncertainties in Table. From our data it follows that N_{exc} (2π) = N_{exc} (1π) = 2.4 0.6(stat) 0.6(sys) 0.5. This energy dependence is hence remarkably similar to the evolution of pion production, but very different from that of production. It is also apparent in Fig. (2) in the direct comparison of the excess with the pion multiplicity scaled to hit the 2 AGeV point (dotted line), as well as with the absolute vs Dalitz contribution (dashed line). This surprising behavior suggests that, at the bombarding energies discussed here, the pair excess is not driven by the excitation of heavy resonances, but rather by low-energy processes, like pion production and propagation, involving e.g., low-mass excitations, and possibly bremsstrahlung processes.

Recent one-boson exchange (OBE) calculations [7,25] of nucleon-nucleon bremsstrahlung continue and extend the realistic treatment of interactions in the pp channel of [24]. They indicate a much more important role of bremsstrahlung in low-mass dilepton production than hitherto suspected. According to these models, in nucleon-nucleon collisions the quasielastic bremsstrahlung contribution is of similar size as the Dalitz part, accounting for the total dilepton yield above the 0 Dalitz peak at beam energies below the production threshold (E_b = 127 GeV). The OBE calculations also show that a consistent treatment of both processes is not straightforward. Conclusions on their validity can
hence be drawn only once more results on the elementary reactions pp and dp will become available [31].

5. Comparison with DLS

We have already shown above that our pair excess at 1.04 AGeV agrees well with the DLS measurement performed at 1.04 AGeV. In the last section of this Letter we want to present, however, a more comprehensive comparison of the two data sets, done by projecting the dilepton yield observed with HADES into the DLS acceptance. The particular geometry of the two-arm setup of DLS [41], combined with its pair trigger requiring coincident lepton hits in both arms resulted in an acceptance for low-mass pairs \(M_{\text{ee}} < 0.2 \text{ GeV/c}^2 \) centered on mostly small transverse momenta \(p_T < 0.2 \text{ GeV/c} \) and large rapidities \(y > 1.5 \). Although the overall coverage in \(p_T \) and \(y \) of HADES is much wider, because of its toroidal magnetic field configuration, we have collected only small statistics for low-mass pairs with \(p_T < 0.1 \text{ GeV/c} \) and \(y > 1.5 \). This affects strongly \(^0 \text{Dalitz} \) pairs, but only weakly the pair yield at masses \(M_{\text{ee}} > 0.2 \text{ GeV/c}^2 \). A direct comparison of the two data sets hence needs an extrapolation of the HADES pair yield to that particular part of phase space. The whole procedure entails in addition the conversion of multiplicities, measured by HADES, into production cross sections, as given by DLS.

The published pair acceptance curves of DLS [1] acts in a three-dimensional (3d) phase space \((M_{\text{ee}} - p_T - y) \) and therefore the extrapolation of the HADES data to full solid angle was performed in a 3d representation as well. For practical reasons, this has been done by (1) projecting out 2d slices \((p_T \text{ vs. } y)\) of the efficiency- and acceptance-corrected pair yield for different mass bins, (2) fitting a reasonable 2d function to those projections, and (3) using the resulting fits to extrapolate in 3d phase space, mass slice by mass slice, to small \(p_T \) and large \(y \). The sparse statistics resulting from spreading the data counts in three dimensions forced us to use two mass slices only, emphasizing the \(^0 \) and the \(^{12} \text{Dalitz} \) mass regions, respectively.

The 2d function employed to the pair mass slices has been inspired by the following constraints only:

- \(\frac{dN}{dp_T \text{ vs. } y} \) is gaussian and symmetric around mid-rapidity \(y_{1/2} = 0.58 \) at 1 AGeV,
- \(\frac{dN}{dp_T} \) has a quasi-thermal behavior,
- the limited statistics in poses a small amount of \(p_T \) paramaters.

Consequently the function chosen to the acceptance-corrected data was:

\[
1 = p_T \, d^2N = dp_T \, dy = \exp \left[\frac{c_0}{2} \, p_T \, c_1 \, p_T \, c_2 \, (y - y_{1/2})^2 \right]
\]

An advantage of this approach over that based on comparing acceptance-lerred dilepton cocktails with the respective data sets is that it makes, apart from the above, no assumptions about the dilepton sources involved.

Statistical errors of the data were taken into account in the \(\chi^2 \), resulting in corresponding errors on the \(p_T \) parameters and accordingly on the extrapolated pair yield. The effect of using for the \(p_T \) a 1=\(p_T \, d^2N = dp_T \, dy \) instead was investigated as well and has been taken into account in the systematic error assigned to the procedure. The fitted functions were next used to map the 3d data slices for the yield missing in the region of the acceptance mass cut. In this operation no attempt was made to compensate for the somewhat larger beam energy of the DLS experiment, expected to lead to about...
Fig. 3. Direct comparison of the dilepton cross sections measured in C+C at 1 AGeV by HADES and at 1.04 AGeV by DLS. [1,26]. Pair mass distributions (upper frame) and pair transverse momentum distributions (lower frame) are compared with the DLS acceptance. For \(d=dm_{ee} \), both, statistical and systematic errors are shown, for \(l=(2p_{t})d=dp_{t} \), only statistical; for the latter data, systematic errors are expected to be large below 0.2 GeV/c [26]. Overall normalization errors (not shown) are 20% for the HADES and 30% for the DLS data points. In the upper frame, the HADES data corresponding to the two frames discussed in the text are shown as upright (1=p\(_{t}\)) and reverted (1=p\(_{t}^{-}\)) full triangles, respectively.

5% (25%) more \((0) \) production [19,24]. We proceeded by iteratively the patched 3d HADES pair resolution through the DLS pair ker. The extrapolated part of the reconstructed yield is reasonably small (5% (25%)) in the mass region where we discuss the excess yield. At low masses, however, the DLS pair acceptance being quite different from the HADES acceptance, the correction is sizeable (90%), with accordingly large systematic errors.

In a final step the HADES multiplicities were converted into cross sections by multiplying with a total C+C reaction cross section of 900 mbarn and by renormalizing our LVV1 pion multiplicity (0.53) to its minimum bias value (0.36). The result of the procedure is given in Fig. 3, together with the published DLS d=dm [1] and \(l=(2p_{t})d=dp_{t} \) [26] differential cross sections. Errors, in particular the systematic errors due to a different choice of the \(t \) function \(l=p_{t}, \) vs. \(l=p_{t}^{-} \) form), are indicated as well.

From both parts of the figure it is apparent that, within statistical and systematic uncertainties, the HADES and the DLS data are in good agreement, in particular in the mass region of the excess yield, namely for \(m_{ee}=0.15 \pm 0.05 \) GeV/c\(^2\).

6. Conclusions

In summary, we report on a measurement of inclusive dielectron production in C+C collisions at 1AGeV. At low masses, \(l=m_{ee}<0.15 \) GeV/c\(^2\), the pair yield is in agreement with the known \(0 \) production and decay rates. Form mass of \(0.15 \) GeV/c\(^2\) to \(0.5 \) GeV/c\(^2\), it exceeds, however, expectations based on the known production and decay rates of the \(\pi^{\pm} \) meson by a factor of about 7. This excess yield is consistent with that measured by DLS at 1.04 GeV and a comprehensive comparison of differential cross sections gives overall good agreement between the two experiments. The excitation function of the pair yield between 1 and 2 AGeV demonstrates that the excess scales with bombarding energy like pion production, rather than like the production of the much heavier \(\pi^{+} \) meson.

Additional sources associated with the radiation from the early collision phase (\(\pi^{+} \rightarrow \pi^{0}e^{+}e^{-}\)) are clearly needed to account for the excess observed at \(M_{ee}>0.15 \) GeV/c\(^2\).

In this context, our recent studies of pp and pd reactions [3] will help by adding information on dielectron production in elementary reactions, a mandatory input to any transport calculation. Indeed, transport models, besides offering a realistic treatment of the collisions dynamics, also handle the propagation of...
broad resonances, related p-shell effects and multi-step processes, all known to play a crucial role at our bombarding energy. Better insight is therefore expected once more refined dynamic calculations become available.

7. Acknowledgments

We thank H. W. Matis (BNL) for valuable clarifications on the DLS experiment. The collaboration gratefully acknowledges the support by BMBF grants 06M T238, 06G 1461; 06F 171, and 06D R135 (Germany), by the DFG cluster of excellence Origin and Structure of the Universe (www.universe-cluster.de), by GSI (TM-FR, G E M E, OF/STROE), by grants GA ACR IA 1048304, GA CR 202/00/1668 and MSM T LC 7050 (Czech Republic), by grant KBN 1P03B 056 29 (Poland), by INFN (Italy), by CNRS/IN2P3 (France), by grants M CYT FPA 2000-2041-C 02-02 and XUGA PG ID T 02PX IC 20605PN (Spain), by grant U C Y-10.3.11.12 (Cyprus), by INTAS grant 03-51-3208 and by EU contract RII3-CT-2004-506078.

References