J= Production in $P_{SN} = 200$ GeV Cu + Cu Collisions

Yields for $J^p = 2^-$ production in Cu+Cu collisions at $\sqrt{s_{NN}} = 200$ GeV have been measured over the rapidity range $|y| < 2.2$ and compared with results in $p+p$ and $Au+Au$ collisions at the same energy.
The Cu+Cu data offers greatly improved precision over existing Au+Au data for \(J^+ \) production in collisions with small to intermediate numbers of participants, in the range where the Quark-Gluon Plasma transition threshold is predicted to lie. Cold nuclear matter estimates based on hadronic to d+Au data describe the Cu+Cu data up to \(N_{\text{part}} \approx 50 \), corresponding to a Bjorken energy density of at least 1.5 GeV/fm\(^3\).

PACS numbers: 25.75.Dw, 12.38.Mh, 21.65.Qr, 25.75.Nq

High-energy heavy-ion collisions offer the opportunity to study strongly interacting matter at very high energy densities where Quantum Chromodynamics (QCD) predicts a transition from nuclear to a deconfined system of quarks and gluons, the Quark-Gluon Plasma (QGP) [3]. At the Relativistic Heavy Ion Collider (RHIC) the energy density in central Au+Au collisions is well in excess of the critical energy density expected for this transition [2].

Over the past twenty years, there has been intense theoretical and experimental work on \(J^+ \) production. First predicted by Matsui and Satz [3], suppression of quarkonia production in ultra-relativistic heavy ion collisions was expected to be an unambiguous signature for the formation of a QGP. It is now recognized that in order to interpret \(J^+ \) production as a QGP probe one must consider cold nuclear matter effects such as initial state energy loss [4] and shadowing [5], as well as quark energy loss [6], coalescence interactions [7], corrections for feed-down from higher mass hadron onium states, and secondary production mechanisms such as recombination of initially uncorrelated cc pairs [8].

Experiment NA50 reported suppression of \(J^+ \) production in Pb+Pb collisions at \(\sqrt{s_{NN}} = 17.3 \text{ GeV} \) [8] that exceeds expectations based on their measurement of cold nuclear matter effects in p+Au collisions [10]. NA60 observed similar behavior in In+In collisions at the same energy [11]. The PHENIX experiment [12] at RHIC has characterized the effects of the nuclear medium on \(J^+ \) production at \(\sqrt{s_{NN}} = 200 \text{ GeV} \). The best invariant yield reference is obtained from p+p data [13,14,15]. Cold nuclear matter effects are studied using d+Au data [14,15]. Cold and hot nuclear matter effects are studied for large numbers of participants (\(N_{\text{part}} \)) using Au+Au data [15,16], and for smaller \(N_{\text{part}} \) using Cu+Cu data, the subject of this paper. The results are presented as a nuclear modification factor, \(R_{AA} \), the ratio of the yield in heavy ion collisions to the yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (\(N_{\text{coll}} \)), which is appropriate for point-like processes.

Lattice QCD calculations [17] indicate that the threshold energy density for QGP formation is of order 1 GeV/fm\(^3\). At \(\sqrt{s_{NN}} = 200 \text{ GeV} \) this is expected to occur below \(N_{\text{part}} = 100 \) [20], in a region where Au+Au data have limited statistical and systematic precision [18]. High statistics muon events with the intermediate sized system Cu+Cu provide crucial information in this important region.

In this Letter we present results obtained by PHENIX during the 2005 RHIC run on the production of \(\sqrt{s_{NN}} = 200 \text{ GeV} \), \(J^+ \) invariant yields were studied via \(J^+ \rightarrow \mu^+ \mu^- \) decays measured at \(m_{\mu \mu} \) rapidity with the central spectrometer hodoscope (y’’ 0.35, c = 2 90°), and \(J^+ \rightarrow \mu^+ \mu^- \) decays measured at forward rapidity with the two muon arm spectrometer \((1.2 < y < 2.2, c = 360°)\). Event centrality and the location of the collision vertex along the beam axis \(z_{\text{vertex}} \) are measured with two Beam Beam Counters (BBC) located at 3.0 < \(y < 3.9 \). A Gaussian model and a simulation of the BBC response was used to determine \(N_{\text{part}} \) and \(N_{\text{coll}} \) and their systematic uncertainties for different collision centrality ranges [22].

Data were recorded using lepton triggers in coincidence with a minimum bias trigger which required a coincidence between the BBC detectors and a valid \(z_{\text{vertex}} \). After applying a cut of \(j_{\text{vertex}} < 30 \text{ cm} \) and quality assurance criteria, the data correspond to a signal luminosity of about 21 nb\(^{-1}\) of J/\(\psi \) in the \(\mu^+ \mu^- \) channel.

Electron detection at \(m_{\mu \mu} \) rapidity used the Drift Chamber arms for \(m_{\mu \mu} \), measurement, the Pad Chambers for pattern recognition and track location, and the Ring Imaging Cherenkov (RICH) detector plus Electro-magnetic Calorimeter (EM Cal) for electron identification. Charged particle tracks were matched with a RICH ring and an EM Cal hit to select electron candidates by requiring at least two RICH photon hits inside an annulus around the projected ring center, ring quality cuts, track/cluster position matching cuts at the EM Cal, and a cut on the ratio of EM Cal energy to track \(m_{\mu \mu} \) on em�ment, \(\text{E}_{\text{p}} = \text{E}_{\text{h}} = p_{\text{t}} > 2 \).

The \(J^+ \rightarrow \mu^+ \mu^- \) trigger required one signal above a certain energy threshold in the EM Cal and a matching RICH hit. Two energy thresholds were used during the run, 1.1 GeV and 0.8 GeV, yielding average \(J^+ \) trigger efficiencies of 65% and 82%, respectively. The \(J^+ \rightarrow \mu^+ \mu^- \) signal extraction method was very similar to the method used in the recent Au+Au [14] and p+p [15] analyses. The like-sign invariant mass spectrum was subtracted from the unlike-sign spectrum. The remaining yield in the \(J^+ \) mass region \((2.9 < M_{\text{inv}} < 3.3 \) GeV/c\(^2\) \) was corrected for pairs lost to the radiative tail and pairs added by the continuum signal using the peak [14]. The total \(J^+ \) count in the \(\mu^+ \) channel was 2,050. The signal to background ratio \((S/B) = 1.6\) for the most central (peripheral) collisions.

Muon detection at forward and backward rapidities
used the m uon arm s, consisting of cathode strip tracking chambers in a magnetic eld (M uTr) and far cri tube planes interleaved with thick steel absorbers (M uID). M uon candidates were identi ed by penetration to the last M uID gap, and their momenta were measured by their bend through the M uTr.

The dim uon trigger required two candidate tracks to penetrate the M uID, point back to the event vertex, and pass an opening angle cut (> 19). The dim uon combinatorial background was estimated using the product of the like sign counts, 2 N++ N−, and was subtracted from the unlike sign spectra. The residual background (notably from the open charm pairs and Drell-Yan) was evaluated using an exponential form. The J=1 signal was estimated by direct counting of the remaining pairs above the exponential t in the mass range 25 GeV/c2 and also by using two t with different param eterizations (single and double Gaussian) of the J= line shapes, as described in [13,14]. The average of the results gave the signal count and the variation gave the system atic error. The total J= yield was 9,000. The S=B was 0.3(15) for the most central (peripheral) collisions.

The J= invariant yield in the appropriate centrality, rapidity and transverse momentum bin is given by:

\[\frac{B_{J}}{2p_{T}d_{p_{T}}dy} = \frac{1}{2p_{T}N_{evt}} \frac{N_{J=1}}{p_{T}A''} \] (1)

with B_{J} the branching ratio for J=1, N_{J=1} the number of observed J=1 events, N_{evt} the number of events, y the rapidity range, p_{T} the transverse momentum range, and A'' the acceptance and e ciency correction (including trigger e ciency).

The determination of A'' is done with a full GEANT simulation. The method is described in more detail in [15]. A'' decreases with the collision centrality due to overlapping hits in the RICH and the EM Cal in the central and, and in the M uTr for the forward arm s, leading to an increasing fraction of m bareconstructed tracks in higher multiplicity events. This e ect is evaluated by embedding simulated single J=1 events in real events. The e ciency loss in the most central collisions is 3% for di-electron measurement events and 20% (16%) for dim uon measurement events at positive (negative) rapidity.

System atic uncertainties in the measured J=1 invariant yield depend on J=1 rapidity and transverse momentum as well as on event centrality. Systematic uncertainties are grouped into three categories: point to point uncorrelated uncertainties (type A), which can m ove the points independently of each other, point to point correlated uncertainties (type B), which can m ove the points coherently, though not necessarily by the same amount, and global system atic uncertainties (type C). In all plots point to point uncorrelated systematic uncertainties and statistical uncertainties are quadratically summed and represented by vertical bars, point to point correlated systematic atic uncertainties are represented by boxes, and global system atic uncertainties (if any) are quoted.

Table I: Systematic error sources, values and types for R_{AA} vs N_{part} in the two rapidity intervals. Here a range is given, it is from peripheral to central collisions.

<table>
<thead>
<tr>
<th>source</th>
<th>(y<0.35)</th>
<th>(y=1.2,2.2)</th>
<th>type</th>
</tr>
</thead>
<tbody>
<tr>
<td>signal extraction</td>
<td>6%</td>
<td>5-6%</td>
<td>A</td>
</tr>
<tr>
<td>detector + trigger efficiency</td>
<td>14-5%</td>
<td>3%</td>
<td>B</td>
</tr>
<tr>
<td>run by run variation</td>
<td>5%</td>
<td>2%</td>
<td>B</td>
</tr>
<tr>
<td>input y + p_{T} distributions</td>
<td>2%</td>
<td>3%</td>
<td>B</td>
</tr>
<tr>
<td>N_{cell}</td>
<td>14-11%</td>
<td>14-11%</td>
<td>B</td>
</tr>
</tbody>
</table>

Figure 1: (color online) J=1 yield vs p_{T} at mid (left) and forward (right) rapidity for di uon Cu+Cu centrality bins and for p+p [15]. Uncertainties are described in the text.

Systematic uncertainties of type A and B for R_{AA} vs N_{part} are summarized in Table I. Some uncertainties in the invariant yield, such as that on the acceptance, cancel out for R_{AA} and are not shown. Global system atic uncertainties for R_{AA} vs N_{part} include the p+p J=1 yield uncertainty and some p+p system atic errors that do not cancel when forming R_{AA}.

Results for the two uon arms agree within uncertainties and are combined where appropriate. Fig. 1 shows the J=1 yield vs p_{T} for di uon Cu+Cu centrality classes at mid and forward rapidity. A was done previously for the Au+Au case [15], the mean square transverse momentum, \(p_{T}^2 \), was calculated numerically from the data for p_{T} < 5 GeV/c. The Cu+Cu data are plotted vs N_{part} and compared with the corresponding values from Au+Au [15] and p+p [15] collisions in Fig. 2. Within uncertainties, the data for Cu+Cu and Au+Au agree where they overlap in N_{part}, and the \(p_{T}^2 \) for the Cu+Cu data seem independent of N_{part}.

The R_{AA} values vs p_{T} and rapidity are shown in Fig. 3 for the 0(20) most central Cu+Cu collisions. We see similar behavior for mid and forward rapidity, and there
appears to be no p_T dependence in all centrality classes. The RMS width of the rapidity distribution (evaluated directly from the data) is identical within 2% 3% uncertainties, in p+p collisions and in all centrality classes for Cu+Cu collisions.

Figures 3(a) and 3(b) show similar behavior within uncertainties for R_{AA} in Cu+Cu and Au+Au [12,13] collisions at comparable values of N_{part}. Theoretical calculations [22] including only modified initial parton distribution functions and an added $J=1$ breakup cross section were added in [13] to d+Au $J=1$ breakup data. The EKS98 [22] and nDsg [23] shadowing models were used. The $J=0$ was made simultaneously to all rapidities by optimizing the breakup cross section while consistent with the low statistics d+Au data [12,13]. This model leads to a modified dependence of the CNM events, since the rapidity shape is determined entirely by the shadowing model. In an attempt to reduce this model dependence, we used a data-driven ad hoc model to parametrize the d+Au data [16]. The ad hoc model uses EKS98 (method 1) and nDsg (method 2) shadowing parametrizations for the relative rapidity dependence within the fitted rapidity ranges, but the breakup cross section is replaced with a quantity, which we call f_{AA}, that is optimized separately for $y=0$ and $y=1.7$. The resulting fit yields $f_{dAu} = 0.9_{-0.6}^{+1.2}$ mb at $y=0$ and $3.9_{-1.2}^{+1.9}$ mb at $y=1.7$. The method 2 is used for R_{AA} at $y=0$ and $3.9_{-1.2}^{+1.9}$ mb at $y=1.7$. The resulting separate parametrizations of the d+Au data vs N_{coll} at mid- and forward/backward rapidity can be projected to Cu+Cu and Au+Au using the corresponding parton distribution functions for Cu and Au [22]. The results for method 1 are shown in Fig.4 as solid curves after baseline R_{AA} curves calculated from the best values of f_{AA} and the one standard deviation uncertainty in f (dashed lines). The method 2 heavy ion calculations are similar to those from method 1, leading to very similar conclusions, and are not shown in Fig.4. In Fig.4(c), the measured R_{AA} values for Cu+Cu are shown divided by the method 1 calculations for Cu+Cu. The Cu+Cu R_{AA} is seen to be consistent with the cold nuclear matter projection within about 15% uncertainties up to $N_{part} = 50$. Given the
uncertainty in the cold nuclear matter reference at larger N_{part} values, we cannot currently draw any strong conclusions there. However, PHENIX completed in February 2008 a second d+Au run, with approximate 30 times the statistics of the first d+Au run in 2003. With the new reference d+Au data, we expect to be able to identify if and where the measured Cu+Cu R$_{AA}$ departs from the cold nuclear matter baseline.

In summary, we present high statistics J= 1 data from Cu+Cu collisions at RHIC, providing for the first time detailed information on R$_{AA}$ and p$_T^2$ for $N_{\text{part}} < 100$. The RMS values of the rapidity distributions at all centralities are consistent with that for p+p, and the measured p$_T^2$ for $p_T < 5$ GeV/c is nearly independent of centrality and rapidity. At similar values of N_{part}, R$_{AA}$ and p$_T^2$ are found to agree within errors for Cu+Cu and Au+Au collisions. Cold nuclear matter calculations based on ad hoc fits to d+Au data reproduce the peripheral Cu+Cu data well up to $N_{\text{part}} = 50$, corresponding to B-jorken 1.5 GeV/fm2 = 20, where B-jorken is the B-jorken energy density and is the formation time. For an estimate of the thermalized energy density, hydrodynamic models give them a lifetime in the range of 0.6 fm/c to 1.0 fm/c, which implies that cold nuclear matter effects dominate J= 1 production up to thermalized energy densities of 1.5 to 2.5 GeV/fm3.

We thank the staff of theCollider-Accelerator and Physics Department at BNL for their vital contributions. We acknowledge support from the Office of Nuclear Physics in DOE Office of Science and NSF (U.S.A.), MEXT and JSPS (Japan), CNPq and FAPESP (Brazil), NSFC (China), MΣMT (Czech Republic), IN2P3/CNRS, and CEA (France), BMBF, DAAD, and AvH (Germany), OTKA (Hungary), DAE (India), IF (Israel), KRF and KOSEF (Korea), MES, RAS, and FAME (Russia), VR and KAW (Sweden), U.S. CRDF for the FSU, U.S.-Hungarian NSF-OTKA-MTA, and US-Israel BSF.

Deceased

PHENIX Spokesperson: jsacak@skipper.physics.sunysb.edu