Observation of B^0_s and Search for B^{0*} Decays at Belle

1. Budker Institute of Nuclear Physics, Novosibirsk
2. The University of Anhui, Anhui
3. University of California, Berkeley
4. University of California, Los Angeles
5. Tohoku University, Sendai
6. University of California, Los Angeles
7. Institute of High Energy Physics, Vienna
8. Institute of High Energy Physics, Protvino
9. Institute for Theoretical and Experimental Physics, Moscow
10. University of Melbourne, School of Physics, Victoria
11. Nagoya University, Chiba
12. Nagoya University, Ibaraki
13. National Taiwan University, Taipei
14. National Taiwan University, Taipei
15. University of Science and Technology of China, Hefei
16. Seoul National University, Seoul
17. Sungkyunkwan University, Suwon
18. University of Sydney, Sydney, New South Wales
19. Tohoku University, Sendai
Radiative penguin decays, which produce a photon via a one-loop Feynman diagram, are a good tool to search for physics beyond the Standard Model (SM) because particles not yet produced in the laboratory can make large contributions to such loop effects. The B^0_s branching fraction has been computed with 30% uncertainty to be about 40 10^{-6}. The B^0_s mode is usually described by a penguin annihilation diagram (Fig. 1 right), and its branching fraction has been calculated in the SM to be in the range $(0.5 \pm 10) \times 10^{-6}$. Neither B^0_s nor B^0_{s*} has yet been observed, and the upper limit at the 90% confidence level (CL) on their branching fractions are, respectively, 120×10^{-6} [3] and 53×10^{-6} [3].

A strong theoretical constraint on the B^0_s branching fraction is generally assumed due to good agreement between SM expectations and experimental results for $b \rightarrow s$ rates, such as in $B^+ \rightarrow K^+ \phi$ and $B^0 \rightarrow K (892)^0$. The B^0_s branching fraction is constrained in a similar way, though there are New Physics (NP) scenarios such as supersymmetry with broken R-parity, a fourth quark generation, or a two Higgs doublet model with flavor changing neutral currents, which can increase the B^0_s branching fraction by up to an order of magnitude without violating constraints on the $B \rightarrow X_s$ branching fraction.

In this study, we use a data sample with an integrated luminosity ($L_{	ext{int}}$) of 23.6 fb^{-1} that was collected with the Belle detector at the KEKB asymmetric-energy e^+e^- collider operating at the $(5S)$ resonance (10.87 GeV).

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a 4-layer silicon detector (SVD [16]), a central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel- and end-cap electromagnetic calorimeter (ECL) located inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron return located outside the coil is instrumented to detect K^0_s mesons and to identify muons. The detector is described in detail elsewhere [17].

The variety of hadronic events at the $(5S)$ resonance is richer than that at the $(4S)$. $B^+ \rightarrow B^0 \pi^+$ and $B^0 \rightarrow B^0 \pi^-$ mesons are produced in $(5S)$ decay. B^0_s mesons are produced mainly via $(5S)$ $B_s \bar{B}_s$ decays, with subsequent B_s low-energy photon de-excitation. The $b\bar{b}$ production cross section at the $(5S)$, the fraction of $B_s \bar{B}_s$ events in the bb events, and the fraction of $B_s \bar{B}_s$ events among $B_s \bar{B}_s$ events have been measured to be, respectively, $15 \pm 2(3.0)$ nb, $f_{s\bar{s}} = (19.5 \pm 3.0)\%$, and $f_{s\bar{s}} = (93 \pm 9)\%$. The B_s^0 and B_s^0 decay fractions are small and not yet measured.

Charged tracks are reconstructed using the SVD and CDC detectors and are required to originate from the interaction point. Kaon candidates are selected from charged tracks with the requirement $L_K = (L_K + L_L) > 0.5$, where L_K (L) is the likelihood for a track to be a kaon (pion) based on the response of the ACC and on measurement from the CDC and TOF. For the selected kaons, the identification efficiency is about 85% with about 9% of pions identified as kaons.

We reconstruct $\pi^+\pi^-$ mesons in the decay mode by combining oppositely charged kaons having an invariant mass within 12 MeV/c^2 (25) of the nominal mass [17].
We reject photons from \(\Delta \) and decays to two photons using a likelihood based on the energy and polar angles of the photons in the laboratory frame and the invariant mass of the photon pair. To reject merged photons from \(\Delta \), we require an ECL shower shape consistent with that of a single photon: for each cluster, the ratio of the energy deposited in the central \(3 \) and \(13 \) layers of the calorimeter to that of the larger \(5 \) array of cells has to be greater than 0.95. Candidate photons are required to have a signal timing consistent with originating from the same event. For the \(B_0^*! \) mode, photons are selected in the barrel part of the ECL (33 < 128) and we require that the total energy of the event be less than 12 GeV.

\(B_0^* \) meson candidates are selected using the beam-energy-constrained mass \(M_{bc} = \frac{(E_{\text{CM}})^2}{(p_{\text{CM}})^2} \) and the energy difference \(E = E_{\text{CM}} - E_{\text{beam}} \). In these definitions, \(E_{\text{CM}} \) is the beam energy and \(p_{\text{CM}} \) and \(E_{\text{beam}} \) are the momenta and the energy of the \(B_0^* \) meson, with all variables being evaluated in the center-of-mass frame. We select \(B_0^* \) meson candidates with \(M_{bc} > 5.3 \text{ GeV} \) for both modes, and \(0.4 \text{ GeV} < E < 0.4 \text{ GeV} \) for the \(B_0^*! \) mode and \(0.7 \text{ GeV} < E < 0.4 \text{ GeV} \) for the \(B_0^*! \) mode. No events with multiple \(B_0^* \) candidates are observed in either data or Monte Carlo simulation. \(B_0^* \) mesons are not fully reconstructed due to the low energy of the photon from the \(B_0^* \) decay. Signal candidates coming from \(B_s B_s^*, B_s B_{0s}^* \) and \(B_s^* B_{0s}^* \) are well-separated in \(M_{bc} \), but they overlap in \(E_{\text{CM}} \).

The main background in both search modes is due to continuum events coming from light-quark pair production (uubar, ddbar, sas and cc). Rejection of this background is studied and optimized using large signal MC samples and a continuum MC sample having about three times the size of the data sample. A Fisher discriminant based on modified Fox-Wolfram m omnent (SFW) is used to separate signal from continuum background. The process is

\[
L = \sum_i S_j \left(\frac{X_i}{S_j B_{ij}} \right); \tag{1}
\]

where \(i \) runs over all events, \(j \) runs over the possible event categories (signals or backgrounds), \(S_j \) is the number of events in each category and \(P_{ij} \) is the corresponding PDF.

For signal events and the \(K^+ \) in the rest frame. For signal events should follow a \(\cos^2 \theta_{\text{hel}} \) distribution, while for continuum events the distribution is found to be at. For the \(B_s^*! \) mode, we optimize the SFW requirement to mimize the 90% CL upper limit on the branching fraction computed by the Feldman-Cousins method \([24]\). The upper limit calculation requires two inputs: the number of observed events \(N_{\text{obs}} \) and the expected number of background events \(N_{\text{bkg}} \). We assume \(N_{\text{obs}} = N_{\text{sig}} + N_{\text{udsc}} \) and \(N_{\text{bkg}} = N_{\text{udsc}} + N_{\text{sig}} \) are counted in the \(B_s^*! \) signal window \(M_{bc} > 5.3 \text{ GeV} \) and \(0.3 \text{ GeV} < E < 0.05 \text{ GeV} \) assuming that \(B(B_s^*!) = 10 \times 10^{-6} \).

Inclusive \(b \bar{b} \) backgrounds from \(\Delta \) decays are studied using MC samples having about the same size as the data sample. Backgrounds coming from \(B^+ \) or \(B^0 \) decays are found to lie outside of the \(t \) region. For \(B_s^* \) decays, no event is reconstructed in the \(B_s^*! \) mode. The \(B_s^*! \) (branching fraction) is a potential background for the \(B_s^*! \) mode and is studied using a dedicated MC sample. Assuming that its branching fraction is the same as its \(B_s^* \) counterpart, we expect to reconstruct one \(B_s^*! \) (branching fraction) background event. Considering the large \(B_s^*! \) (branching fraction), this background is treated as a source of systematic error.

For the \(B_0^*! \), \(B_0^*! \) mode, we perform a three-dimensional (two-dimensional) unbinned extended maximum likelihood fit to \(M_{bc} \), \(E \) and \(\cos \theta_{\text{hel}} \) (\(M_{bc} \) and \(E \)) using the probability density functions (PDF) described below.

The signal PDFs for \(M_{bc} \) and \(E \) are modeled separately for events coming from \(B_s B_s^*, B_s B_{0s}^* \) and \(B_s^* B_{0s}^* \) with smoothed two-dimensional histograms built from signal MC events. The \(M_{bc} \) distribution is fitted using a three-dimensional (two-dimensional) unbinned extended maximum likelihood fit to \(M_{bc} \), \(E \) and \(\cos \theta_{\text{hel}} \). Statistical uncertainties contained in these corrections are included in the systematic uncertainty.

Continuum background is modeled with an ARGUS form factor for \(M_{bc} \) and a first-order polynomial function for \(E \). For the \(B_0^*! \) mode, the signal (continuum) PDF for \(\cos \theta_{\text{hel}} \) is modeled with a \(1 \cos^2 \theta_{\text{hel}} \) (constant) function. The \(B_0^*! \) (background PDF) is modeled using MC events as the product of a two-dimensional PDF for \(M_{bc} \) and \(E \) and a one-dimensional histogram for \(\cos \theta_{\text{hel}} \). The likelihood is defined as

\[
L = \sum_j S_j \left(\frac{X_i}{S_j B_{ij}} \right); \tag{1}
\]

where \(i \) runs over all events, \(j \) runs over the possible event categories (signals or backgrounds), \(S_j \) is the number of events in each category and \(P_{ij} \) is the corresponding PDF.
Both t_s have six free parameters: the yields for the $B_s B_s, B_s^* B_s^*$, and $B_s^0 B_s^0$ signals ($S_{B_s B_s}, S_{B_s B_s^*}$ and $S_{B_s^0 B_s^0}$), the continuum background normalization and PDF parameters, except for the ARGUS endpoint which is fixed at 5.435 GeV. The branching fractions $B(B_s^0 \rightarrow \pi_+ \pi_- H)$ and $B(B^0_s \rightarrow \pi_+ \pi_- H)$ are determined from the $B_s B_s$ signal yields with the relations

$$S_{B_s B_s}^{B_s^0} = B(B_s^0 \rightarrow \pi_+ \pi_- H) N_{B_s} f_{B_s B_s}$$

and

$$S_{B_s B_s}^{B_s^0} = B(B_s^0 \rightarrow \pi_+ \pi_- H) B(\pi^+ \pi^- K^+ K^-) N_{B_s} f_{B_s B_s},$$

where s are the MC signal efficiencies listed in Table I and N_{B_s} is the number of B_s^0 mesons evaluated as $N_{B_s} = 2 L \int (L_b^{(58)} f_s = (2.5 \pm 0.5) \times 10^5$. In the B_s^0 mode we observe 18.5 signal events in the $B_s B_s$ region and no signal events in the two other regions. These yield are compatible with $f_{B_s B_s} = (93 \pm 7) \%$. We measure $B(B_s^0 \rightarrow \pi_+ \pi_- H) f_s = (10.5 \pm 0.5 \pm 0.3) \times 10^5$ and $B(B_s^0 \rightarrow \pi_+ \pi_- H) = (5.7 \pm 0.3 \pm 0.2) \times 10^5$ with a significance of 5.5σ, where the B_s is 90% CL upper limit of $B(B_s^0 \rightarrow \pi_+ \pi_- H) < 8.7 \times 10^5$. This limit is about six times more restrictive than the previous one, though still about one order of magnitude larger than SM expectations $E_{(892)} = (40.3 \pm 2.7) \times 10^3$ and $B(B_s^0 \rightarrow \pi_+ \pi_- H) = (92 \pm 3.2) \times 10^5$ and $B(B_s^0 \rightarrow \pi_+ \pi_- H) > 1.1$. We observe no signal from $B_s^0 \rightarrow \pi_+ \pi_- H$ signal and, including systematic uncertainties, determine a 90\% CL upper limit of $B(B_s^0 \rightarrow \pi_+ \pi_- H) < 8.7 \times 10^5$. This limit is about six times more restrictive than the previous one, though still about one order of magnitude larger than SM expectations $E_{(892)} = (40.3 \pm 2.7) \times 10^3$ and $B(B_s^0 \rightarrow \pi_+ \pi_- H) > 1.1$. We observe no signal from $B_s^0 \rightarrow \pi_+ \pi_- H$ signal. For E. For $B_s^0 \rightarrow \pi_+ \pi_- H$, the limit obtained with the nominal continuum parameterization is found to be conservative. For $B_s^0 \rightarrow \pi_+ \pi_- H$, the limit obtained with the nominal continuum parameterization is found to be conservative. For $B_s^0 \rightarrow \pi_+ \pi_- H$, the limit obtained with the nominal continuum parameterization is found to be conservative.
We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MES and RFFAEE (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

TABLE II: Systematic uncertainties.

<table>
<thead>
<tr>
<th>Source</th>
<th>$B^0_s \to J/\psi K^+ K^-$</th>
<th>$B^{0*}_s \to J/\psi K^+ K^-$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photon reconstruction efficiency</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>Tracking efficiency</td>
<td>2%</td>
<td></td>
</tr>
<tr>
<td>K ion identification efficiency</td>
<td>1%</td>
<td>1%</td>
</tr>
<tr>
<td>SFW requirement efficiency</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>MC statistics</td>
<td>0.8%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

Signal shape
- $^{+3.2\text{%}}_{-2.7\text{%}}$ negL
- $^{+2.8\text{%}}_{-2.0\text{%}}$ negL
- $^{+0.0\text{%}}_{-0.0\text{%}}$ negL

Background shape
- $^{+3.0\text{%}}_{-2.6\text{%}}$ negL
- $^{+1.0\text{%}}_{-1.0\text{%}}$ negL
- $^{+12\text{%}}_{-12\text{%}}$

B(J/\psi K^+ K^-) background
- $^{+11\text{%}}_{-11\text{%}}$

Total (quadratic sum)
- $^{+21\text{%}}_{-25\text{%}}$
- $^{+22\text{%}}_{-25\text{%}}$

1. The inclusion of the charge-conjugate mode is implied throughout this letter.