Higher Order Couplings
from Heterotic Orbifold Theory

Kang-Sin Choi1; and Tatsuo Kobayashi2\textcopyright

1Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany
2Department of Physics, Kyoto University, Kyoto 606-8502, Japan

Abstract

We calculate couplings of arbitrary order from correlation functions among twisted strings, using conformal field theory. Twisted strings arise in heterotic string compactified on orbifolds yielding matter fields in the low energy limit. We calculate completely the classical and the quantum amplitude including normalization, up to a contribution from Kähler potential. The classical action has saddle points which are interpreted as worksheet instantons described by metastable untwisted strings, formed by twisted strings distributed at certain twisted points. This understanding generalizes the area rule, in the case that the locations of twisted strings do not form a polygon, and provides a general rule for calculating these kinds of instanton corrections. An interpretation of couplings involving linearly combined states is given, which commonly appear in non-prime order orbifolds. The quantum part of the amplitude is given by ratios of gamma functions with order one arguments.

E-mail address: kschoi@th.physik.uni-bonn.de
E-mail address: kobayashi@gauge.scphys.kyoto-u.ac.jp
1 Introduction

Superstring theory is a promising candidate for unified theory including gravity. Heterotic orbifold construction is one of interesting constructions for four-dimensional string models \[1,2\]. (See also for recent works Ref. \[3,4\] and for review \[5\].) One can solve equation of motion of string on the orbifold background, and geometrical picture is clear in heterotic orbifold models. Thus, several aspects can be computed and can be understood from the geometrical viewpoint.

Heterotic orbifold models have modes localized at fixed points, that is, twisted strings. 3-point couplings as well as 4-point couplings of these localized modes have been computed analytically \[6,7,8,9,10\], and the size of Yukawa coupling Y is obtained as $Y \sim e^{A}$, where A denotes naively the area of triangle corresponding to three fixed points of twisted strings. This will be clarified more and generalized in this paper. This aspect is quite interesting from the phenomenological viewpoint. One can obtain suppressed Yukawa couplings when twisted strings are localized far away from each other. That is, one could explain the hierarchy of quark and lepton masses as well as their mixing angles when they are localized at different places.

We have to study selection rules for allowed couplings in order to examine whether realistic fermion masses and mixing angles can be realized from string theory. The space group selection rule \[7,11\] constrain allowed Yukawa couplings rather strongly. For example, on prime order orbifolds, o-diagonal Yukawa couplings are not allowed, and we can not obtain realistic mixing angles by using only 3-point couplings with the minimum number of Higgs fields. On non-prime order orbifolds, o-diagonal Yukawa couplings are allowed \[11\] and possibilities for leading to realistic quark and lepton masses and mixing angles have been studied \[13\]. However, to realize fermion masses and mixing angles in string theory is still a challenging issue.

In this paper, we study generic higher order couplings than renormalizable couplings in heterotic orbifold models. Higher dimensional operators become effective Yukawa couplings after symmetry breaking. Suppose that we have a coupling of type $F f H$ in the superpotential of effective edel theory, where F and f are chiral matter fields corresponding to quarks and leptons, H denotes electroweak Higgs super fields and correspond to several heavy modes. When all scalar components of the super fields develop their vacuum expectation values (VEVs), this higher dimensional operator becomes a Yukawa coupling among chiral fermions F and f and the electroweak Higgs fields H. Thus, there is a possibility for deriving quark/lepton masses and mixing angles through this type of symmetry breaking, but by use of not only 3-point couplings. Indeed, such possibility has been examined in explicit models \[2,3,4\]. Therefore, it is important to study selection rules of allowed higher order couplings and compute magnitude of allowed

1 In non-factorizable orbifold models, o-diagonal Yukawa couplings are allowed, but it is still difficult to derive realistic Yukawa matrices \[12\].
c couplings. When correspond to localized modes on orbifold xed points, the above effective
Yukawa coupling may correspond to a 3-point coupling on a Calabi-Yau manifold,
where orbifold singularities are smoothed by the VEVs of . Thus, calculations of higher
order couplings on the orbifold are also important from the viewpoint of calculations of
3-point couplings on the Calabi-Yau manifold around the orbifold limit.

We compute magnitudes of L-point couplings. Generic aspects of L-point couplings
heterotic orbifold models have been obtained in [8]. Here we apply it to concretely heterotic
orbifold models. Similar calculation has been carried out for generic L-point couplings in
intersecting D-brane models [17].

The paper is organized as follows. In section 2, we give a brief review on heterotic
orbifold models in order to x our notation. Then, we study the selection rule due to
discrete R-symmetry and the space group. In section 3, we compute classical contributions
of L-point couplings. Their quantum parts are calculated in section 4. In section 5, we
consider normalization of correlation functions. Section 6 is devoted to conclusion and
discussion. In appendix, we give useful formulae for hypergeometric functions and their
multivariable generalizations.

2 Setup

2.1 Twisted strings and their vertex operators

The heterotic string theory consists of 10D right-moving superstring and 26D left-moving
bosonic string. For the common ten (bosonic) dimensions, we consider the background
with our 4D space-time and 6D orbifold. The other 16D left-moving bosonic string corre-
respond to a gauge part. A 6D orbifold is a division of a 6D torus T6 by a twist ,
while T6 is obtained as R6= , where is a 6D lattice. The twist must be an auto-
morphism of the lattice , and its eigenvalues are diag(e2i11; e2i22; e2i33) in the complex
basis Z (i = 1; 2; 3). We mainly concentrate ourselves to the case that T6 is factorizable
as T2 T2 T2. To preserve 4D N = 1 supersymmetry (SUSY), they must satisfy the
following condition,

\[1 + 2 + 3 = \text{integer}; \]

(1)

where i is not integer for each i = 1; 2; 3.

The twisted string is a closed string up to orbifold identification

\[Z(e2iz; e2iz) = kZ(z; z) + v; \quad v \; 2; \]

(2)

where is the above lattice (in the complex basis) defining the orbifold. It makes sense
to restrict the phase to be 1 k i 1. Its zero mode satisfies the same condition,

2 It would also be useful to study non-Abelian abelian symmetries [14,15] and accidental global sym-
metries [16] in string models.

3 See for 3-point couplings in intersecting D-brane models [18,19,20,21].
and it is called a xed point on the orbifold. The xed point can be represented by the corresponding space group element, \((^k; v)\). Note that the xed point \((^k; v)\) is equivalent to \((^k; v + (1 \quad k)\). They belong to the same conjugacy class. The sector with \(k = 0\) corresponds to the so-called untwisted sector.

The local operator called the twist operator \(k(z)\) takes into account the nontrivial boundary condition \([2]\) by inducing a branch point at \(z\) with the order \(k \equiv N\) on the world-sheet, but the theory remains local by m odeling out by orbifold projection. The ground state corresponding to the twisted string on the xed point \((^k; v)\) is generated from the untwisted ground state \(j_0\) by the twist eld \(j_k = j_0(0;0)j_0\). These twist elds have the operator product expansions (OPEs)

\[
\begin{align*}
\mathbb{O}Z(z)_{^k(0;0)k} & = z^{k \equiv N} \mathbb{O}Z(z)_{^k(0;0)}; \\
\mathbb{O}Z(z)_{^k(0;0)} & = z^{k \equiv N} \mathbb{O}Z(z)_{^k(0;0)};
\end{align*}
\]

which are understood as the most singular parts in the mode expansion for \(k \equiv 1\).

For the other region \(1 \equiv N < 0\), we have the corresponding relations by replacing \(k\) with \(N\) and \(N\) with \(k\). Also we have similar expressions for \(Z\). Their conformal weights for the holomorphic and antiholomorphic parts are

\[
h_k = h_{N \equiv k} = \frac{1}{2N} \left(1 - \frac{k}{N}\right);
\]

thus inducing a shift of zero point energy.

Each \(^k\)-twisted sector has several ground states, that is, twist elds corresponding to several xed points under \(^k\) twist. When we specify the xed point \(f\), we denote \(f_k\). Also we use the notation \((^{k; f})\), where \((^k; v)\) denotes the space group element corresponding to the xed point \(f\) under \(^k\) twist.

On non-prime order orbifolds, xed points under higher twist \(^k\) \((k > 1)\) are not always xed under \(^k\) or twist elds \((^{k; f})\) are not always eigenstates of the twist \(^k\). To make eigenstates, we have to take the following linear combinations \([22,11]\),

\[
(^{k; f})_{\left\{ \begin{array}{l}
\frac{1}{k} \quad (k; f) \\
(2; v) \\
(0; v) \\
(0; v) \\
(0; v)
\end{array} \right\}} + \frac{2}{k} (k; v) + \frac{1}{k} (k; v);
\]

where \(= e^{i \pi m}\) with integer \(m\) to be determined by gauge quantum numbers and internal momenta. This linear combination may include twist elds corresponding to xed points, which belong to the same conjugacy class.

We consider the covariant quantization with the explicit conformal and superconformal ghosts. It is convenient to bosonize right-moving fermionic string and write bosonized degrees of freedom by \(H^\dagger(z)\). In the bosonized formulation, untwisted massless modes have momenta \(p_t\) for \(t = 1; 5\), which are quantized on the SO (10) weight lattice. The space-time boson and fermion correspond to SO (10) vector and spinor, respectively.
compact space corresponds to \(\text{SO}(6) \). The twisted sector \(T_k \) has shifted \(\text{SO}(6) \) momenta, \(r_i = p_i + k \), which are often called H-momenta.

A bosonic massless state has the corresponding vertex operator,

\[
V_1 = e^{Y_1} (\text{m}^m \ Z_1)^{N_1} \ e^{i \text{m}^m \ \text{H}^{e}} \ e^{Z_1^\dagger \ X^{i}} \ e^{i \ \text{X}^{i}} \ (k \ \mu) \ ;
\]

naturally in the \((1) \)-picture, where \(m \) is the bosonized ghost, \(P^i X^i \) corresponds to the gauge part and \(k X \) corresponds to 4D part. Here, \(\text{m}^m \ Z_1 \) and \(\text{m}^m \ Z_1 \) denote oscillators for the left-mover, and \(N_1 \) and \(N_1 \) are oscillator numbers, which these massless modes include. Similarly, we can write massless modes corresponding to space-time fermions as

\[
V_{1/2} = e^{Y_{1/2}} (\text{m}^{1/2} \ Z_1)^{N_1} \ e^{i \text{m}^{1/2} \ \text{H}^{e}} \ e^{Z_1^\dagger \ X^{i}} \ e^{i \ \text{X}^{i}} \ (k \ \mu) ;
\]

in the \((1/2) \)-picture. We understand that the H-elds contains the four dimensional spin eild. The H-momenta for space-time eeld and boson, \(r^{(1)}_i \) and \(r_i \), in the same supersymmetric multiplet are related each other

\[
r_i = r^{(1)}_i + (1;1;1;1) = 2;
\]

that is, \((1;1;1;1) = 2\) corresponds to the H-momenta of unbroken 4D space-time SUSY charge. To each vertex operator, we have to include overall normalization

\[
g_c = \frac{\gamma^2}{\text{m}!} \prod_{i=1}^{\#N_1} \frac{2}{(m_i - 1)!} \prod_{i=1}^{\#N_1} \frac{1}{(m_i - 1)!} ;
\]

from the state-operator mapping or the unitarity relation \[23\]. The closed string coupling \(g_c \) is expressed in terms of ten dimensional gauge and gravitational couplings

\[
g_c = \frac{\alpha_2 g_{\text{YM}}}{4} = \frac{1}{2} ;
\]

Thus, including one more eild suppresses the corresponding coupling by one inverse mass dimension \(\alpha_2 = 2 \) as we expect. We have omitted the two-cocycles, which determine the overall sign \[24\].

We calculate a correlation function among L twisted matter eilds including two space-time fermions on the \(\mathbb{Z}_N \) orbifold, along the lines \[7,8,9,17\]. It yields a higher order coupling in the zero momentum limit \(k_i \rightarrow 0 \). Since the background has the superconformal ghost charge 2, the correlation function is of the form,

\[
\lim_{k_i \rightarrow 0} \prod_{i=1}^{N/2} \int \text{d}z_i : \text{e}^{\text{eV}_1 (z_1 ; z_1)} : \text{e}^{\frac{1}{2} (z_1 ; z_1)} \text{e}^{\frac{1}{2} (z_2 ; z_2)} \text{e}^{\frac{1}{2} (z_3 ; z_3)} : \text{e}^{V_0 (z_i ; z_i)} : ;
\]

(12)
such that the total ghost charge vanishes. Here is a worksheet cosmological constant and we also have three bosonic ghost fields e(z) and c(z). We take radial ordering implicitly, which extends the ordering property from noncommutative space group.

In order to make the total superconformal ghost charge vanishing, we need vertex operators V₀ in the 0-picture. We can obtain V₀ by operating the following picture changing operator on V₁ [25],

\[Q = e^{2 \text{i} \omega_{12}^{\gamma} H @ Z_1 + e^{2 \text{i} \omega_{12}^{\gamma} H @ Z_1}} \]

where \(r_{12}^{\gamma} = (1;0;0), r_{22}^{\gamma} = (0;1;0) \) and \(r_{32}^{\gamma} = (0;0;1) \) for the components corresponding to the 6D compact space. Thus we have

\[V₀ = \prod_{i=1}^{6} e^{i k \cdot X_i} i P \cdot V \cdot e \prod_{i=1}^{6} X_i \]

up to the same normalization [10]. Here, \(\gamma \) is the jth component of \(\gamma_{\mu} \). Containing no derivatives, the higher order coupling is defined in the zero momentum limit, \(\gamma \rightarrow 0 \). Thus the first term is not relevant. The only change is that some components of twist fields are replaced by excited twist fields, and the norm normalization factors \(\prod_{i=2}^{6} \gamma_{\mu} \), in accord with the number of oscillators in [10]. In the next subsection, we see this change does not modify the calculation in the case that all the twist fields are simply, not excited twist fields.

2.2 Selection rules

Here we briefly summarize the selection rules [1,11,3,25,27]. The vertex operator consists of several parts, the 4D part \(e^{i k \cdot X} \), the gauge part \(e^{i P \cdot X} \), the 6D twist field \(\gamma_{\mu} \), the 6D left-moving oscillators \(@Z_1 \) and the bosonized fermion \(e^{i k \cdot H} \), as explained in the previous subsection. Each part has its own selection rule for allowed couplings. The selection rules of the 4D part and the gauge part are simple, that is, the 4D total momentum \(k \) and the total momentum of the gauge part \(P \) should be conserved. The latter rule is nothing but the requirement of gauge invariance. The other parts lead to non-trivial selection rules. In this subsection, we study the selection rule from the \(H \cdot m \) momenta and oscillators, as well as the selection rule from the 6D twist fields \(\gamma_{\mu} \).

The total \(H \cdot m \) momentum should be conserved like the 4D momentum and the gauge momentum \(P \). For example, for 3-point couplings \(V_1 V_1 V_1 \), they should satisfy the following condition,

\[r_1 = 1 \]

Here we take a summation over the \(H \cdot m \) momenta for the scalar components, using the fact that the \(H \cdot m \) momentum of fermionic components differs by \(1=2 \).
Another important symmetry is the twist symmetry of oscillators. We consider the following twist of oscillators,

\[@Z_i^! \ e^{2 \pi i} @Z_i^!; \ @Z_i^! \ e^{2 \pi i} @Z_i^!; \]

\[\@Z_i^! \ e^{2 \pi i} @Z_i^!; \ @Z_i^! \ e^{2 \pi i} @Z_i^!; \]

without summation over each \(i = 1;2;3 \). Allowed 3-point couplings \(W_{1 V_{1=2}} V_{1=2} \) should be invariant under the above \(Z_N \) twist.

However, for generic \(L \)-point couplings we have to carry out picture changing, and the picture changing operator \(Q \) includes non-vanishing \(H \)-momenta and right-moving oscillators \(@Z_i \) and \(@Z_i^! \). Thus, the definition of \(H \)-momentum depends on the choice of the picture. However, the \(R \)-charges, which are defined as \[4 \]

\[R_i \ r_i + N_i \ N_i; \]

are invariant under picture-changing. Here we do not distinguish oscillator numbers for the left- and right-movers, because they have the same phase under \(Z_N \) twist. Indeed, physical states with 1 picture have vanishing oscillator number for the right-movers, while the oscillator number for the left-movers can be non-vanishing. Thus, hereafter \(N_i \) and \(N_i^! \) denote the oscillator number for the left- and right-movers, because we study the physical states with 1 picture from now. For simplicity, we use the notation \(N_i = N_i \) \(N_i^! \). Now, the selection rule due to \(R \)-symmetry is written as

\[X \quad R_i = 1 \ \mod \ N_i; \]

where \(N_i \) is the minimum integer satisfying \(N_i = 1 = \hat{a}_i \), where \(\hat{a}_i = a_i + m \) with any integer \(m \). For example, for \(Z_6 \)-II orbifold, we have \(i = (1;2;3) = (6;3;2) \).

Whereas the twist operator \(k \)-th itself does not transform under the twist of oscillators, the excited twist operator \(k \)-th transforms like the oscillator in (16), since it is nothing but the product of an oscillator and a twist operator, from the transformational point of view. The modified \(H \)-momentum has a compensating property and the resulting amplitude is invariant under the twist of oscillators, as it must be because the picture changing operator is invariant. However the OPE \(@Z_k \) is of a similar form of a twisted operator

\[@Z \ (z) \ k (0;0) \ z^{kN} \ \k (0;0); \]

\[\@Z \ (z) \ k (0;0) \ z^{kN} \ \k (0;0); \]

which is readily extracted from the OPE \(@Z @Z \ k \). It has a branch structure like \(z^{2kN} \), but the part \(z^{kN} \) is carried by \(k \) from its definition to leave (20). Thus the amplitude including excited twisted operators is the same as one including only twisted operators, up to the overall normalization.

\[^4 \text{See also [28]} \text{ and references therein.} \]
We have the space group selection rule. Here, we study the selection rule for twist fields, \((k, v_j) \). First of all, the product of \(Z_N \) phases should satisfy \(Q = 1 \). Next, we study the space group selection rule. Now, let us consider \(L \)-point couplings of twisted states corresponding to \((k_i; v_i) \) \((i = 1; \ldots; L)\). Their couplings are allowed if the product of space group is the identity, i.e.,

\[
\forall L, \quad (k_i; v_i) = (1;0); \quad i = 1
\]

(21)

Since space group elements do not commute, nor do vertex operators, the ordering of vertex operators in the coupling is important. We have to take into account the fact that \((k;v) \) is equivalent to \((k;v + (1 - k)) \). Thus, the condition for allowed couplings is that the product of space group elements must be the identity up to such equivalence. The space group selection rule includes the point group selection rule, which requires \(k = 1 \), i.e., \(k_i = 0 \) \((\text{mod } N)\) for the \(Z_N \) orbifold. The rules for the linearly combined states are discussed in detail in Ref [27].

3 The classical contribution

Here we consider the 6D \(Z_N \) orbifolds, which can be factorized as three 2D \(Z_N \) orbifolds, and we concentrate ourselves to calculation of correlation functions on the 2D \(Z_N \) orbifolds. The following analysis can be extended to other cases, where 6D \(Z_N \) orbifold is not factorizable or 6D \(Z_N \) orbifold includes 4D non-factorizable orbifold.

The nontrivial part is the correlation function among \(L \) twist operators

\[
Z_{h_{k_1} k_2 \cdots k_L i}
\]

(22)

This can be calculated independently of the remaining components of vertex operators, because they commute. Some of them should be excited twisted states \(k \) for the total ghost charge being 2. Indeed we noted above that the amplitude is the same with a number of factors \((2^0)^{i=2}\).

From the point group selection rule we have

\[
X_L \left\lfloor \frac{k_i}{N} \right\rfloor_{i=1} M ;
\]

(23)

where \(M \) must be an integer. For the moment we assume

\[
M = L \quad 2;
\]

(24)

\(^* \)That is automatic for physical states when the other selection rules are satisfied [26,27].
and we will relax this condition later. This choice is the most convenient one because of two reasons. First, by doubling trick we can relate the corresponding amplitude with that of open strings [17], where this is the closedness condition for L-sided polygon. This gives rise to the generalized Schwarz-Christoffel transformation and the area rule that we will show below. Another reason is that we can obtain the closed form of integration, in terms of a multivariable hypergeometric function [29].

If we use path integral formulation, the correlation function (22) is divided as

\[
Z = Z_{qu} \exp(S_{cl});
\]

according the classical value and the quantum fluctuation around it, i.e. \(Z = Z_{cl} + Z_{qu} \).

The corresponding tree-level Feynman diagram is a sphere with a number of vertex operators inserted. Every object in string theory, including the vertex operators and the correlation function (22) can be separated into holomorphic and antiholomorphic part. Considering one of them, holomorphic restricts many things in a very simple form.

Using the compactification \(C [f_s g = S^2 \) we can cover all the coordinate on the sphere by holomorphic coordinate \(z \) except in nity. To take care of infinity we introduce another patch \(z = 1 = u \) where \(z \to 1 \) becomes \(u = 0 \). Considering a holomorphic solution from

\[
\theta_u Z = z^2 \theta Z \tag{26}
\]

if we need the LHS well-behaved at \(u = 0 \), in the RHS \(\theta Z \) should drop faster than \(z^2 \) as \(z \) goes to infinity.

3.1 L-point coupling

We begin calculating the classical contribution first. We see that the classical solution is the completely factorized part for each inserted operator. Therefore, from the OPEs (3) and (4), the classical solutions are obtained by the holomorphicity and the desired singular structures as

\[
\theta Z_{cl}(z) = a!(z);
\]

\[
\theta Z_{cl}(z) = b_i^l a^i(z); \tag{27}
\]

Here we define the basis of \((L - 2)\) functions

\[
!(z) = \prod_{i=1}^{L-2} (z - z_i)^{k_{iN} - 1};
\]

\[
! a(z) = \prod_{i=1}^{L-2} (z - z_i)^{k_{iN}} \prod_{j=2;j\neq i}^{L-2} (z - z_j); \quad i = 2; \ldots; L \tag{28}
\]
For the symmetric orbifold they are complete since $\hat{Z}_{cl}(z) = (\hat{Z}_{cl}(z))$ and $\hat{Z}_{cl}(z) = (\hat{Z}_{cl}(z))$. From (26), the whole part should behave as z^2 as $z \to 1$. Using (24), we can see that (z) does. For $l^0(z)$, we admitted an additional degree of freedom, i.e. changing the power of z^0, singularity by integer, since it does not modify the branch cut structure. Hence, we have many free parameters λ.

To determine the coefficients $a; b_1$, we should consider the global monodromy condition. The relation (2) does not take into account the global phase if we transport branch cuts from more than one fields. Taking a contour C encircling more than one points gives the relation between overall coefficients in (27) and net translation v in the target space

$$I \quad I$$

$$C_z = dz@Z + dz@Z = v; \quad (29)$$

This expression makes sense only if there is no additional phase. The quantum part does not carry any amplitude $C_z_{qu} = 0$. Hence, Eq. (29) shows a purely classical contribution. Upon integration relating these branch cuts, the Pochhammer loop [30] is a clever way to encompass the two branch points nontrivially without phase. For each branch cut the contour goes in and out exactly once through the cuts, depicted in Fig. 1. Its effect is to encircle the fixed points: f_1 clockwise, f_2 counterclockwise, f_1 counterclockwise and then f_2 clockwise. In terms of space group elements $(l; v_1^0 = (1 \ldots)(f_1 + v_1))$ and $(l; v_2^0 = (1 \ldots)(f_2 + v_2))$ with $v_1, v_2 \geq 2$, we obtain

$$\begin{align*}
(\ldots)^{(l; v_1^0)} & (\ldots)^{(l; v_2^0)} = 1;(1 \ldots v_2 + (1 \ldots \ldots \ldots v_1) \\
& = 1;(1 \ldots v_2)(1 \ldots v_1) v ;
\end{align*}$$

where $v = v_2 + v_1$. The encircling is not necessarily once, i.e., $l \geq 1$ in general, in which we cannot draw branch cuts. The net effect is pure translation. It turns out that every contour is generated by the basis of Pochhammer loops C_1 encircling i-th and $(i + 1)$-th points.

Taking Pochhammer loops C_i around the vertices z_i and z_{i+1}, from (30) we obtain

$$\begin{align*}
C_i \hat{Z}_{cl} = dz@Z_{cl}(z) + dz@Z_{cl}(z) \\
= (1 \ e^{2 \pi k_i \ldots N})(1 \ e^{2 \pi k_{i+1} \ldots N}) (f_{i+1} - f_i + v) \\
= 4e^{i \pi k_{i+1} \ldots N} \sin \frac{k_i}{N} \sin \frac{k_{i+1}}{N} (f_{i+1} - f_i + v);
\end{align*}$$

We have $(L - 2)$ vectors $f_{i+1} - f_i + v$ and L angles (with the constraint [24]), which completely specify L-sided polygon.

Later we can express the solution in terms of the following integrals

$$\begin{align*}
W_{i \ldots}^{1} \frac{dz}{(z)}; \quad W_{i \ldots}^{1} \frac{dz}{(z)};
\end{align*}$$

(32)
and

\[W_1^i = (1 - e^{2i\pi iN}) (1 - e^{2i\pi iN}) F_1^i; \quad i = 1, \ldots, L - 2; \] \hspace{1cm} (33)

with

\[F_1^i = \int_{z_{i+1}}^{z_i} \frac{1}{(z)^i} \, dz; \quad F_1^i = \int_{z_{i+1}}^{z_i} \frac{1}{z} \, dz; \quad i = 2, \ldots, L - 2; \] \hspace{1cm} (34)

Note that \(F_1^i \) and \(W_1^i \) form \((L-1) \times (L-1)\) matrices. In Appendix, they are expressed in terms of multi-valued hypergeometric functions [17, 29]. With \(\text{SL}(2;\mathbb{C}) \), we can set \(z_1, z_L, z_L \) to be \(0, 1, 1 \) respectively and the others to the cross-ratios of \(x_i \).

Plugging (27), the solution is expressed as

\[c_2 F_1^i = f_{i+1} - f_i + v; \quad i = 1, \ldots, L - 2; \] \hspace{1cm} (35)

where we defined \(c_1 = a; b_1 \), and by inverting them we obtain

\[c_1 = \left(f_{i+1} - f_i + v \right) (F_1^i); \hspace{1cm} b_1 = \] \hspace{1cm} (36)

where the inverse is taken with respect to the matrix basis with indices \(l; i \). Plugging into the classical action, we obtain the final solution

\[S_{\text{cl}}(x_2; \ldots; x_L) = \frac{1}{4} \int_0^\infty \left[f_{i+1} X - b_1 b_i I_{0}^0 \right] \right); \] \hspace{1cm} (37)

where

\[I(x_2; \ldots; x_L) = \int_0^\infty \left[d^2 z \| z \| f \right]; \] \hspace{1cm} (38)

\[I_0^0(x_2; \ldots; x_L) = \int_0^\infty \left[c \right] \] \hspace{1cm} (38)

10
We can expand this action by products of holomorphic and antiholomorphic functions, with careful choices of contours. It is nothing but the relation between open and closed string amplitudes before integration over x_is [31],

\[
I(x_2; \ldots; x_{L=2}) = \prod_{i=2}^{L=2} \left(1 \right)^{k_i} \left(x^i \right)^k \frac{1}{N} \exp \left(2 i \frac{k_i}{N} \right) F_i F_i^\dagger \quad \text{(39)}
\]

where

\[
F_0 = \int dz \quad (z-z_j) \left(\prod_{k,j=N}^{k=1} \right);
\]

\[
F_i = F_i^\dagger; \quad i = 1; \ldots; L-2;
\]

\[
F_{L-1} = \int dz \quad (z-z_j) \left(\prod_{k,j=N}^{k=1} \right);
\]

Plugging in (37), we obtain the classical action $S_{cl}(x_2; \ldots; x_{L=2})$. It is a function of $L-2$ complex variables x_i, which we will integrate over as the amplitude. Later, we will integrate this with variables $x_2; \ldots; x_{L=2}$ over the entire complex plane. Among these, using the saddle point approximation by adjusting x_is or equivalently ratios $F_i = F_i^\dagger; i = 2; \ldots; L-2$, we find a minimum

\[
\frac{F_{i+1}}{F_i} = \frac{f_{i+1}}{f_i}; \quad f_i = f_i^\dagger.
\]

Note that in general the integrals F_i are complex and we coordinated the fixed points as complex vectors on a given 2D torus and orbifold.

Inserting these into (38), we have $c_i = b_i = 0$ for all $i > 1$, except $a = c_1 \neq 0$. The solution is nothing but the generalized Schwarz/Christoel transformation [29], whose original version maps the upper half plane into inside an L-polygon

\[
\mathcal{Z}_{cl}(z) = a! (z);
\]

Namely, the points x_i are mapped to vertex z_i and the turning around angle is given by $k_i = N$. In this case, we obtain the instanton contribution is exponential of the polygon area

\[
Z_{cl,m} \propto \exp \left(\frac{1}{2} \left(\text{area of the polygon} \right) \right);
\]

This is valid under the assumption [24], i.e., forming a polygon, but in general case we have more fundamental interpretation shortly.
Of course, there are other minima with the same value, where a and all b_i vanish except one, say $b_k \neq 0$. This corresponds to $F^J_{j+1} = \left(f_{j+2} f_{j+1} \right) = (f_{i+1} f_i)$ and the Schwarz (Christoffel) transformation corresponds to $\mathcal{Z}(z) = b_k!^0(z)^k$.

In forming the area from the Schwarz (Christoffel) transformation, the ordering is important. If we just exchange two fields, we cannot satisfy the space group selection rule in general, and the polygon becomes self-crossing, where the area rule is not applicable. In the correlation function we take the radial ordering. In the superpotential of effective field theory, we do not see the ordering, since the integration over all z_i completely symmetrize the amplitude.

3.2 Four-point correlation function

The four-point correlation function provides a good example of calculation of the classical part. In this case, the functions F_1 are well-known hypergeometric functions, which are solutions of second order linear differential equation. It is known \[32\] that if any three of the solutions have the common domain of existence, there be a linear relation among them. In our case, we can express all of F_1 in terms of, say, F_1 and F_2. They are shown in \((108)\) and \((109)\) of Appendix.

Plugging these to \((39)\) the holomorphic part is obtained as

$$I(x) = c_{11} F_1 f + c_{12} F_1 F_2 + c_{12} F_2 F_1 + c_{22} F_2 f;$$

where

$$c_{11} = \frac{\sin(k_1 = N) \sin(k_2 + k_3 = N)}{\sin(k_4 = N)};$$

$$c_{22} = \frac{\sin(k_3 = N) \sin(k_1 + k_2 = N)}{\sin(k_4 = N)};$$

$$c_{12} = e^{ik_2 = N} \sin(k_2 = N) + \frac{\sin(k_1 + k_2 = N) \sin(k_2 + k_3 = N)}{\sin(k_4 = N)};$$

The coefficient c_{12} reduces to

$$c_{12} = e^{ik_2 = N} \sin(k_1 = N) \sin(k_3 = N);$$

only for the polygon case, using \((24)\). The prefactor $e^{ik_2 = N}$ in c_{12} is the relative phase of (complex numbers) v_{32} and v_{21}, where $v_{ij} = f_i f_j + v$ with $v \neq 0$. From \((36)\) we have the coefficients

$$a = \frac{v_{32} \overline{F_1} + v_{21} \overline{F_2}}{F_1 F_2 \overline{F_1} \overline{F_2}};$$

$$b = \frac{v_{32} F_1 + v_{21} F_2}{F_1 F_2 \overline{F_1} \overline{F_2}};$$

12
We can obtain the antiholomorphic action $I^0(x)$ and integral $F^0_1(x)$ from $I(x)$ and $F_1(x)$ respectively, by substituting $k_i = N + 1$ if $i = N$ and $x = x$. With these we obtain the classical action \[37]. The action does not have manifest duality symmetry, since we have added four points by $\text{SL}(2; \mathbb{C})$.

We define the following modulus

\[
\frac{F_2}{F_1}; \tag{48}
\]

which is in the Z_2 case the modular parameter of two-torus, made by connecting two Riemann sheets with two branch cuts \[6,7\]. As expected from \[41\], the minimum of $I(x)$ is obtained at

\[
= \frac{v_{32}}{v_{21}}. \tag{49}
\]

Thus we have $a = v_{21}; b = 0$ and the minimum of classical action is obtained as

\[
S_{cIm in} = \frac{1}{2} \int_0^\infty c_{11} j_{21} \int c_{12} j_{212} v_{32} + c_{12} j_{213} v_{32} + c_{22} j_{32} \int : \tag{50}
\]

For the case of polygon, the classical action $S_{cIm in}$ reduces to

\[
S_{cIm in} = \frac{1}{2} \int \int \int \int \int \int \int : \tag{51}
\]

This is the area of the quadrilateral formed by vertices at the fixed points $f_1; f_2; f_3$ and f_4.

In the case with $k_1 + k_4 = N$ and/or $k_2 + k_3 = N$, this expression is not well-defined. Without loss of generality, the case with $k_1 + k_4 = N$ and $k_2 + k_3 = N$ leads to $k_1 = k_3 = N$ and $k_2 = k_4 = k$, by use of \[24\], and such a case has been calculated in \[7\]. Here we have to come back to \[44\], and the result agrees. The case with $k_1 + k_4 = N$ or $k_2 + k_3 = N$ leads to $k_1 = N$ and $k_2 = k_3 = N$ and $k_4 = 1$, and such a case has been calculated in \[9\].

From four-point amplitude, we can obtain three-point amplitude by taking x to, say, 1. In this case the fixed points f_3 and f_4 become coalescent and the classical action $S_{cIm in}$ reduces to

\[
S_{cIm in} = \frac{1}{2} \int \int \int \int : \tag{52}
\]

Note that this action depends on the choice of contour \"picture\". Here, we chose one encircling two fixed points f_3 and f_2. We do not need worry about whether v is actually

\[6\] To compare between our results and \[4\], we have to replace our modulus by $e^{i(k-N-1)}$.}
compatible to factorization \([7]\). The Pochhammer loops in which \(v_{32}\) and \(v_{14}\) belong are independent.

In the special case with \(k_1 = k_2 = k_3 = k_4 = N=2\), we have \(c_{11} = c_{22} = 0; c_{12} = i\) and \(F_1^0 = F_1; F_2^0 = F_2\) yielding

\[
S_{cl} = \frac{1}{2} \overline{c_{12}} = \frac{2}{2} \overline{g_{21}v_{32}}
\]

which is again interpreted as twice the area of the rectangle, in unit of \(2^0\) if \(v_{21}\) is orthogonal to \(v_{32}\). This is the case of order 2 subsector (\(N=2\)-th twisted sector) in even order orbifold. Note that this action is not the minimum action, since in this case the classical action is not the function of \(\theta\). In this case the area rule interpretation is somehow ambiguous. We will study more detail in the following subsection.

We have considered \(L\)-point couplings only for \(L = 2; 3; 4\) as examples. However, we will study that higher order \(L\)-couplings reduce to a combination of lower order \(L^0\)-couplings with \(L^0 < L\) by the discussion of ek coalescence in subsection 3.4. In addition, since the number of fixed points on \(T^2 = Z_N\) orbifolds is limited, we can expect that most of higher order \(L\)-couplings can be written as combinations of \(L\)-point couplings only with \(L = 2; 3; 4\). We will study this expectation in separated papers \([27,33]\), by examining concrete orbifold models.

3.3 Non-polygon case: the meaning of area

We assumed the polygon condition \([24]\) is satisfied. However, in general, the following relation

\[
X^L = \frac{k_1}{N} \sum_{i=1}^{L} z^i = 2;
\]

is possible. In the inequality case, the holomorphic part of the classical solution decays faster than \(z^2\), whereas the antiholomorphic part decays not faster than \(z^2\). The only sensible way of treating is to make antiholomorphic part vanishing.

For example, in the \(Z_4\) orbifold, the coupling of four rst twisted sector ekls,

\[
(\rho) (\rho) (\rho) (\rho);
\]

shown in Fig. 2(a), satisfies the space group selection rule. Note that \((\rho) (\rho) (\rho) (\rho)\) does not satisfy the space group selection rule, and the ordering is important. All of twisted ekls are of order four, which cannot satisfy the relation \([24]\). The classical solution is obtained as

\[
\hat{Z}_{cl} = a(z z_1)^{1+4} (z z_2)^{1+4} (z z_3)^{1+4} (z z_4)^{1+4};
\]

\[
\hat{Z}_{cl} = 0;
\]

(55)
Figure 2: (a) On Z_4 orbifold, four order 4 couplings: two at a vertex, and the other two at the opposite vertex. (b) Massless strings are localized (c) Quantum effect grows twisted strings to form a untwisted string, which is a intermediate state described by instanton. The shaded area, where v_{21} is the diagonal, is the minimum area swept.

Figure 3: Naive area rule is the special case of the swept-area rule when the twisted strings form a polygon.

From global monodromy condition, we have

$$a = \frac{v_{21}}{F_1}; \quad \frac{F_2}{F_1} = \frac{1}{\sqrt{2}} (1 + i);$$

and the classical action is given with $c_{11} = c_{22} = 1; c_{12} = \frac{3}{2} (1 + i)$, yielding

$$I = 2;$$

Thus we have the classical contribution

$$S_{cl} = \frac{1}{2} \int_0^2 v_{21} \, \theta;$$

which is interpreted as the area of the square whose diagonal is v_{21}.

15
Similarly, for the coupling

\[(\rho) (^{2} \rho_{1}) (\rho_{2}); \]

we obtain the classical action,

\[S_{cl} = \frac{1}{2} \frac{1}{\kappa_{2}} \|y_{21}\|^{2}; \]

In these cases, we have a different area rule: The "area" is not that surrounded by fixed points, but one as follows. The classical solution describes a local minimum of the action, which is the instanton of worksheet nature, suppressed by \(\theta \). The selection rule tells us that these twisted strings can potentially make an untwisted string, which is not possible due to energetics for massless strings, since they are completely localized at certain fixed points, as in Fig. 2(b). However, they can oscillate to grow to be large size, and above a certain threshold, they can form an untwisted string as in Fig. 2(c). Noting that the instanton describes tunneling between vacua which is energetically forbidden, we can understand that forming untwisted string corresponds to such tunneling.

Still we can have the hint from the modified area. It is the sweeping area for localized twisted strings to grow to become a untwisted string. For the polygon case, i.e. that satisfying the condition (24), this interpretation is still valid, since still the area swept by twisted strings at each vertex makes the polygon area.

On the other hand, in the case not satisfying the condition (24), we lost the interpretation of the mapping \(\Gamma \) being a generalized Schwarz (Christoffel) transformation, since in the target space the fixed points fail to make a polygon.

The subleading correction is generated by identical fixed points on the orbifold, but more separated in the covering space, i.e. \(f + (1 - k) \). Since they are identical points, they satisfy the selection rule. With this interpretation, we can understand the classical solution which makes more than one untwisted strings possible. For example, for\((\rho) (^{2} \rho_{1}) (\rho_{2}) \), the coupling \((\rho) (^{2} \rho_{1}) (\rho_{2}) \), where each fixed point belongs to the same conjugacy class as the previous one, satisfies the space group selection rule, but corresponds to a large \(v_{21} \) and a large instanton action.

3.4 Fields coalescent at the same fixed point

In most cases, some of the fields sit at the same fixed point \(f \). The corresponding correlation function might be obtained by taking the limit \(z_{j} \rightarrow z_{i} \) in the correlation function,

\[h_{i i} = \tau_{\rho_{k_{1}}} (z_{i}) \cdots \tau_{\rho_{k_{2}}} (z_{i}) : \cdots : \]

Note that this limit is not always well-defined. It is because twisted fields do not commute. By conformal symmetry, the OPE has the generic form,

\[\tau_{\rho_{k_{1}}} (z_{i}) \tau_{\rho_{k_{2}}} (z_{j}) \mathcal{C}_{ij} (z_{i}, z_{j}) \tau_{\rho_{k_{i+1}}} (z_{j}); \]

\[(56) \]

\[(57) \]
Equating the conformal weights of the both sides, we have

\[
 u_j = h_{k_i k_j} h_{k_i} h_{k_j} = \frac{k_i k_j}{N} \left(\frac{1}{N} \right) \left(\frac{1}{N} \right) (k_i + k_j \mod N) ;
\]

(58)

Because of the nontrivial branch cut, this relation is asymmetric under the exchange of two twist fields. This property is also re ected in the space group elements, which do not commute, either. We can de ne an invariant block of twist elds, which correspond to the identity of the space group (1;0). Thus, these invariant blocks commute and satisfy

\[
 \sum_{i j} u_j = 0 \mod 1;
\]

(59)

In the case where two points \(z_i\) and \(z_{i+1}\) are in the successive order, and we can merge two twists without ru ing the radial ordering. They are neighboring points as polygon vertices. Then, from (57) the two twists reduce to a single twist with the sumned order. Also this implies the classical solution becomes

\[
 (z_i)^{k_i} z_i^{N-1} (z \quad z_{i+1})^{k_{i+1}=N-1} \quad ! \quad (z_{i+1})^{k_{i+1}+k_{i+2}=N-2}
\]

(60)

where, again, the even integral power is not relevant to branch structure, so that we can make \(k_i=N \quad k_i=1 \quad 1 \mod N\) for instance. This means, not all of L vertices form the L-polygon, but effectively one with the lesser vertices. (Recall that the positions of vertices are given as singularities in the classical solution.) In fact this is the familiar case when we obtain a three point function from the four point function by setting two of the points coalesce. In the latter limit, the polygon is triangle. We can see this in terms of space group elements. Neglecting gauge group, which is not involved in the classical amplitude, we cannot distinguish the product

\[
 (! ;\nu)^2 \quad \text{and} \quad (!^2 ;\nu + !\nu);
\]

(61)

when two identical twisted elds sit at the same point, and are put on the neighboring points in the correlation function.

There is the case where \(k_i + k_{i+1}\) is integer. In this case there is no singularity in the classical solution and such vertex does not contribute to the area rule. In the extreme case where \(k\) order-k twisted elds sit at the same points, the coecients of higher order couplings are not suppressed. Thus all we need to consider is the other nontrivial couplings. Fortunately, not all of them survive: From R-symmetry invariance, the correlation function is further constrained.

However, from the radial ordering, there is a case in which the exchange of two branch cut fails to give well-de ned radial ordering. This is not possible for two elds which are not the neighboring elds in the correlation function, since the space group and the mapping of classical solution is not commutative.
For example, in couplings among twisted fields corresponding to two \((\phi_0)\)'s, two \((\phi_1)\)'s and two \((\phi_1 + \phi_2)\)'s on the \(Z_3\) orbifold, there are two following combinations possible, satisfying the space group selection rule

\[
\begin{align*}
(\phi_1) (\phi_1) (\phi_1) (\phi_1) (\phi_1 + \phi_2) (\phi_1 + \phi_2); \\
(\phi_0) (\phi_1) (\phi_1 + \phi_2) (\phi_0) (\phi_1) (\phi_1 + \phi_2);
\end{align*}
\]

In the first case, the solution behaves like

\[
\theta Z = a (z_1 z_2) 2^{\alpha_3} (z_3 z_4) 2^{\alpha_3} (z_5 z_6) 2^{\alpha_3} : \quad (64)
\]

The two points, \(z_i\) and \(z_{i+1}\) for \(i = 1; 3; 5\), correspond to the same fixed points on the target space, i.e. \(Z (z_1) = Z (z_2) = f_1, Z (z_3) = Z (z_4) = f_2\) and \(Z (z_5) = Z (z_6) = f_3\). Thus, we take the limit \(z_{i+1} \to z_i\) for \(i = 1; 3; 5\). In such a limit, the solution behaves like

\[
\theta Z = a (z_1 z_3) 4^{\alpha_3} (z_2 z_4) 4^{\alpha_3} (z_5 z_6) 4^{\alpha_3} : \quad (65)
\]

Thus, in the space group point of view, it is indistinguishable from the coupling among the second twisted couplings

\[
\begin{align*}
(\phi_0) (\phi_0 + \phi_2) (\phi_0 + \phi_2); \\
(\phi_1) (\phi_0 + \phi_2) (\phi_0 + \phi_2);
\end{align*}
\]

which gives only the area of triangle. On the other hand, the latter coupling \((63)\) gives twice the area of the triangle. The classical solution maps from the different points to the same points. For example the holomorphic part behaves

\[
\theta Z = a (z_1 z_2) 2^{\alpha_3} (z_3 z_4) 2^{\alpha_3} (z_5 z_6) 2^{\alpha_3} : \quad (67)
\]

and the two points, \(z_i\) and \(z_{i+3}\) for \(i = 1; 2; 3\), correspond to the same fixed points on the target space, i.e. \(Z (z_1) = Z (z_4) = f_1, Z (z_2) = Z (z_5) = f_2\) and \(Z (z_3) = Z (z_6) = f_3\).
0 then the ordering is ruined. It is also understood that two different and independent sets of twisted elds can sweep the triangle, which means the instanton corrections from the complete polygons are additive in the action. This case is depicted in Fig. 4.

We summarize how to calculate the classical part of L-point couplings among twist elds \(k_i \) (1 \(i \leq L \)). First, we classify all of possible ordering of these twist elds, which satisfy the space group selection rule. For each ordering of twist elds allowed by the space group selection rule, we consider the following procedure. We combine two or more twist elds sitting at the same fixed point to a single twist eld like (57) and Fig. 3 if possible, that is, they satisfy (53). When their total twist is just (2 \(n \)) twist with integer \(n \), correlation function reduces to much simpler form. The resultant correlation function can be written as product of invariant blocks, which satisfy the space group selection rule like Fig. 3. Each block includes an al number \(L^0 \) of twist elds. Then, for each block, we calculate classical contributions, \(e^{S_{cl}} \), i.e. instanton actions corresponding to the minimum action and larger ones, and take their summation, i.e. \(\prod_{v_i=1}^{r} \exp(S_{cl}) \).

Next, we take a production of classical contributions corresponding to each block, i.e.

\[
Y \quad \exp(S_{cl})^A : \quad \text{invariant blocks} \quad \prod_{v_i=1}^{r} \exp(S_{cl})^A \quad (68)
\]

Finally, we sum over all of possible ordering to obtain the total coupling, i.e.

\[
X \quad \exp(S_{cl})^A \quad (69)
\]

Because of the ordering, the correlation function does not possess the worldsheet duality like in the Virasoro\{Shapiro amplitude [34]\}. In the vanishing momentum limit we do not distinguish the channel, thus the effective coupling like Yukawa coupling does not distinguish the order. However even in this case, the above two cases are distinguishable, since this contribution is the worldsheet effective, suppressed by \(0^0 \).

3.5 Linearly combined states

In higher order twisted sector of a non-prime order orbifold, there are states formed by linear combinations, as in [3], due to the orbifold projection. The linear combination of states can be more precisely defined by that of vertex operators. It follows that the corresponding classical solution consists of linear combination of individual solutions before combination, and also the relative weights are inherited. For example the classical solution involving (6) contains the factor

\[
\prod_{k=1}^{L} (z \ z_1)^{1+kN} + (z \ z_2)^{1+kN} + \ldots \quad (70)
\]

In most of cases, \(L^0 \) may be equal to \(L^0 = 2;3;4 \). We will study this point in concrete models [33].
where \(z_i \) is mapped to the fixed points \(v_1, \ldots, v_l \).

For such couplings, we observe two points

1. The selection rule for a linearly combined state is derived from that for each term.
2. A part of the classical solution, which does not satisfy the selection rule, vanishes.

The proof for the first is given in Ref. [21], and we easily see the latter is the case. We can show that such terms not satisfying the classical solution always contain the same element more than once. Setting these to the other(s) corresponding to shrinking the area to zero, if we do not want to change the angles corresponding other vertices.

For instance, in the second twisted sector of \(Z_4 \) orbifold, we have a coupling including linearly combined states

\[
\left(\begin{array}{c} \text{2} \\ \text{\rho} \end{array} \right) \frac{1}{2} \left(\begin{array}{c} \text{2} \\ \text{\rho}_1 \end{array} \right) \left(\begin{array}{c} \text{2} \\ \text{\rho}_2 \end{array} \right) \left(\begin{array}{c} \text{2} \\ \text{\rho}_1 + \epsilon_2 \end{array} \right) \frac{1}{2} \left(\begin{array}{c} \text{2} \\ \text{\rho}_1 \end{array} \right) \left(\begin{array}{c} \text{2} \\ \text{\rho}_2 \end{array} \right) : \quad (71)
\]

The total coupling is given by summation over each of the four correlation functions. However, the nonvanishing contributions come from the only ones satisfying the selection rule. One that does not satisfy the rule, e.g. \(\left(\begin{array}{c} \text{2} \\ \text{\rho} \end{array} \right) \left(\begin{array}{c} \text{2} \\ \text{\rho}_1 \end{array} \right) \left(\begin{array}{c} \text{2} \\ \text{\rho}_1 + \epsilon_2 \end{array} \right) \left(\begin{array}{c} \text{2} \\ \text{\rho}_2 \end{array} \right) \), does not contribute.

To sum up, for the linearly combined state, we can treat a linearly combined state as a complete physical field, the classical amplitude has only contribution from the parts satisfying the space group selection rule.

4 The quantum amplitude

Now we determine the quantum part of the amplitude (25),

\[
Z_{qu} = h_{k_1} \cdots h_{k_l} i_{qu} : \quad (72)
\]

We use the stress tensor method [7, 9, 17], in which (72) can be indirectly calculated, relying on only the holomorphy. All the information can be read from the Green's function

\[
g(z; w ; z_i) = h_{\frac{1}{2}Z} Z w Q \frac{z_{qu}}{Z_{qu}} k_i^i : \quad (73)
\]

Its form we know from the holomorphic part of the OPE (3),

\[
g(z; w) = \frac{X}{X} \frac{a_{\lambda j} \left(z x_i z x_j \right)}{Q \left(z w \right)} + A \left(w \right) ; \quad (74)
\]

where \(\frac{a_{\lambda j} \left(z w \right)}{X} < j \) avoids overcounting, although otherwise the formula would be more symmetric. The prefactor \(\frac{a_{\lambda j} \left(z w \right)}{X} \), from (25),
gives the desired pole structure. The normalization is determined by requiring the \(\lim_{w \to \infty} g(z; w) \) to be 1, and the condition

\[
\sum_{i < j} a_{ij} = 1; \quad (75)
\]

leads the desired conformal weight \(h_k \), as the coefficient of each double pole in \(z \). To have no residue in \(z \), we require the condition for \(a_{ij} \),

\[
\sum_{j=1}^{X} a_{ij} = 1 \quad \frac{k_i}{N}; \quad (76)
\]

where we use the fake number \(a_{ij} = a_{ji} \) for the case \(i < j \). Summing over \(i \), this condition implies \((75) \). We have less condition for any \(a_{ij} \), rectifying the freedom of our choice of \(A \). Of course, the physics does not depend on the choice \(a_{ij} \). As \(z \) \to \infty \), we have the OPE

\[
\frac{N^Q}{Z_{qu}} h^Q_k (z) = \frac{1}{2} \sum_{i < j} \frac{k_i k_j}{N} \frac{1}{(z - z_i)(z - z_j)} + \sum_{j=1}^{X} a_{ij} \frac{1}{z} \frac{1}{z_j} + \frac{1}{z} \frac{1}{z_j} + \frac{\eta k}{z} \frac{A}{z_1 (z - z_i)}; \quad (77)
\]

We extract the residue \(z \), and take \(z \) \to \infty \). In the limit \(w \to 1 \), the Green's function becomes energy-momentum tensor

\[
T (z) \lim_{w \to 1} \frac{1}{2} \Theta_z Z \Theta_{\bar{z}} \frac{1}{(z - w)^2}; \quad (78)
\]

where the last term arises from the normalization. Sandwiching the OPE in the correlation function

\[
T (z) \frac{k_s}{(z - z_k)^2} + \frac{\eta k}{z} \frac{A}{z_1 (z - z_i)}; \quad (79)
\]

with the \(k_s (z_k) \) and its conformal weight \(h_k \) given in Eq. \((6) \), we can completely calculate the holomorphic part \(Z^h_{qu} \) up to normalization

\[
\Theta_{z_k} \ln Z^h_{qu} = \Theta_{z_k} \frac{h_k}{Z^h_{qu}} = \lim_{z \to z_k} (z - z_k) \frac{N^Q}{Z^h_{qu}} \frac{h^Q_k (z - z_k)}{Z^h_{qu}} \frac{1}{(z - z_k)^2}; \quad (80)
\]

We obtain

\[
\Theta_{z_k} \ln Z^h_{qu} = \Theta_{z_k} \sum_{i < j} \frac{X}{N} a_{ij} \quad \frac{k_i}{N} \frac{1}{z_k} \frac{1}{z_j} + \frac{\eta k}{z_1 (z - z_i)}; \quad (81)
\]
At this stage, using $SL(2;C)$ symmetry, we set $z_1 = 0; z_2 = x; z_{L+1} = 1; z_L = 1$. Then z_L dependent terms vanish since $z_L = 1$, but there are corrections to this from A, which are also dependent on z_L. We now have L unknown for $L = 1$ constraint, and remaining freedom corresponds to realization of A.

Similarly we define the antiholomorphic Green’s function

$$h(z;w) = \sum_{i,j=2}^{\infty} B_{ij} (z) B'_j(w):$$

To obtain A and B_{ij}, we apply the global monodromy condition for the quantum part

$$\oint_C dz g(z;w) + \oint_C dz h(z;w) = 0:$$

It is convenient to call the first term in the RHS as $g_0(z;w)$. If all the z_i are different, the matrix W_i^{-1} has the inverse. Thus we can multiply it to eliminate A and B_{ij}, so that we obtain

$$I_2^{(0)}(w) A = \sum_{i,j=1}^{\infty} 1, \sum_{i,j=1}^{\infty} 1,$$

$$I_2^{(0)}(w) B_{ij} = \sum_{i,j=1}^{\infty} 1, \sum_{i,j=1}^{\infty} 1.$$

Since we set $z_L = 1$, the only relevant terms are ones containing the factor $a_{iL}(z - z_L)$. We divide them by $I_2^{(0)}(w)$ and take the limit $w \to 1$. Then, in the sense of (73), we read off the residue of $(z - z_k)$ in the integrand

$$\lim_{z \to z_k} (z - z_k) \lim_{w \to 1} g_0(z;w) / I_2^{(0)}(w) \Theta_{z_k} \Phi(z) X \sum_{i,j} a_{ij} \frac{1}{z_k} + \sum_{j \neq k} \frac{1}{z_k} \frac{1}{z_j}; (85)$$

where we have replaced a_{iL} with a_{ij} by the relation (74). Therefore we have no dependence on the specific choice of $g_0(z;w)$, or a_{ij}, as it should be.

Integration around the contour C_1 gives

$$\Theta_{z_k} \ln Z_{qu} = \sum_{i=1}^{\infty} \left(W_i^{-1} \right) \Theta_{z_k} \ln W_i^{-1} + \sum_{j=1}^{\infty} \left(W_j^{-1} \right) \Theta_{z_k} \ln W_j^{-1} + \sum_{i \neq j} \ln (z_k - z_j) \left(W_i^{-1} \right) \ln (z_k - z_j) \left(W_j^{-1} \right): (86)$$

The first term in the RHS is contained in the derivative of $\ln \det W \left(W_i^{-1} \right)$, $\ln \det W_j^{-1}$. By the chain rule, we obtain

$$\Theta_{z_k} \ln (\det W) = \sum_{l=1}^{\infty} \left(W_i^{-1} \right) \Theta_{z_k} \ln W_i^{-1} + \sum_{j=1}^{\infty} \left(W_i^{-1} \right) \Theta_{z_k} \ln W_j^{-1}: (87)$$

22
For the second term in the RHS of (86), in the same way, we find the singular structure as $z! z_k,$
\[X X^2 (W^1)_j^i @_{z_k} W^j = @_{z_k} \ln (z_j z_i) = Y. \] (88)

Thus we obtain
\[\ln Z^h_i = \frac{Y^3}{(z_i z_j)^{(1/k_i)(1/k_j)}}; \quad (89) \]
up to antiholomorphic action. In fact, there are additional factors, since we have used only the part of the terms $s^{-1}(W^1)_j^i @_{z_k} W^j$ in (87). The remaining terms completely vanish if we calculate the antiholomorphic part in the same way. The similar analysis is carried out for B_{ij} by dividing by $!^0(w).$ Combining it with the holomorphic part $Z^h_i = Z^h_{qu} Z^m_i,$ we arrive
\[Z_{qu} = (\det W)^1 (z_i z_j)^{(1/k_i)(1/k_j)} (z_i z_j)^{(1/k_i)(1/k_j)}; \quad (90) \]
up to the normalization, to be determined in the following section. The various branch cuts respect the noncommutativity of the vertex operators under permutation, due to orbifold phase. As well as the classical part, the quantum part has no world-sheet duality, either. Nonetheless the complete amplitude will be single-valued, completed with other parts of vertex operators.

5 Factorization and normalization

To normalize the amplitude, we choose the reference of normalization
\[h_k (z;z) = \frac{1}{k} \ln (z_i z_j); \quad (91) \]
Equivalentlly, two twist-edges of the opposite twist-edges coalescent at the same point become the identity operator. In general, we cannot make use of the normalization [91], since for each twist edge we need one with the opposite twist. Thus we use a doubling trick.

First we calculate $2(L-1)$ point function with twist
\[S (1;2;:::;2L-2) = h_k (z_i) = \frac{1}{k} \ln (z_i z_1); \quad (92) \]
By setting $w_{L-1}! z_{L-1}$ we obtain the product of a $(2L-3)$-point function and a 3-point function. From the unitarity, the intermediate state gives an on-shell pole, with the lowest state being massless gauge bosons,
\[S (1;2;:::;2L-2) = \int \frac{d^q k}{(2\pi)^q} S (1;2;:::;2L-2;4;i) S (j;2L;3;2L-2); \quad (93) \]
This factorization is schematically drawn in Fig. 5.

Concentrating only twist fields, the intermediate gauge boson does not contain a twist field. The form contains only 2L 4 twist operators and the latter has the form as in (91). Therefore we have

$$h_{k_1} N_{k_1} \cdots k_{L-1} N_{k_{L-1}} \cdots h_{k_1} N_{k_1} \cdots k_{L} N_{k_L} \cdots h_{k_1} N_{k_1} \cdots k_{L-1} N_{k_{L-1}} i: \quad (94)$$

We have already known the general solution. For this we have the same action, including the classical and the quantum parts, except the factor det W. In this, each term W_i contains the common factor

$$\sum_{l=1}^{N} 4e^{i(k_{l+1} - k_l)} \sin \frac{k_{l+1}}{N} \sin \frac{k_l}{N} : \quad (95)$$

Thus there is a discrepancy between the two by the factor

$$\frac{\det W^{(1)}}{\det W^{(1)}} = 4e^{i(k_{1} - k_1)} \sin \frac{k_1}{N} \sin \frac{k_1}{N} ; \quad (96)$$

where the subscript in the determinant indicates that these are for 1 and 1 1 point correlation functions, respectively. This is so, since the normalization of 2(L 1) point function have no special dependence of a specific k_1. In effect, we replace $\det W$ in (90) with $\det F$, which is defined in (34). This is a desirable result, since any choice of factorization should give the same result, not depending on the special set of contour choice, which is reflected in sin N.1.

We cannot go from the four-point function into the product of two two-point functions, since the point z cannot be arbitrary close to all of 0,1,1,1, already xed by SL(2;C), at the same time. For this, we do the Poisson resummation [7]. Since it involves a lattice transformation into its dual lattice, as a result we have the overall factor of the lattice volume.
Finally we set $z_L; z_{L+1}; \ldots; z_{2L}$ to infinity to obtain the OPE
\[
\sum_{i=1}^{k_1} h_{k_1} \ldots k_i i \sum_{l=1}^{k_1} h_{k_1} \ldots k_l i \sum_{i=1}^{k_1} h_{k_1} \ldots k_i i = \text{RHS}
\]
where the selection rules should be satisfied. The RHS is nothing but the product of two identical $(L-1)$th order couplings. Comparing the coefficients, we obtain the coupling of order L
\[
Y_{L \text{-point}}(k_1; k_2; \ldots; k_L) = \lim_{\text{all } w_i \to 1} \det F_{(2L)}(k_1; k_2; \ldots; k_L; \ldots; k_L; \ldots; k_L; k_1; k_2; \ldots; k_L) \frac{1}{N}
\]
where
\[
\frac{k_L}{N} = L - 1 \frac{X}{N} + \frac{1}{N}
\]
For the rest of vertex operator components, we have
\[
\begin{align*}
he(z_1; c(z_2) c(z_3) c(z_3) c(z_2); i e(z_1; c(z_2) c(z_3) c(z_3) c(z_2); i) &= \sum_{j=1}^{k_1} j \sum_{j=1}^{k_1} j \\
h &\left(\begin{array}{c}
(z_2) (z_3) i = (z_1 z_2)^{1 \otimes 2} (z_1 z_3)^{1 \otimes 2} (z_2 z_3)^{1 \otimes 4} \\
h &\left(\begin{array}{c}
(\begin{array}{c}
D Y \quad e^{ik_1 x} (z_1; z_1) = \sum_{i=1}^{k_1} i \sum_{j=1}^{k_1} j \\
D Y \quad e^{ip_1 x} (z_1) = \sum_{i=1}^{k_1} i \sum_{j=1}^{k_1} j \\
D Y \quad e^{ip_1 x} (z_1) = \sum_{i=1}^{k_1} i \sum_{j=1}^{k_1} j \\
\end{array}\right)
\end{array}\right)
\end{align*}
\]
Multiplying these, and using the massless condition, the branch cuts disappear in the overall amplitude. Including universal geometric factor of sphere $8 g_{2 \times 1}$, we have the overall factor
\[
2(4^{L+3}) g_{10}^{L \times 2} e^{(L \times 2)} \frac{1}{2(L \times 4)}
\]
up to contributions from picture changing and/or oscillator excitations $[10]$. For the four point coupling, we have volume factor suppression from the compactification.

As the simplest example, we can extract the information for three point correlation function. By SL($2; \mathbb{C}$) symmetry, we can choose three arbitrary given points completely, thus the correlation function contains no information. To obtain it, we need four point correlation function with twists
\[
h_{k}(0; 0); N k (x;x); 1(1; 1); N \frac{1}{1} (1 ; 1) i;
\]
where we consider only one two-torus. From (32), we have

$$\det F (x; x) = F_1^2 F_2^2 F_1^2 F_2^1$$

(103)

$$B (1 \frac{k}{N}; 1 \frac{k}{N}; 1; \frac{k}{N}; 1; \frac{k}{N}; 1; \frac{k}{N}; 1; \frac{k}{N}; z) = 2 (1 - \frac{k}{N})^2 (1 - \frac{k}{N})^2 \frac{e^{-ik}}{\sin \frac{k}{N}} + \frac{e^{ik}}{\sin \frac{k}{N}} \right) \right)^2$$

(104)

Let us assume $k + 1 < N$. In the limit $z; z \to 1$, using the relations (110) and (111) in Appendix, the most dominant part has the coefficient

$$\det F = B (1 \frac{k}{N}; 1 \frac{k}{N}; 1; \frac{k}{N}; 1; \frac{k}{N}; 1; \frac{k}{N}; z)$$

(103)

where we used the relation $(a) (1 \ a) = \sin a$. Thus, taking the entire compact dimension, the Yukawa coupling is obtained as

$$Y_{k_1 k_2}^{m_1 m_2} = g_{N M} \frac{1}{2} (A \ k_j)^2 \frac{1}{2} (1 - \frac{k_j}{N}) \frac{1}{2} (1 - \frac{k_j}{N}) \frac{e^{-i\frac{k_j}{N}}}{\sin \frac{1}{N}} + \frac{e^{i\frac{k_j}{N}}}{\sin \frac{1}{N}} \right)^2$$

(105)

with the classical action given in (52). For the case $k_j + l_j > N$, we can obtain the corresponding amplitude by replacing $k_j; l_j$ by $N - k_j; N - l_j$. It is notable that, in the quantum amplitude, there is no contribution from the geometry, since it is canceled by the same dependence in the four dimensional gauge coupling arising from the dimensional reduction.

We can obtain similar expressions for the higher order couplings, expressed in terms of multivalued hypergeometric functions. One can be convinced that the asymptotic form of the generalized hypergeometric function in the above limit is the ratio of Gamma functions [35] with arguments of $0 (0; 1)$. Thus we expect that the quantum parts of the higher order couplings are roughly of order one. Thus we see that the size of higher order coupling is dominated by the classical part.

6 Conclusions

We have calculated couplings of arbitrary order, among untwisted and twisted fields of heterotic string on orbifolds, using conformal field theory. In the low energy limit, they correspond to the matter superpotential. They are given by the zero external momenta limit of radially ordered correlation functions. The specification of orbifold and the shift vector determine the possible couplings. This provides us with lessons for constructing low-energy effective field theory, in particular for vacuum configurations of compactified string theory and realistic quark and lepton mass spectra.

The higher order couplings are complicated due to two things. The first is the technical difficulties dealing with arbitrary number of twist fields and evenram even excited twist fields
from the picture changing. In the calculation of higher order coupling, the latter has just an effect of changing the normalization, not changing the transformation property and the branch cut structure. The other difficulty arises from linearly combined states, which appear in higher twisted sectors of non-prime order orbifolds. They make the interpretation of the classical and the quantum somewhat tricky.

The selection rules (mainly studied in Ref. [27]) from the location of fields and the R-symmetry can be possible origins of discrete quantum numbers in effective field theory. They also provides the understanding on discrete flavor symmetries. Because of the restrictive form of selection rules, in particular in the heterotic string models, only limited number of couplings are possible, since there are limited number of orbifolds and fixed points. This will be classified elsewhere [33].

The classical part is an instanton amplitude of world-sheet nature. Its size is exponentially suppressed by the effective area swept by the twisted strings to form untwisted strings. The latter is energetically not allowed, metastable intern ediate state. This generalizes the naive area rule even if the twisted strings do not form a polygon. Decomposing the locations of twisted fields, we can obtain handy rule for calculating the size. For couplings involving linearly combined states, the only contribution comes from the term satisfying the space group selection rule. The others vanish individually.

We have also calculated the quantum amplitude with the complete normalization, up to the Kähler normalization. In this there is no contribution from the geometric distribution of the fields, since the contributions from the normalization and that from the dimensional reduction cancel.

Besides the a^2 suppressions from the closed string couplings and oscillator normalizations, the coefficient is given by ratios of products of gamma functions, whose argument is of $O(0.1)$, thus we expect a factor of $O(1)$ from the quantum amplitude. The dominant amplitude is classical one, which is exponentially suppressed. Thus it is easy to generate hierarchy of Yukawa couplings. However, from the top-down approach, it is not easy to locate the desired fields at the desired positions.

Acknowledgments

A Useful Formulas

The four-point amplitude is described by the standard hypergeometric functions. The following relations

\[
F(a;b;c;z) = \frac{(c)(c-a)(b)}{(c)(c-b)}F(a;b;a+b+1;c;1;z) + \frac{(c)(a+b+c)}{(a)(b)}(1;z)^c a^b F(c;a;c;b;1+c;a;b;1;z); (106)
\]

\[
F(a;b;c;z) = (1;z)^c a^b F(c;a;c;b;c;z); (107)
\]

are useful.

The classical action contains the following functions,

\[
F_0(l, x) = (1)^{k_4=N} B \left(\frac{k_2}{N}; \frac{k_1}{N} \right) F \left(\frac{k_2}{N}; 1; \frac{k_2}{N} + \frac{k_1}{N}; x \right);
\]

\[
F_1(x) = (1)^{(k_2+k_3)=N} \left(1 + (k_1 + k_2) \right) B \left(\frac{k_1}{N}; \frac{k_2}{N} \right) F \left(\frac{k_1}{N}; 1; \frac{k_1}{N} + \frac{k_2}{N}; x \right);
\]

\[
F_2(l, x) = (1)^{1+(k_2+k_3)=N} \left(\frac{k_2}{N}; 1 \right) \left(1 + (k_1 + k_2) \right) B \left(\frac{k_1}{N}; \frac{k_2}{N} \right) F \left(\frac{k_1}{N}; 1; \frac{k_1}{N} + \frac{k_2}{N}; x \right);
\]

\[
F_3(x) = B \left(\frac{k_1}{N}; \frac{k_2}{N} \right) F \left(\frac{k_1}{N}; 1; \frac{k_1}{N} + \frac{k_2}{N}; x \right);
\]

\[
F_4^0(x) = F_1(k_1! N; k_1! x);
\]

\[
F_2^0(l, x) = F_2(k_1! N; k_1! x);
\]

where \(B(a;b) = (a)(b) = (a+b) \) and it is the Euler beta function. For \(F_0 \) and \(F_3 \) we have used above relations (106), (107), as well as (24). For \(k_1 = 2/N \), the above functions become as

\[
F_0(l, x) = \frac{\sin(k_3=N)}{\sin(k_3=N)} e^{k_1(N)} \frac{\sin(k_2+k_3=N)}{\sin(k_1=N)} e^{k_2(N)} F_1(x) + F_2(l, x);
\]

\[
F_3(x) = \frac{\sin(k_1=N)}{\sin(k_1=N)} e^{k_1(N)} \frac{\sin(k_2+k_3=N)}{\sin(k_1=N)} e^{k_2(N)} F_1(x) + \frac{\sin(k_1+k_2=N)}{\sin(k_1=N)} e^{k_2(N)} F_2(l, x);
\]

\[
F_1^0(x) = (1)^{(k_2+k_3)=N} \left(\frac{k_1+k_2}{N} \right) B \left(\frac{k_1}{N}; \frac{k_2}{N} \right) F_3(x);
\]

\[
F_2^0(l, x) = (1)^{(k_3+k_4)=N} \left(\frac{k_3}{N}; 1 \right) \left(\frac{k_3+k_4}{N} \right) B \left(\frac{k_3}{N}; \frac{k_4}{N} \right) F_3(x);
\]

For factorization of the amplitude, we need the asymptotic behaviors of hypergeometric functions in the \(z! \lim \).

\[
F(a;b;c;z) = e^{\frac{a}{b}}(c)(b-a) z^a + e^{\frac{b}{a}}(c)(b-a) z^b; (110)
\]

\[
F(a;b;c;1) z^a + (c)(a-b) z^b; (111)
\]
For the higher order amplitude than four, we need a multivariable generalization of hypergeometric function, called Lauricella D function \[36\]. It is defined as

\[
F_D(a;b_1; \ldots ;b_r;c;x_1; \ldots ;x_r) = \sum_{m_1=0}^{\infty} \cdots \sum_{m_r=0}^{\infty} \frac{(a)_{m_1+} \cdots (b_1)_{m_1} \cdots (b_r)_{m_r}}{(c)_{m_1+} \cdots (b_r)_{m_r}} x_1^{m_1} \cdots x_r^{m_r};
\]

with \(k_{ij}<1\) for all \(i\). Here \((a)_n\) is the Pochhammer symbol meaning

\[
(a)_n = \frac{(a+n)}{a} = a(a+1)\cdots(a+n-1); \quad n \geq 0;
\]

\[
(a)_n = \frac{(1-n)}{(1-a)_n}; \quad n < 0;
\]

We can express the integration as \[17\]

\[
F_D^{(N)}(k_1=\infty; k_1=1; \ldots ; k_{r-1}=1; k_r=N) = \sum_{j=1}^{N} (x_1^j x_{i+1}^j)^{1+k_{i+1}=N} B(k_i=N; k_{i+1}=N);
\]

\[
F_D^{(N)}(k_1=\infty; k_1=1; \ldots ; k_{r-1}=1; k_r=N) = \sum_{j=1}^{N} (x_1^j x_{i+1}^j)^{1+k_{i+1}=N} B(k_i=N; k_{i+1}=N);
\]

(112)

where \(x_{ij} = \frac{x_i x_{i+1}}{x_{i+1} x_j}\) is the conformally invariant cross ratio.

References

