THE UNORTHODOX ORBITS OF SUBSTRUCTURE HALOS

Aaron D. Ludlow1, Julio F. Navarro1,2, Volker Springel3, Adrian Jenkins4, Carlos S. Frenk4, Amina Helmi5

1 Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
2 Department of Physics and Astronomy, University of Massachusetts, Amherst, MA 01003, USA
3 Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str. 1, D-85748, Garching, Germany
4 Institute of Computational Cosmology, Department of Physics, University of Durham, Science Laboratories, South Road, Durham, DH1 3LE, UK
5 Kapteyn Institute, P.O. Box 800, 9700 AV Groningen, The Netherlands

\begin{abstract}
We use a suite of cosmological N-body simulations to study the properties of substructure halos (subhalos) in galaxy-sized cold dark matter halos. We extend prior work on the subject by considering the whole population of subhalos physically associated with the main system. These are defined as subhalos that have at some time in the past been within the virial radius of the halo's main progenitor and that have survived as self-bound entities to $z=0$. We find that this population extends beyond three times the virial radius, and contains objects on extremal orbits, including a few with velocities approaching the nominal escape speed from the system. We trace the origin of these unorthodox orbits to the tidal dissociation of bound groups of subhalos, which results in the ejection of some subhalos along tidal streams. Ejected subhalos are primarily low-mass systems, leading to mass-dependent biases in their spatial distribution and kinematics: the lower the subhalo mass at accretion time, the less centrally concentrated and kinematically hotter their descendant population. The bias is strongest at some mass, and disappears at the low-mass end: below a certain mass, subhalos behave just like test particles in the potential of the main halo. Overall, our findings imply that subhalos identified within the virial radius represent a rather incomplete census of the substructure physically related to a halo: only about one half of all associated subhalos are found today within the virial radius of a halo, and many relatively isolated halos may have actually been ejected in the past from more massive systems. These results may explain the age dependence of the clustering of low-mass halos reported recently by Gao et al., and has implications for (i) the interpretation of the structural parameters and assembly histories of halos neighboring massive systems; (ii) the existence of low-mass dynamical outliers, such as Leo I and And XII in the Local Group; and (iii) the presence of evidence for evolutionary effects, such as tidal truncation or ram-pressure stripping, well outside the traditional virial boundary of a galaxy system.

Subject headings: cosmology: dark matter \textit{method:} N-body simulations \textit{galaxies:} kinematics and dynamics (galaxies: halos)
\end{abstract}

\section{Introduction}

In the current paradigm of structure formation, the concordance CDM scenario, the dark matter halos that host galaxy system s are assembled hierarchically, through the merger and accretion of smaller subunits. One relic of this process is the presence of substructure, which consists of the self-bound cores of accreted subsystems that have so far escaped disruption in the tidal field of the main halo (Klypin et al. 1999; Moore et al. 1999).

Although substructure halos (referred to hereafter as subhalos), for short) typically make up only a small fraction (5 to 10\%) of the total mass of the system, they chart the innermost regions of accreted subsystems, and are thus appealing tracers of the location and kinematics of the galaxies that subhalos may have hosted. Substructure is thus a valuable tool for studying galaxies embedded in the potential of a much larger system, such as satellite galaxies orbiting a primordial or individual galaxies orbiting within a group or cluster of galaxies.

This realization has prompted a number of studies over the past few years, both analytical and numerical, aimed at characterizing the main properties of subhalos, such as their mass function, spatial distribution, and kinematics (e.g., Gnedin et al. 1998, 1999; Moore et al. 1999; Taylor & Babul 2005a, 2005b; Benson 2005a, Gao et al. 2004, 2005a, 2005b).

Consensus has been slowly but steadily emerging on these issues. For example, the mass function of subhalos has been found to be rather steep, $dn/dM \propto M^{1.6}$ or steeper, implying that the subhalo population is dominated by low-mass systems but that most of the substructure mass resides with the few most massive subhalos (Springel et al. 2001, Helmi W & Springel 2002, Gao et al. 2004). Our analysis of this comes from the fact that the total fraction of mass in subhalos is rather low (typically below 10\%) even in the highest resolution simulations published so far (although see Diemand et al. 2007a, b for a different view).

Subhalo systems have also been found to be spatially biased relative to the smooth dark matter halo where they are embedded, avoiding in general the innermost regions. Furthermore, the number density profile of the subhalo population also differs markedly from that of galaxies in clusters, and possibly from the radial distribution of luminous satellite systems around the Milky Way (Klypin et al. 2001).
al 2004; Wilman et al 2004; Madau et al 2008). This precludes identifying directly the population of "surviving" subhalos with galaxies in clusters, and highlights the need for either more sophisticated num erical modeling techniques, or for pairing up the N-body results with semi-analytic modeling in order to trace more faithfully the galaxy population (Springel et al 2001, Delucia et al 2004, Gao et al et al 2004, Croton et al 2006).

One intriguing result of all these studies has been the remarkably weak dependence of the properties of substructure on subhalo mass. Gao et al (2004) and Dieleman and Moore & Stadel (2004), for example, nd that the radial distribution of subhalos is largely independent of their self-bound mass. This is surprising given the strong mass dependence expected for the processes that dictate the evolution of subhalos within the main halo, such as dynamical friction and tidal stripping. Although several mixing with the potential of the main halo is a possibility, an alternative explanation has been advanced by Kavtsov, Gnedin & Klypin (2004).

These authors argue that the present-day mass of a subhalo may be a poor indicator of the original mass of the system, which may have been substantially larger at the time of accretion, and used this idea to motivate how the faintest dwarf companion of the Milky Way was able to build up a sizable stellar mass through several episodes of star formation despite their shallow present-day potential wells. The same idea was also adopted by highlight, et al. (2007) as a possible reason for the peculiar spatial alignment of spheroids around the Milky Way (Lynden-Bell 1976, 1982; Kunkel & Dener 1976; Kroupa, Thies & Bobily 2005).

We revisit these issues with the aid of a suite of high-resolution N-body simulations of galaxy-sized halos. We extend prior work by carefully tracking the orbits of surviving subhalos back in time. This allows us to select a complete set of subhalos physically associated with the main halo, rather than only the ones that happen to be within the virial radius at a particular time. As we discuss below, a large fraction of the associated subhalo population are on unorthodox orbits that take them well beyond the virial radius, a result which is important in illustrations for studies of satellite galaxies and of halos clustered around massive systems.

The plan of this paper is as follows. We introduce briefly the numerical simulations \mathcal{X} and describe our subhalo detection algorithm and tracking method in \mathcal{X}. Our main results are presented in \mathcal{X}: we begin by exploring the subhalo spatial distribution and kinematics, as well as their dependence on mass, and discuss the consequences of our findings for the subhalo mass function. We end with a brief summary and discussion of possible implications and future work in \mathcal{X}.

2. The Numerical Simulations

2.1. The Cosmological M-code

All simulations reported here adopt the concordance CDM model, with parameters chosen to match the concordance analysis of the 1st-year WMAP data release (Spergel et al 2003) and the 2dF Galaxy Redshift Survey (Colless et al 2001). The chosen cosmological parameters are $\Omega = 0.25$, $\Omega_m = 0.73$, $\Omega_b = 0.045$, $\Omega = 0.75$, $n = 1$, and $\Omega = 0.09$. Here denotes the present-day contribution of each component to the matter-energy density of the Universe, expressed in units of the critical density for closure, $\rho_{\text{crit}} = 3H_0^2/8\pi G$; n is the spectral index of the primordial density fluctuations, and Ω is the mass linear mass distribution in spheres of radius $8h^{-1}Mpc$ at $z = 0$. Hubble’s constant H_0 is given by $H(z)$ and parameterized at $z = 0$ by $H(z = 0) = H_0 = 100h$ km s$^{-1}$ Mpc$^{-1}$.

2.2. The Runs

Our analysis is based on a suite of 5 high-resolution simulations of the formation of galaxy-sized CDM halos. The simulations target halos of virial mass $M_{200} = 10^{12}h^{-1}M$, and have at $z = 0$ between 3 and 5 million particles within the virial radius, r_{200}. Each halo was selected at random from a list of candidates compiled from a cosmological N-body simulation of a large (100h$^{-1}$ Mpc) periodic box and resimulated individually at higher resolution using the technique described in detail by Power et al (2003). We imposed a minimal isolation criterion (no neighbors with mass exceeding 5 $10^{12}h^{-1}M$ are found within 1 h$^{-1}$ Mpc at $z = 0$) in order to exclude systems from the periphery of much larger groups or clusters.

The simulations were run with Gadget 2, a massively-parallel cosmological N-body code (Springel 2005). Particle-particle interactions were softened using the VNP scheme (Springel 2003), i.e., a spline length scale $b_s = 1.5 \rho$, and $r_{200} = N_{200}$, kept fixed in comoving coordinates. Numerical details of each run are listed in Table I.

3. The Analysis

3.1. Substructure Finding

We use SUBFIND (Springel et al 2001) in order to identify self-bound structures in N-body simulations. SUBFIND nds substructure within friends-of-friends (FOF; Davis et al 1985) associations by locating overdense regions within each FOF halo and identifying the bound subset of particles associated with each overdensity. SUBFIND also computes iteratively and outputs readily identifiable self-bound subhalos, thus characterizing fully the various levels of the hierarchy of substructure present within a given FOF halo. We retain for our catalogue all SUBFIND subhalos with more than 20 particles.

Then an output of SUBFIND is a list of subhalos within each FOF halo, together with their structural properties. For the purposes of this paper, we shall focus on: (i) the subhalo self-bound mass, M_{sub}; (ii) the peak of its circular velocity profile (characterized by V_{max} and V_{circ}); and (iii) the position of the superhalo center, which we identify with the particle with mass in a given gravitational potential energy. We have run SUBFIND on all 100 snapshots (equally spaced in scale factor, a) of each of our runs.

We denote the virial mass of a subhalo, M_{200}, as that contained within a sphere of mean density $200\rho_{\text{crit}}$. The virial mass is defined implicitly the virial radius, r_{200}, and virial velocity, $V_{200} = \sqrt{\Omega_{\text{crit}}^2 M_{200}/2r_{200}}$, of a subhalo, respectively. We note that the virial mass of a subhalo is defined as that contained within a sphere of mean density $200\rho_{\text{crit}}$. The virial mass is defined implicitly the virial radius, r_{200}, and virial velocity, $V_{200} = \sqrt{\rho_{\text{crit}}^2 M_{200}/2r_{200}}$, of a subhalo, respectively. We note that other definitions of "virial radius" have been used in the literature; the most popular of the alternatives adopts a density contrast (relative to critical) of $\Omega_{\text{crit}} = 178/145$ 100 (for our adopted cosmological parameters, see Eke et al 1996). We shall refer to these alternative definitions, where appropriate, with a subscript indicating the value of ρ_{crit}. For example, r_{100} is the virial radius obtained assuming $\Omega_{\text{crit}} = 100$.
and are therefore able to track in detail the evolution of individual subsystems and their particle members.

3.2. Substructure Tracking

Our analysis focuses on all surviving subhalos at \(z = 0 \) and relies heavily on tracking accurately their accretion history. To this aim, we trace each subhalo backwards in time by identifying the central particle at \(z = 0 \) and searching for the group it belongs to in the immediate preceding snapshot. A new central particle is then selected and the procedure is iterated backwards in time until \(z = 9 \), the earliest time we consider in the analysis.

This procedure leads in general to a weekly evolved evolutionary track for each subhalo identified at \(z = 0 \). When no subhalo is found to contain a subhalo’s central particle in the immediately preceding snapshot, the search is continued at earlier times until either a progenitor subhalo is found or \(z = 9 \) is reached. This is necessary because a subhalo may temporarily disappear from the catalogue, typically at times when it falls below the minimum particle number or else when it is passing close to the center of a more massive system and its density contrast is too low to be recognized by SUBFIND. Our procedure overcomes this difficulty and in most cases recovers the subhalo at an earlier time. We note that these complications are a fairly common occurrence in the analysis procedure, and we have gone to great lengths to make sure that these instances are properly identified and dealt with when constructing our subhalo catalogue and their accretion histories.

The tracking procedure described above de nes a unique trajectory for each subhalo identified at \(z = 0 \). This trajectory may be used to verify whether a subhalo has, at any time in the past, been accreted within the (evolving) virial radius of the main halo. If this is the case, we record the time it rst crosses \(\xi_{200} \) (as the accretion redshift, \(z_{\text{acc}} \)), and label the subhalo as associated with the main system. Analogously, we identify a set of associated dark matter particles by computing a list of all particles that were at some time within the virial radius of the main halo but are not attached to any substructure at \(z = 0 \). On the other hand, halos that have never been inside the virial radius of the main halo will be referred to as ‘eld’ or ‘falling’ halos.

Using the subhalo trajectories, we compute and record a few further quantities of interest for each subhalo; namely,

- its \(\text{\textbackslash \text{\textsubscript{turnaround}}} \) distance, \(\xi_{\text{\textsubscript{ta}}} \), de ned as the maximum separation between a subhalo and the center of the main progenitor before \(z = z_{\text{acc}} \) (for associated subhalos) or before \(z = 0 \) (for \(\text{\textbackslash \text{\textsubscript{eld}}} \) subhalos);
- the structural properties of associated subhalos at \(z = 0 \) and at accretion time, such as mass and peak circular velocity;
- an apocentric distance, \(\xi_{\text{\textsubscript{ap}}} \), de ned as the apo-center of its orbit computed at \(z = 0 \) using the subhalo’s instantaneous kinetic energy and orbital angular momentum, together with the potential of the main halo\(^2\)

\(^2\) We have checked that our results are insensitive to the triaxial

Subhalo quantities measured at accretion time will be referred to by using the sub/superscripts \(\text{\textsubscript{acc}} \); for example, \(V_{\text{\textsubscript{m ax}}}^{\text{\textsubscript{acc}}} \) refers to the peak circular velocity of a subhalo at \(z = z_{\text{acc}} \). Quantities quoted without superscript are assumed to be measured at \(z = 0 \) unless otherwise specified.

4. RESULTS

The basic properties of our simulated halos at \(z = 0 \) are presented in Table 1. Here, \(c = n_{\text{h}} = 14 \) is the Gadget gravitational softening input parameter, and \(M_{200}, \rho_{200}, \) and \(N_{200} \) are, respectively, the halo virial mass, radius, and number of particles within \(r_{200} \). Table 1 also lists the peak of the circular velocity of the main halo, \(V_{\rho_{\text{m ax}}} \), and its location, \(r_{\rho_{\text{m ax}}} \), the total number of associated subhalos; as well as the number of those found within various characteristic radii at \(z = 0 \).

4.1. Subhalos beyond the virial radius

One surprise in Table 1 is that the number of \(\text{\textbackslash \text{\textsubscript{associated}}} \) subhalos exceeds by about a factor of \(2 \) the total number of subhalos identified within \(\xi_{200} \). This result is also illustrated in Fig. 1, where we show, at \(z = 0 \), the distance from the main halo center vs radial velocity for all subhalos identified in our simulations. Distributions and velocities have been scaled to the virial quantities of each primary halo. Colored dots are used to denote \(\text{\textbackslash \text{\textsubscript{associated}}} \) subhalos, black symbols for \(\text{\textbackslash \text{\textsubscript{eld}}} \) halos. Different colors correspond to different subhalo masses, as measured by the peak circular velocity at accretion time (in units of the present-day primary halo virial velocity, \(V_{\rho_{\text{m ax}}} \)); red is used for subhalos with \(V_{\rho_{\text{m ax}}} = 0 \); and green for the rest.

Note that the distribution of associated subhalos extends well past \(3r_{200} \); indeed, a few associated subhalos are found at \(4r_{200} \) moving outward with radial velocity of \(V_{\rho_{\text{m ax}}} \). A careful search shows that there are actually several associated subhalos present at distances larger than \(5r_{200} \).

This result is unexpected in simple formation scenarios, such as the spherical secondary infall model (SSIM, for short). SSIM identifies at any time three distinct regions around a halo: (i) an inner \(\text{\textbackslash \text{\textsubscript{virialized}}} \) region where accreted mass shells have had time to cross their orbital paths; (ii) a surrounding \(\text{\textbackslash \text{\textsubscript{infall}}} \) region, where shells are still on their approach and have not yet crossed; and (iii) a still expanding outer envelope beyond the current turnaround radius (Bertschinger 1985, White et al. 1993, Navarro & White 1993).

One of the premises of the secondary infall model is that the energy of a mass shell accreted into the halo is gradually reduced after its first pericentric passage until it reaches equilibrium. During this process, the apocentric distance of the shell is constantly reduced; for example, taking as a guide the SSIM self-similar solutions of Bertschinger (1985), the second apo-center of an accreted shell (the first would be its \(\text{\textbackslash \text{\textsubscript{turnaround}}} \) radius) is roughly \(90\% \) of its turnaround distance, \(r_{\text{ta}} \), and the nature of the halo by recomputing \(r_{200} \) using the potential along each of the principal axes of the halo’s mass distribution rather than the spherical average. This leads to typical variations of less than \(20\% \) in \(r_{200} \).
Fig. 1. Upper panel: Radial velocity versus distance to the main halo center for all subhalos within $5 \ r_{200}$ in our simulations. Velocities and distances are normalized to the virial velocity, V_{200}, and virial radius, r_{200}, of each host. All "associated" halos are shown in color, subhalos on rst infall are shown in black. Different colors are used according to the peak circular velocity of the subhalo at the time of accretion. Blue denotes the quartile with the smallest V_{200}, red those with largest V_{200}. Green denotes the rest of the associated subhalo population. Upward vertical arrows of matching color indicate the half-radius for the various subhalo populations. A shorter black arrow marks the half-radius for "associated" dark matter particles. We find that 59% of subhalos in the range $2 r_{200} < r < 3 r_{200}$ are actually "associated" and have thus already been within the host virial radius in the past. Roughly one third of subhalos between $2 r_{200} < r < 3 r_{200}$ are also physically "associated" with the main halo. The upper and lower bounding curves denote the escape velocity for each of the vz simulated halos. Lower panel: Radial distribution of subhalos. Color key is the same as in the upper panel.

shell gradually settles to equilibrium, approaching a pe-

Fig. 2. Upper panel: Turnaround radius versus apocentric distance at $z = 0$ for all associated subhalos in our simulations. The turnaround distance is the maximum distance from the main halo before accretion. Subhalos on "traditional" orbits are expected to have $r_{apo} < r_{ta}$ and, thus, to be to the left of the 1:1 curve in this plot. Subhalos near the 1:1 line have $r_{apo} = r_{ta}$ and are therefore on orbits which have not been decelerated substantially since turnaround. Subhalos with $r_{apo} > r_{ta}$ are on unorthodox orbits and they have gained orbital energy during or after accretion. The blue symbols in the panel highlight subhalos on extreme orbits, that will take them more than 25% times further than their turnaround radius.

The fraction of associated subhalos and associated dark matter particles in each region of the plot is given in the legends.

4.2. The orbits of associated subhalos

The discrepancy between the simulation results and the naive expectation of the SSM was pointed out by Balogh, Navarro & Morris (2000), and confirmed by subsequent studies (Mamon et al. 2004, Gill et al. 2005, Diemand et al. 2007) but its physical origin has not yet been conclusively pinned down. A associated subhalos found today beyond their turnaround radius have clearly evolved differently from the SSM prescription, and it is instructive to study the way in which the discrepancy arises.

One possibility is that deviations from spherical symmetry during accretion might be responsible for the outlying associated subhalos. A accretion through the lamellar structure of the cosmic web surrounding the halo, for example, might result in a num ber of subhalos on orbits of large in pact param ether that simply "graze" the main halo and are therefore not decelerated significantly after their rst pericentric approach, as assumed in the secondary infall model. These subhalos would lose little orbital energy, and should presumably be today
Fig. 3. | Orbital trajectories of selected subhalos. Upper panels show the distance to the center of the main progenitor as a function of expansion factor. The top-left panel shows the trajectories of 4 subhalos on extreme e* orbits (blue points in Fig. 2). Note that all of these systems gain energy during their 1st pericentric approach to the main halo. The top-right panel illustrates that interactions occurring during the tidal dissociation of bound groups of subhalos are responsible for propelling some satellites onto extreme orbits. At pericentric approach, the tidal field of the main halo breaks apart the group, and redistributes each member onto orbits of varying energy. The most affected are, on average, the least massive members of the group, some of which are pushed onto orbits with extremely large apocenters. The dashed curve shows the growth of the virial radius of the most massive progenitor of the main halo. Bottom panels show the radial velocity of the subhalos shown in the upper panels.

on orbits with apocentric distances of the order of their original turnaround radii. A according to the analytic calculation of Mamon et al. (2004), systems on such orbits may reach distances as far as $r_{apo} > 2.5 r_{200}$.

We explore this in Fig. 4, where we show the turnaround radius of each associated subhalo versus their apocentric distance estimated at $z = 0$, both normalized to the virial radius of the main halo. Subhalos that have followed the traditional orbits expected from the SSM should lie on the left of the 1:1 curve in this panel. These, indeed, make up the bulk (62%) of the associated population.

Note as well that there are a number of subhalos near the 1:1 line, whose orbits have not been decelerated since accretion into the main halo. These are objects that are either on their way to 1st pericentric passage or, as discussed in the above paragraph, that have somehow evaded significant braking during accretion.

More intriguingly, Fig. 4 also shows that there are systems that are not on orbits with apocentric distances exceeding their SSM theoretical maximum r_{apo}; i.e., $r_{apo} < r_{vir}$. Indeed, 38% of associated subhalos are on such orbits, and about 1% are on orbits so extreme that their apocenters exceed their original turnaround distance by a factor of 2.5 (the latter are highlighted in blue in Fig. 4 if, in addition, $r_{apo} > 2 r_{200}$). The large fraction of systems in such peculiar orbits, where the subhalo has gained orbital
energy since turnaround, indicates that deviations from spherical symmetry play a minor role in pushing subhalos beyond r_{200}, and suggests that another mechanism is at work.

4.3. Subhalo mass dependence of unorthodox orbits

One clue to the mechanism responsible for pushing some subhalos onto highly energetic orbits is the dependence of the ejection on the mass of the subhalo. This is illustrated in the bottom panel of Fig. 1, which shows that low-mass subhalos are the ones being preferentially pushed to the outskirts of the halo.

Further clues result from inspecting individually the trajectories of some of the subhalos on extreme orbits. This is shown in the top-right panel of Fig. 1, where we show the trajectories of a few of the associated subhalos with $r_{200} > 2.5 r_{\text{c}}$. Interestingly, all of these subhalos have very low mass at accretion ($V_\text{acc} < 0.08V_{200}$) and acquire their "boost" in orbital energy during their first pericentric passage.

The "wiggles" in their trajectories prior to pericenter betray the fact that they actually belong to a bound system of multiple subhalos accreted as a single unit (Sales et al. 2007a, Li & Helmi 2007). This is shown more clearly in the bottom-right panel of Fig. 1, where we show the trajectories of 5 subhalos belonging to one such group. The mass of the group is concentrated in the most massive member (see legends in the figure), which is surrounded (prior to accretion) by 4 bound satellites. The group contributes about 5% of the main halo's mass at accretion time, $a_{\text{acc}} = (1 + z_{\text{acc}})^{-1} 0.65$. The group as a whole turns around at a_{e} 0.35 and accretes on a (r_{e}, Ω_{200}) orbit that reaches x_{e} 0.25 at a_{e} 0.69. Adding to this evidence, we find that 95% of subhalos with $x_{\text{e}} > 2 r_{200}$ are bound, and suggest that the rest evolve differently; the least massive subhalos, in particular, tend to gain energy during the disruption of the group and recede to a second apocenter well beyond the original turnaround. As anticipated by the work of Sales et al. (2007b) this is clearly the result of energy re-distribution during the tidal dissociation of the group.

The bottom panels in Fig. 1, which show the evolution of the radial velocity of each subhalo, confirm this suggestion. The least massive member of the group is, in this case, the least bound as well, judging from its excursion about the group's center of mass. This subhalo (solid black line in the right panels of Fig. 1) happens to be approaching the group's orbital pericenter at about the same time as when the group as a whole approaches the pericenter of its orbit. This coincidence in orbital phase allows the subhalo to draw energy from the interaction; the subhalo is thus propelled onto an orbit that will take it beyond three times its turnaround distance, or $6 r_{200}$. Although technically still bound, for all practical purposes this subhalo has been physically ejected from the system and might be easily confused for a system that has evolved in isolation.

There are similarities between this ejection process and the findings of early N-body simulations, which showed that small but sizable fractions of particles are generally ejected during the collapse of a dynamically cold N-body system (see, e.g., van Albada 1982). The latter occur as small inhomogeneities are amplified by the collapse, allowing for substantial energy re-distribution between particles as the inhomogeneities are erased during the virialization of the system.

In a similar manner, the tidal dissociation of groups of subhalos leads to the ejection of some of the group members. The main difference is that, in this case, no major perturbations in the gravitational potential of the main system occur. Indeed, in the case shown in the right-hand panels of Fig. 1, the main halo adds only 5% of its current mass and its potential changes little in the process.

A more intuitive illustration is perhaps provided by Fig. 1, where we show, in the $r-V_\text{rad}$ plane and at $z = 0$, the location of the same accreted group of subhalos. Black dots indicate particles belonging to the main subhalo at the time of accretion. Large circles mark the location of the center of mass of each surviving subhalo, and the curves delineate their past evolution in the $r-V_\text{rad}$ plane. The three outermost subhalos track closely a stream of particles from early belonging to the main sub-
The ratio of apocentric radius (estimated at $z = 0$) to turnaround distance as a function of the peak circular velocity, V_{sub}, of a subhalo. Two estimates of V_{sub} are used for each subhalo, one measured at accretion time and another at $z = 0$. Symbols correspond to the median of the distribution, shaded areas encompass 25% of the distribution around the median, and the extremities of the error bars correspond to the 25th and 75th percentiles. Note that only fairly massive associated subhalos are today on orbits substantially more bound than when they turned around. The median apocentric radius of low-mass subhalos is of order of the virial radius, indicating that about half of all associated subhalos spend a substantial fraction of their orbital period outside r_{200}. Note that the effect depends only weakly on V_{sub}, below a certain threshold, this presumably indicates that, below a certain mass limit, subhalos behave like test particles in the potential of the main halo.

The ratio of apocentric radius (estimated at $z = 0$) to turnaround distance as a function of the peak circular velocity, V_{sub}, of a subhalo. Two estimates of V_{sub} are used for each subhalo, one measured at accretion time and another at $z = 0$. Symbols correspond to the median of the distribution, shaded areas encompass 25% of the distribution around the median, and the extremities of the error bars correspond to the 25th and 75th percentiles. Note that only fairly massive associated subhalos are today on orbits substantially more bound than when they turned around. The median apocentric radius of low-mass subhalos is of order of the virial radius, indicating that about half of all associated subhalos spend a substantial fraction of their orbital period outside r_{200}. Note that the effect depends only weakly on V_{sub}, below a certain threshold, this presumably indicates that, below a certain mass limit, subhalos behave like test particles in the potential of the main halo.

It is also important to point out that not all low-mass subhalos are ejected equally. For example, despite being of comparable mass to the ejected object, one of the low-mass members of the group ends up on an orbit almost as tightly bound as the main subhalo (red triple dot-dashed curve in Fig. 4). This shows that the orbital fate of a subhalo is mainly determined by its orbital phase within the accreting group at the time of accretion. Depending on this, subhalos may either lose or gain orbital energy during the interaction.

Low-mass halos are, however, the ones preferentially ejected or placed on high-energy orbits through this process (see Fig. 4 and Fig. 5). This is because low-mass members of accreting groups will have orbits of larger amplitude about their center of mass, enhancing the probability of capturing orbital energy when its orbit within the group is in phase with the orbit of the group within the main halo. In turn, this enhances the survival probability of low-mass systems by placing them on orbits where they spend extended periods in the periphery of the main halo, outside the region where tidal effects may effectively strip and disrupt them.

The combination of these two effects (energy gain and enhanced survival likelihood) leads to a strong mass dependence on the orbital properties of associated subhalos at $z = 0$. This is illustrated in Fig. 5, where we show the ratio of apocenter (estimated at $z = 0$) to turnaround distance as a function of subhalo peak circular velocity. This shows clearly that the most massive subhalos are found today in orbits with apocentric distances much smaller than their turnaround; halos with $V_{\text{sub}}^\text{acc} < 0.4V_{200}$ (which corresponds to roughly $M_{\text{sub}} < 0.1M_{\text{200}}$) have a median apocenter of order half their turnaround distance. On the other hand, the median apocenter of associated subhalos with $V_{\text{sub}}^\text{acc} < 0.1V_{200}$ is of the order of the turnaround radius.

Note as well that the $V_{\text{sub}}^\text{acc}$ dependence is quite pronounced at the high-mass end but rather weak for low-mass subhalos. This presumably reflects the fact that, once a subhalo is small enough, it behaves more or less like a test particle in the potential of the main system.

Finally, note that the mass dependence is less pronounced when the present-day subhalo V_{sub} is used. This is because tidal stripping has a more pronounced effect on systems that orbit nearer the center of the main halo. The more massive the subhalo at accretion the closer to the center it is drawn and the more substantial is its mass loss, weakening the mass-dependent bias illustrated in Fig. 5. We shall see below that the mass dependence becomes even weaker when expressed in terms of the present-day subhalo mass.

4.4. Subhalo spatial distribution

The number density profile of all associated subhalos is shown by the solid (black) curve in Fig. 6. The problem may be approximated rather accurately by the same empirical form introduced by Navarro et al. (2004) to describe the mass profile of CDM halos. This profile is characterized by a power-law dependence on radius of the logarithm of the density, $\log n = \log r / r_2$, which implies a density profile of the form,

$$\ln(n/r) = (2z) [(r/r_2)^2 - 1]$$ \hspace{1cm} (1)

This density law was first introduced by Einasto (1965), who used it to describe the distribution of old stars within the Milky Way. For convenience, we will refer to it as the Einasto profile. The scaling parameters n_2 and r_2 may also be expressed in terms of the central value of the density, $n_0 = n(r = 0) = \exp(2z) n_2$, and of the radius containing half of the associated subhalos, r_2. We list in Table 2 the parameters obtained by fitting Eq. (1) to the subhalo number density profile. (Note that the units used for n_0 are arbitrary, but they are consistent, in a relative sense, for the various subhalo populations.) As discussed by Navarro et al. (2004), Moore et al. (2005, 2006), and Moore recently by Gao et al. (2007), CDM halo density profiles are well described by $n(r) \propto r^{-2}$ in the range $0.05 < z < 0.3$. This is in sharp contrast with the much larger values obtained for the subhalo number density profile, i.e., the 3D radial distribution.
when measured by normalized to \(\text{acc} V = 0 \). The concentration increases system \(r \) with \(V_{\text{acc}} \) for exam ple, half of the surviving subhalos with \(V_{\text{acc}} > 0.17 V_{200} \) are contained within \(0.7 r_{200} \) at \(z = 0 \). The corresponding radius for subhalos with \(0.04 < V_{\text{acc}} < V_{200} < 0.05 \) is \(1.1 r_{200} \) (see details in Table 2).

Interestingly, the mass dependence of the subhalo number density profile essentially disappears when the present-day subhalo mass is used to split the sample. This is illustrated in the right-hand panels of Fig. 6, which shows that the shape of the density profile of subhalos differing by up to two decades in mass is basically the same. This is in agreement with the earlier results of Gao et al. (2004) and Diemand et al. (2004), but indicates that the apparent mass independence of the subhalo spatial distribution is not the result of an effect in the main halo, but rather a somewhat fortuitous result of the cancellation of the prevailing trend by dynamical friction and tidal stripping.

It is conceivable that numerical artifacts may also help to erase the dependence of \(n_{\sub}(r) \) on present-day subhalo mass. Indeed, SUBFIND (like every subhalo finder) will tend to assign masses to subhalos which depend slightly, but system atically, on their location within the main halo. The mass of subhalos near the center is more likely to be underestimated, and some subhalos may, indeed, even be missed altogether if close enough to the central cusp. Splitting the sample by \(V_{\text{acc}} \) min gives such effects and allows for the subhalo mass bias to be properly established.

4.5. Velocity anisotropies

The mass dependence of the subhalo spatial distribution discussed in the previous subsection is significant, but not very large, and thus is less clearly apparent in their kinematics, as shown in Fig. 7. The top panels of this figure show the radial velocity dispersion profile \(\sigma_r = h r_{200}^{1/2} \), computed in spherical shells for the same subhalo masses as in Fig. 6. The bottom panels show the anisotropy profile \(\epsilon_{\text{kin}} \), defined as \(1 - (\sigma_r/\sigma_{\text{esp}})^2 \). The mean values of the velocity dispersion for each component are listed in Table 2.
The solid lines without symbols in Fig. 7 correspond to dark matter particles of the main halo, randomly sampled in order to match the total number of subhalos. As expected, the dark matter velocity distribution is mildly anisotropic, with a radial bias that increases outward and reaches a maximum near the virial radius.

The radial velocity dispersion profile of the subhalo population follows closely that of the dark matter, although as a whole, the subhalo population is kinematically biased relative to the dark halo. The effect, however, is barely detectable; we find $r^\text{sub}_M = 0.98$. Our results thus confirm the earlier conclusions of Ghigna et al. (1998), Gao et al. (2004), Diemer et al. (2004) about the presence of a slight kinematic bias between subhalos.
and dark matter.

Unlike the conclusions of Dim and et al., however, we find a significant discrepancy between the anisotropy profiles of the subhalo population and of the dark halo. As shown in the lower panels of Fig. 4, subhalos are on orbits less dominated by radial motions than the dark matter and, indeed, have a pronounced tangential bias near the center (i.e., for $r < 0.3 r_{200}$). With hindsight, this is not entirely unexpected, since subhalos nearer the center are more likely to survive if they are on tangentially-biased orbits that keep them away from the innermost regions of the halo, where tidal effects are strongest.

4.5. Subhalo mass function

The large number of associated subhalos on high-energy orbits discussed above implies that subhalos within the virial radius are just a fraction of all subhalos physically in the main halo. This is illustrated quantitatively in Fig. 5, where we show the cumulative peak circular velocity and mass functions of subhalos identified within r_{200}. The thin red lines in this figure correspond to subhalos identified within r_{200}; black to the full sample of associated subhalos. Thick lines show the average results for the 5 simulated halos considered here. The residuals shown in the small panels are computed relative to the average for the associated subhalo population, and show that, on average, the total number of associated subhalos exceeds those within r_{200} by a factor of 2.

Fig. 5 illustrates a number of interesting results. One is that, at the low mass end, the shape of the subhalo mass and velocity function is insensitive to the radius adopted for selection. Indeed, there is no obvious systematic trend with V_{max} or M_{sub} for $V_{max} = V_{host} < 0.2$. Below certain threshold, low mass subhalos behave as test particles in the potential of the main halo and their radial distribution becomes independent of mass. This implies that subhalos identified as part of the halo are unlikely to be completely ignored by selecting only halos within the virial radius, as is traditionally done.

On the other hand, the subhalo mass function shape is substantially a cuted at the opposite end; although about half of all associated subhalos with $V_{max} > 0.5 V_{host}$ are missing from within r_{200}, this fraction declines to one quarter for $V_{max} = 0.2 V_{host}$ and to zero for $V_{max} > 0.3 V_{host}$. As a result, in that mass range, the mass function of subhalos identified within r_{200} is shallower than that of associated systems. This should have interesting consequences for semi-analytic modeling of the luminosity function in galaxy groups and clusters, which traditionally assume that all accreted subhalos remain within the virial radius of the main system.

5. Summary and discussion

We have used a suite of cosmological N-body simulations to study the orbital properties of substructure halos (subhalos) in galaxy-sized cold dark matter halos. We extend prior work on the subject by considering the whole population of associated subhalos, defined as those that (i) survive as self-bound entities to $z = 0$, and (ii) have at some time in the past been within the virial radius of the halo’s main progenitor. Our main findings may be summarized as follows.

The population of associated subhalos extends well beyond three times the virial radius (r_{200}), and contains a number of objects on extremely orbits, including a few with velocities approaching the nominal escape speed from the system. These are typically the low-mass members of accreted groups which are propelled onto high energy orbits during the tidal dissolution of the group in the potential of the main halo.

The net result of this effect is to push low-mass subhalos to the periphery of the system, creating a well-defined mass-dependent bias in the spatial distribution of associated subhalos. For example, only about 29% of subhalos, which, at accretion time, had peak circular velocities of order 3% of the present-day virial velocity ($V_{max} > 0.03 V_{200}$), are found today within r_{200}. This fraction climbs to 61% and to 78% for subhalos with $V_{max} < 0.1 V_{200}$ and $0.3 V_{200}$, respectively.

The strength of the bias is much weaker when expressed in terms of the subhalo present-day mass, due to the increased effect of dynamical friction and tidal stripping on the most massive subsystem.

The spatial distribution, kinematics, and velocity anisotropy of the subhalo population are distinct from the properties of the dark matter. Subhalos are less centrally concentrated, have a smaller velocity bias, and are, near the center, on more tangential orbits than the dark matter.

The unorthodox orbits of substructure halos that result from the complex history of accretion in hierarchical formation scenarios have a number of interesting implications for theoretical and observational studies of substructure and of the general halo population.

One implication is that subhalos identified within the virial radius represent a rather incomplete census of the substructures physically related to (and accreted by) a massive halo. This affects, for example, the interpretation of galaxy properties in the periphery of galaxy clusters, and on mass and earlier suggestions that evolutionary effects on galaxies associated with passage through the innermost regions of a massive halo, such as tidal truncation or ram-pressure stripping, should be detectable well outside the traditional virial boundaries of a group or cluster (Balogh, Navarro & Norris 2000).

Furthemore, associated subhalos pushed well outside the virial radius of their main halo might be erroneously identified as separate, isolated structures in studies that do not follow in detail the orbital trajectories of each system. This effect would be most prevalent at low masses, and it is likely to have a significant effect on the internal properties of halos in the vicinity of massive systems. We expect, for example, halos in the periphery of groups/clusters to show evidence of truncation and stripping, such as higher concentrations and/or sharp cut-off in their outer mass profiles.

The same effect may also introduce a substantial environment entanglement in the formation-time dependence
of halo clustering reported in recent studies (Gao et al. 2005; Zhu et al. 2006; Jing et al. 2007; see also Diemand et al. 2007b). In particular, at fixed mass, early collapsing halos might be more clustered because they are physically associated with a more massive system from which they were expelled.

A proposal along these lines has recently been advanced by Wang, Moore & Jing (2007) (see also Ahn et al. 2008), who argue that such environment effects might be fully responsible for the age-dependence of halo clustering. Our physical interpretation, however, differs in detail from theirs. Whereas Wang et al. argue for the suppression of mass accretion onto old halos by heating by large-scale tidal ejections as responsible for their enhanced clustering, our results suggest that the culprit is the orbital energy gain associated with the tidal dissociation of bound groups of subhalos, which allows old low-mass halos to evade merging and to survive in the vicinity of massive system until the present.

A further implication of our results concern the spatial bias of the most massive substructures discussed in Section 2. If, for example, luminous substructures in the Local Group trace the most massive associated subhalos at the time of accretion, they may actually be significantly more concentrated and kinematically biased relative to the dark matter, a result that ought to be taken into account when using satellite dynamics to place constraints on the mass of the halos of the Milky Way and M 31.

Finally, as already pointed out by Sales et al. (2007a,b), gravitational interactions during accretion may also be responsible for the presence of dynamical outliers in the Local Group, such as Leo I and And XII. Further work is needed to assess whether the exceptional orbits of such systems could indeed have originated in the tidal dissociation of groups recently accreted into the Local Group. Since the latest proper motion studies of the Magellanic Clouds seem to suggest that the Clouds are on their first pericentric passage (Kallivayalil et al. 2006; Piatek et al. 2007), this is a possibility to consider seriously when trying to puzzle out the significance of the motion of the satellites of the Local Group.

We thank Simon White and Vincent Eke for useful discussions, and an anonymous referee for a constructive report. A DL would like to thank Jorge Penarrubia and Scott Chapman for many useful discussions which have improved this work. The simulations reported here were run on the Lim a Cluster at the University of Victoria, and on the McKenzie Cluster at the Canadian Institute for Theoretical Astrophysics. This work has been supported by various grants to JFN and a postgraduate scholarship to ADL from Canada’s NSERC. AH gratefully acknowledges financial support from NOVA and NWO.

REFERENCES

TABLE 1
Properties of simulated halos used in this study.

<table>
<thead>
<tr>
<th>Halo</th>
<th>c</th>
<th>M_{200}</th>
<th>M_{200}^{assoc}</th>
<th>r_{200}</th>
<th>V_{a0}</th>
<th>M_{200}^{assoc}</th>
<th>N_{sub}</th>
<th>N_{sub}^{assoc}</th>
<th>t_{r}</th>
<th>t_{r_{200}}</th>
<th>t_{r_{200}} > 2 z_{inf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-153</td>
<td>0.250</td>
<td>9.17 10^{11}</td>
<td>12.0 10^{11}</td>
<td>158.0</td>
<td>184.8</td>
<td>3.246e6 8.89 10^{11}</td>
<td>904</td>
<td>513</td>
<td>742</td>
<td>1017</td>
<td>3</td>
</tr>
<tr>
<td>9-12-6</td>
<td>0.181</td>
<td>6.44 10^{11}</td>
<td>9.79 10^{11}</td>
<td>140.4</td>
<td>159.9</td>
<td>4.826e6 4.07 10^{11}</td>
<td>2020</td>
<td>865</td>
<td>1314</td>
<td>1828</td>
<td>14</td>
</tr>
<tr>
<td>9-13-9</td>
<td>0.220</td>
<td>8.76 10^{11}</td>
<td>12.4 10^{11}</td>
<td>155.6</td>
<td>175.9</td>
<td>6.186e6 1.04 10^{11}</td>
<td>1683</td>
<td>831</td>
<td>1232</td>
<td>1645</td>
<td>15</td>
</tr>
<tr>
<td>9-14-9</td>
<td>0.186</td>
<td>12.6 10^{11}</td>
<td>17.9 10^{11}</td>
<td>175.7</td>
<td>203.5</td>
<td>3.306e6 1.27 10^{11}</td>
<td>1416</td>
<td>594</td>
<td>1050</td>
<td>1581</td>
<td>4</td>
</tr>
<tr>
<td>9-14-56</td>
<td>0.275</td>
<td>8.57 10^{11}</td>
<td>12.2 10^{11}</td>
<td>154.4</td>
<td>178.6</td>
<td>3.216e6 1.00 10^{11}</td>
<td>1160</td>
<td>469</td>
<td>646</td>
<td>930</td>
<td>12</td>
</tr>
</tbody>
</table>

TABLE 2
Dynamical properties of subhalo population

<table>
<thead>
<tr>
<th>Sample</th>
<th>N_{sub}</th>
<th>n_{0}</th>
<th>f_{2}</th>
<th>f_{h}</th>
<th>h</th>
<th>h_{1}</th>
<th>(5 s im s)</th>
<th>[arb. units]</th>
<th>(t_{r}</th>
<th>t_{r_{200}}</th>
<th>t_{r_{200}} > 2 z_{inf}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A assoc. dark matter</td>
<td>5422</td>
<td>0.12</td>
<td>0.558</td>
<td>0.159</td>
<td>0.270</td>
<td>0.734</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A assoc. subhalos</td>
<td>7183</td>
<td>4691.0</td>
<td>1.08</td>
<td>1.09</td>
<td>0.842</td>
<td>0.053</td>
<td>0.712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ghigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1999, apJ, 70, 140G
Kunkel W.E., Dekers S., 1976, B. D. resehrhch B. 0, 182, 241

Lynden-Bell D., 1982, O, 102, 202
M. m. on G.A., Sanchis T., Salvador-Sole E., Solanes J.M.A., 414, 445