Degravitation, Inflation and the Cosmological Constant as an Afterglow

Subodh P. Patil
Humoldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, D-12489 Berlin, Germany

email: subodh@physik.hu-berlin.de

Abstract: In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation (where Newton’s constant is promoted to a scale dependent heter function) as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set-up, we turn our attention towards the cosmological consequences of degravitation. By considering the example heter function corresponding to a resonantly massive graviton (with a heter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant ‘afterglow’ cosmological constant, whose scale immediately afterwards is parametrically suppressed by the heter scale (L) in Planck units $L_{Pl}^{2}=L^2$. We discuss circumstances through which this scenario reasonably yields the presently observed value for $\Omega (10^{120})$. We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over time scales comparable to the heter scale. We argue that different functional forms for the heter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large in addition to why it is not zero, it does not satisfactorily address the co-incidence problem without additional tuning.

Dedicated to the memory of Kris Bellakonda
1. Introduction

The degraviation paradigm \[1,2,3\] is a phenomenological proposal designed to solve the cosmological constant (CC) problem directly. Rather than positing some symmetry which sets the CC to be vanishing, or invoking anthropic arguments such that the problem is paraphrased away, the degraviation paradigm invokes an IR modification to general relativity at the level of the equations of motion, such that Newton’s constant becomes dependent on the wavelength of the source. Specifically, taking \(L\) as a characteristic length scale of some source, and taking \(L\) to be some IR length scale to be specified later, degraviation requires that Newton’s constant be promoted to some function \(G_N(L)\) such that the following properties are satisfied:

\[
G_N(L) \equiv \begin{cases} 0 & \text{if } L > L_\text{eff} \\ G_N(L) & \text{otherwise} \end{cases} \quad \text{(1.1)}
\]

In this way we see that sources with wavelengths greater than the IR scale introduced by \(L\) effectively degravitate as their gravitational coupling vanishes, whereas sources with wavelengths less than \(L\) gravitate normally \(^1\). Such scale dependent coupling, although

\(^1\)Requiring that gravity be unaffected at presently accessible scales requires us to set this IR scale to be larger than the present horizon scale.
seemingly odd in the context of gravity, has many precedents in gauge theory. As an example from electromagnetism [1], we note that in a linear dielectric medium, the electric field responds to a source as

\[r \quad E = \frac{4}{3} \quad = 0(1 + \cdot) \quad \text{(1.2)} \]

where is the dielectric constant of the ambient medium. For a frequency dependent dielectric, we see that if the medium is such that for sources with characteristic frequency \(f = T \) (where \(T \) is some time scale), then all such sources will effectively ‘de-electrify’ and not source the electric field. This is effectively the underlying physics of a high pass filter.

As proposed in [1] and further developed in [2][3], a scale dependent in Newton’s constant (1.1) can be implemented by promoting it to a differential operator:

\[G_N \quad ! \quad G_N \quad (L^2) \quad \text{(1.3)} \]

where is the covariant D'Alembertian operator, and \(L \) is taken to be a large but finite IR cut-off scale, typically much larger than any scale presently accessible to cosmology. As a self-adjoint differential operator, is guaranteed to have a complete set of mode functions with real eigenvalues. Expanding any source in terms of these mode functions, we see that mode by mode, the effect of acting on a source with the operator (1.3) is to make the replacement

\[G_N \quad ! \quad G_N \quad (L^2) \quad ; \quad \text{(1.4)} \]

where is the eigenvalue of the corresponding mode function being acted on. If for heuristic purposes we were to consider the example of Minkowski space, then the mode functions of the D'Alembertian are plane waves, and the effect of acting on a mode described by the vector \(k \), is that Newton's constant becomes the scale dependent function \(G_N \quad (L^2) \quad k^2 \). Hence degravitating all sources with wavelengths larger than \(L \) requires that

\[G_N \quad ! \quad 0 \quad 1 \quad ; \quad \text{(1.5)} \]

As a source which is constant in both space and time, the cosmological constant corresponds to the zero mode \(k = 0 \), with the corresponding eigenvalue \(\lambda^2 = 0 \), and is hence annihilated by the action of the differential operator (1.3) by virtue of (1.5). In this way, we see that any source of the form

\[T \quad = \quad \text{(1.6)} \]

effectively degravitates. At this rather heuristic level, it is trivial to observe that degravitation kills more than just the spacetime zero mode, as plane wave sources (also with eigenvalues \(\lambda^2 = k^2 = 0 \)) degravitate as well. In fact, in a general background, any source with an energy density which lies in the null eigenspace of the D'Alembertian degravitates. For the purposes of cosmology, this is only of passing interest as most cosmological sources

\[2 \]
other than the cosmological constant gravitate normally. It remains then to realize (1.3) from some underlying physical model. There are several distinct ways through which this might occur, and we discuss them presently.

1.1 Filtering via a resonantly massive graviton

In [2], and further developed in [3], a class of models in which degravitation is effected by massive or resonance gravitons was shown to result in a linear function for Newton’s constant of the form:

\[8 \frac{G_N}{1 + \left(\frac{m^2}{a^2}\right)^3}; \quad 0 < 1; \quad (1.7) \]

where \(\rho = 0 \) corresponds to a theory of massive gravity, and \(\rho = 1=2 \) corresponds to a linear function arising in DGP braneworld constructions [4]. One obtains such a linear function by the argument provided in [3], which we sketch here. We begin with the Einstein equations, linearized around Minkowski space:

\[h = h \quad \bar{h} @ h @ h + @ @ h + @ @ h = 8 G_N T : \quad (1.8) \]

By adding the Fierz-Pauli term [1], which is the only ghost-free form for the propagator of a massive spin two field, we obtain the equation of motion:

\[h \quad m^2 h \quad h = 8 G_N T : \quad (1.9) \]

Group theoretic considerations tell us that a massive spin two particle has no polarizations, as opposed to the usual two for a massless spin two particle. As a way of bookkeeping the extra polarizations, we perform the Stuckelberg decomposition, and write \(h \) as

\[h = \bar{h} \quad @ A + @ A ; \quad (1.10) \]

with \(\bar{h} \) being the helicity two piece, and with \(A \) carrying the extra polarizations. We note that this decomposition introduces the following gauge symmetry:

\[\bar{h} \quad ! \quad \bar{h} + @ + @ ; \quad A \quad ! \quad A \quad : \quad (1.11) \]

Taking the divergence of (1.3) once we have Stuckelberg decomposed \(h \), we end up with the equation of motion for \(A \):

\[@ F = @ \bar{h} \quad \bar{h} ; \quad (1.12) \]

with \(F = @ A \quad @ A \). Solving for \(A \) using this equation, and substituting this back into (1.3), one can show after accounting for residual gauge invariances [2] that the resulting equations for the helicity two component is

\[\text{It is straightforward to show that although plane waves degravitate, radiation gases gravitate normally due to decoherent superposition, and source the usual FRW radiation dominated expansion.} \]

\[\text{G_N is the usual 4-dimensional Newton's constant in the above.} \]
One can generalize the Fierz-Pauli mass term to allow for a resonance graviton, where $m^2 \neq m^2(\)$, such that

$$1 + \frac{m^2}{\Lambda} = 8 G_N T \quad (1.13)$$

results. This is the basis for proposing (1.13) as a filter function for Newton's constant. However, there are some immediate caveats to take note of here. Certainly (1.13) was derived around a linearized approximation around Minkowski space. Although massive gravity can be defined around other backgrounds, one can only make sense of it in the linearized approximation. In fact, its non-linear generalization is problematic and results in the instability of Minkowski space. Hence to take (1.13) as it stands literally would be a mistake, not least because in addition, satisfying the Bianchi identities would impose new constraints on top of the usual covariant conservation (used to derive (1.12)). Although the spirit of the investigation that follows is to only consider filter functions of the form (1.7), phenomenologically, such an investigation would only be meaningful if our formalism is self-consistent. Hence it is necessary to address the issue of the non-linear completion of (1.7) as well as the issue of satisfying the Bianchi identities. As we demonstrate next, there is another possibility in realizing a non-trivial filtering of gravity as in (1.3) which addresses both of these anxieties.

1.2 Filtering through running of G_N

The running of coupling constants is a well understood phenomenon in quantum field theory. The nature of the running is determined by the renormalization group equations (RGE) of the theory in consideration. For a theory with a single coupling parameter, such as quantum electrodynamics, the RGE takes the form

$$\frac{d}{d} = \quad (\); \quad (1.15)$$

where ξ is the energy scale of interest (the external momentum entering into a given process). In a typical gauge theory, solving for the differential equation that is the RGE results in the following expression for the running couplings:

$$\xi(\) = \xi(\) + c_1 \ln (\) = \theta; \quad (1.16)$$

where θ is some reference energy scale where the coupling strength is experimentally measured, and c_1 is determined by the RGE at hand. When computing physical quantities derived from scattering amplitudes, we usually work in momentum space. However, if for some reason we wanted to implement the running of couplings in configuration space, we could do so via the replacement $\xi(\) = \frac{1}{2} \Theta + c_1 \ln (\)$.

$$1 + \frac{m^2}{\Lambda} = 8 G_N T \quad (1.14)$$

The running of coupling constants is a well understood phenomenon in quantum field theory. The nature of the running is determined by the renormalization group equations (RGE) of the theory in consideration. For a theory with a single coupling parameter, such as quantum electrodynamics, the RGE takes the form

$$\frac{d}{d} = \quad (\); \quad (1.15)$$

where ξ is the energy scale of interest (the external momentum entering into a given process). In a typical gauge theory, solving for the differential equation that is the RGE results in the following expression for the running couplings:

$$\xi(\) = \xi(\) + c_1 \ln (\) = \theta; \quad (1.16)$$

where θ is some reference energy scale where the coupling strength is experimentally measured, and c_1 is determined by the RGE at hand. When computing physical quantities derived from scattering amplitudes, we usually work in momentum space. However, if for some reason we wanted to implement the running of couplings in configuration space, we could do so via the replacement $\xi(\) = \frac{1}{2} \Theta + c_1 \ln (\)$.

$$1 + \frac{m^2}{\Lambda} = 8 G_N T \quad (1.14)$$
where \(\alpha \) is some reference energy scale such that \((\alpha) = 0 \), and \(c \) depends on the RGE of the theory in question. A simple context in which one can illustrate this explicitly is furnished by QED, where the interaction Lagrangian is given by:

\[
L_{\text{int}} = e^2 A(x); \quad (1.18)
\]

In Fourier space, the net effect of running our coupling, is that physical processes become functions of the scale of the process at hand, set by the external momenta, i.e., \(e^2(p^2 = \frac{2}{\alpha}) \). From the properties of Fourier transforms, it is easy to see that taking the co-efficient of a product of local operators to now also depend on momenta, 'loc-lowers' the vertex. This is captured by the prescription of rewriting the coupling as \(e^2(= \frac{2}{\alpha}) \), where the delta function constraint on the vertex effects the replacement \(\frac{1}{p^2} \). This is to say, in position space, (1.17) encodes (typically non-local) quantum corrections to the classical equations of motion. We illustrate this in context. In QED, we know that corrections to the photon propagator from virtual fermion loops results in the running

\[
\frac{1}{(k^2)} = \frac{\hbar}{3} \ln \frac{k^2}{m_e^2} + O(\alpha^4) \quad ; k^2 = m_e^2 \gg 1; \quad (1.19)
\]

with \(\hbar = 137 \) being the low energy scale structure constant. In configuration space, this results in the replacement

\[
\frac{1}{(k^2)} = \frac{\hbar}{3} \ln \left[\frac{1}{m_e^2} \right] + O(\alpha^4) \quad ; \quad (1.20)
\]

which effects the observed quantum corrections to the classical equations of motion. For example, we know that the electrostatic potential between an electron and an infinitely heavy point charge (with momenta transfer \(k = (0;\vec{k}) \)) is obtained from the inverse Fourier transform of the scattering amplitude:

\[
V(r) = Z \frac{d^3k}{(2\pi)^3} \left(\frac{4}{k^2} \right) e^{ikr}; \quad (1.21)
\]

Taking the scale structure constant to be truly constant \((\alpha = \alpha^0) \) results in the usual classical electrostatic potential:

\[
V(r) = \frac{\alpha^0}{4\pi r}; \quad (1.22)
\]

However, we know that the coupling does in fact run, and the net effect of this is that quantum effects are captured by the charge distribution given by (1.17)

\[
\left(\frac{1}{k^2} \right) = \frac{Z}{(2\pi)^3} e^{ikr} \left(\frac{4}{k^2} \right); \quad (1.23)
\]

which can be implemented in (1.21) through the prescription (1.17):

\[
V(r) = Z \frac{d^3k}{(2\pi)^3} \left(\frac{4}{k^2} \right) e^{ikr} \frac{1}{k^2}; \quad (1.24)
\]
In the limit of a vanishing electron mass \(m_e \rightarrow 0 \) so we can use (1.13) in the above, we find the quantum corrected potential to be

\[
V(r) = \frac{\hbar^2}{4r} \ln \frac{1}{m_e^2 r^2} \quad i \quad \text{2};
\]

(1.25)

with \(\hbar \) being the Euler constant (2 1/154). Hence we see how running couplings in gauge theories effects modifications to the classical equations of motion, such that it manifests as if the coupling constants were promoted to functions of \(m_e \). We now ask, is this possible in gravity? We begin with a suggestive toy example.

Quantum gravity in two dimensions is a renormalizable theory. This is due to the fact that Newton’s constant in 2-d is dimensionless. We could couple gravity to any number of matter and gauge fields, and compute the one loop beta function for Newton’s constant in such a setting, as was done by Christensen and Duv [12]. There one finds (working in \(d = 2 + 1 \) dimensions)

\[
(G) = (d = 2) G_0^2 \quad \text{;}
\]

(1.26)

where \(G_0 \) can be computed as

\[
0 = \frac{2}{3} [1 \quad n_{B=2} + n_{1=2} \quad n_0 \quad N_1 + N_{1=2} \quad N_0] ;
\]

(1.27)

where our field content consists of \(n_s \) massless spin \(s \) particles and \(N_s \) massive spin \(s \) particles. From (1.26) we see immediately the celebrated UV fixed point for gravity in 2+1 dimensions at \(G_c = (d = 2) = 0 \), for positive \(G \). The differential equation defining the beta function:

\[
\frac{dG(\,)}{d} = (G)
\]

(1.28)

can be solved to give us the running of \(G \) :

\[
G(k^2) = \frac{G_c}{(m^2=k^2)^{\frac{d}{2} - 1}} ;
\]

(1.29)

where \(m^2 \) is now an integration constant which corresponds to the scale where we experimentally determine \(G \). In configuration space, this corresponds to the \(f \) function

\[
G(\,)= \frac{G_c}{(m^2=\,)^{\frac{d}{2} - 1}} ;
\]

(1.30)

which is to be compared to the one parameter family of \(f \) functions proposed in [2]

\[
G(\,)= \frac{G_c}{1 + (m^2=\,)^{1}} ;
\]

(1.31)

where \(0 \ < \ 1 \). The question of how one would generalize this to four dimensions to obtain a suitably degravitizing \(f \) function for \(G_N \) is presently the subject of an investigation [13]. For the present purposes however, we only wish to draw from this example the lesson that the effects of a running \(G_N \) would be to promote it to a function of
at the level of the field equations. Although the precise functional form might differ from (1.7), the objectives of degravitation will be met provided the condition (1.5) is satisfied. In fact, although we shall stick to (1.7) in much of what follows as a phenomenological example through which to study degravitation, we argue further on by example that the conclusions we present in what follows depends only on the length scale \(L \) (\(= m^{-1} \) in the above), and not the precise functional form of the \(\Phi \). In addition, as we shall see in the next section, understanding degravitation as a semi-classical effect also allows us new perspectives on how the Bianchi identities are to be satisfied. We now outline the investigation to follow.

1.3 Outline

In this report, we study the various cosmological consequences of promoting Newton’s constant to an operator valued \(\Phi \)-function. We adopt a phenomenological approach in this report, and take (1.7) as an example function which might have arisen from any number of ways (integrating out extra polarizations to the graviton arising from either a small mass or through extra dimensional fields, or from the running of Newton’s constant as illustrated above). We argue further that the conclusions we draw from this example \(\Phi \)-function generalize to other functional forms of suitably degravitating \(\Phi \)-functions.

We begin by setting up the formalism and addressing the issue of defining and solving the modified Einstein’s equations with a \(\Phi \)-function for Newton’s constant, taking care to satisfy the Bianchi identities in this context. We then proceed to consider our sample \(\Phi \)-function in the context of various cosmological scenarios, namely slow roll inflation, hybrid inflation and old inflation, and show that in spite of neutralizing the cosmological constant, degravitation leaves these scenarios qualitatively unchanged. We then uncover the result that in a universe which is the end result of having tunneled out of some false vacuum (vacua) in the past, there exists a present day “after-glow” cosmological constant whose scale is parametrically suppressed by the square of the \(\Phi \)-scale in Planck units. Given that we should set the \(\Phi \)-scale such that it should be larger than the present day horizon scale so as not to conflict with cosmological observations, we find \(L^2_p < \frac{H_0^2}{G_N^2} \times 10^{120} \) in reduced Planck units. We then uncover the result that in the scenario where our universe remains stuck in some false vacuum state, degravitation only suppresses this false vacuum density enough to yield a cosmological constant similar to the one observed today with additional tuning. We discuss this last result in the context of the coincidence problem, after which we offer our conclusions. In the following we work in natural units, and unless otherwise stated, take our metric tensor to be

\[
\text{diag}[1; a(t)^2; a(t)^2; a(t)^2];
\]

The 4-dimensional Planck mass is taken to be \(M^{-2}_{pl} = (8 \pi G_N)^{-1} \), where \(G_N \) is the 4-dimensional Newton’s constant.

2. The Bianchi Identities and the Modified Einstein Equations

As first proposed in [1], we consider the following formal modification of Einstein’s equa-

\[
(1.32)
\]
tions:

\[G = 8 \, G_N \, (L^2) \, T \] \hspace{1cm} (2.1) \]

One encounters the immediate curiosity that since in general \(r \neq 0 \), either the Bianchi identities are not satisfied in the above, or new constraints are imposed on a covariantly conserved energy momentum tensor. We wish to demonstrate that it is in fact the latter that is true, and that the correct Bianchi identity is indeed \(r \, [G (L^2) \, T] = 0 \).

In the context of obtaining a hiering \(G_N \) as the configuration space expression of its running, this is to be expected considering the fact that in reality, the equations (2.1) are actually the equations

\[G = \frac{1}{M^2_{Pl}} \, h^T \, i \] \hspace{1cm} (2.2) \]

in disguise. As we encountered with the previous examples, just as quantum effects modify the classical equations of motion so as to introduce non-local operators (1.17) in place of coupling constants (so that point sources get smeared out (1.23)), so we expect the quantum mechanical running of \(G_N \) to give us (2.1) as an paraphrase of (2.2), the right hand side of which is to be obtained from the effective action as:

\[h^T \, i = \frac{2}{g \, g} \, W \] \hspace{1cm} (2.3) \]

We observe that the effective Lagrangian density (we take for illustrative purposes, a massive degree of freedom with mass \(m \)) is given by the expression [14]:

\[Z \]

\[W = \int d^4x \, g(x) \, L_{eff} (x) \] \hspace{1cm} (2.4) \]

\[L_{eff} = \frac{i}{2} \, \lim_{x \to x^0} \, \mathrm{dm}^2 \, G_D^S (x;x^0; m^2) ; \] \hspace{1cm} (2.5) \]

where \(G_D^S (x;x^0; m^2) \) is the Feynman propagator for a field with mass \(m \) in the Schwinger DeWitt representation. We note that it is the part of \(L_{eff} \) which remains finite in the limit \(x^0 \) which is sensitive to the large scale structure of the manifold (i.e. is non-local) and to the quantum state defining the expectation value [14].

In this way, it should not be surprising that the true quantum corrected equations of motion should be \(r \, [G (L^2) \, T] = 0 \), as \(r \, T = 0 \) implies only the classical equations of motion, derived from the classical Lagrangian density \(L_c \) as opposed to \(L_{eff} \). Thus we understand the modified Bianchi identities as actually encoding quantum corrections to our classical equations of motion. This can also be understood as coming from the non-commutativity of taking the expectation value of an operator, and taking its covariant derivative one we account for the fact that the perturbative vacuum differs from the free vacuum. We establish this argument out with the example of a free scalar field, which has the energy momentum tensor:

\[T = r \, r \, \quad \frac{1}{2} \, g \, \quad r \, r \quad + \quad \frac{m^2}{2} \, g \, \quad \] \hspace{1cm} (2.6) \]
We define the above bilinear quantity as \(T = T \). If the field admits its the mode expansion
\[
Z(x; t) = d^3k \ u_k a_k + u_k a_k^\dagger;
\]
where \(u_k \) is the appropriate mode function, indexed by \(k \) such that the vacuum is defined as \(a_k \bar{\phi} = 0 \). It is easy to check [14] that
\[
\hbar \partial_T \bar{\phi} = d^3k \ T [u_k \bar{u}_k];
\]
whereas for non-vacuum expectation values:
\[
Z_{m_1(k_1); m_2(k_2); \ldots} \bar{\phi}_{m_1(k_1); m_2(k_2); \ldots} = d^3k \ T [u_k \bar{u}_k] + 2 \ d^3k \ X_{i = 1} \ n_i(k) T [u_k \bar{u}_k];
\]
We note from the form of (2.2), that the graviton propagator will receive quantum corrections from scalar field loops. In addition, any scalar self-couplings will also run, and the vacuum of the interacting theory will differ from the vacuum of the free theory. We can understand how quantum effects alter the classical equations of motion by the following argument. Although it is clear from (2.2) that \(\hbar \partial_T \bar{\phi} = 0 \) (as on the right hand side we simply have the mode decomposition of \(T = 0 \), where by construction, the mode functions satisfy the equations of motion), it should also be clear that the presence of non-zero occupation numbers \(n_i(k) \) makes the inverse transform of the divergence of the second term on the right hand side of (2.3) no longer vanish. Considering that the vacuum defined by the mode functions used above is not the true perturbative vacuum for the interacting theory, the interacting vacuum expectation value \(\hbar \partial_T \bar{\phi} \) is in general going to contain non-zero particle occupation numbers of the free vacuum (i.e. terms of the form (2.3) will result). Hence non-trivial vacuum structure results in non-satisfaction of the classical Bianchi identities as a result of (2.3), which implies quantum corrected equations of motion. Thus the result of inverting the mode expansion of the VEV of the energy momentum tensor in the interacting vacuum back to configuration space (in at space, we'd simply Fourier transform), is that we would obtain the modified equation of motion (2.2):
\[
G = \frac{1}{M_{pl}^2} \hbar \partial_T \bar{\phi} = 8 \ G_N (T)_{(0)}
\]
where \(T_{(0)} \) is the classical energy momentum tensor corresponding to the non-interacting vacuum.

In the event that our gravitational linear arises from a small resonant mass to the graviton (perhaps through extra dimensional ects), the new constraints imposed by the Bianchi identities are to be understood through the following argument proposed in [3]. The linear function in (2.3) is obtained through integrating out the extra polarizations of a massive spin two theory, which contains propagating degrees of freedom as opposed to the usual two of Einstein gravity. However the Einstein tensor in (2.3) is constructed only from the spin two sector of this theory, therefore the energy momentum tensor should not
be conserved with respect to covariant differentiation with the spin two metric, as it is only conserved with respect to the full metric which contains the extra polarizations. In this way, the non-conservation of the right hand side of the above is accounted for by the ever present extra polarizations \[2\]. With this in mind, we proceed to study the cosmological consequences of the modified Einstein equations, to be viewed as the phenomenological manifestation of whatever the physics might be that underlies the lingering of gravity.

Before we continue however, we wish to note that in general, the action of \(R \) on a rank two tensor \(m \) mixes up its components non-trivially. However, since the covariant d'Alembertian always commutes with the metric tensor, we can avoid this concern by simply considering the trace of the above:

\[
R = 8 \; G_N \; (L^2) T; \quad (2.11)
\]

In this form, we do not even have to make a specific ansatz for the form of the metric tensor to write down a formal expression for curvature as a function of a matter source.

Having set up the bare basics of the degravitation framework, we turn our attention towards inflationary cosmology in this setup. As articulated in \[15\], a long standing concern directed at any proposed direct solution to the cosmological constant problem is that it should not also render inflation null. Since inflation depends on the time independent piece of a scalar field potential, this is a valid concern and as we will shortly see, one that the degravitation paradigm answers in a rather appealing manner.

3. Inflation (v.s. the Cosmological Constant)

Consider a universe that is dominated by matter with an equation of state parameter \(w = 1 \).

\[
8 \; G_N \; (L^2) = 8 \; G_N \; (L^2) \; V(\cdot); \quad (3.1)
\]

Focusing on a linear function of the form:

\[
8 \; G_N \; (L^2) = \frac{8 \; G_N}{1 + \frac{m^2}{k^2}}; \quad (3.2)
\]

we can immediately prove that such a linear function does in fact degravitate sources with wavelengths larger than the linear scale. Consider a mode expansion of source in terms of homogeneous plane waves\(^4\), and consider the action of (3.2) on such a mode. Were we to expand (3.2) in terms of its power series, we have to take care of the fact that we must expand within the radius of convergence. That is, if \(f \) acts on such a mode function with eigenvalue \(k^2 \), then we have two possible expansions:

\[
\frac{1}{1 + \frac{m^2}{k^2}} = \sum_{n=0} X_{n=0} \frac{m^2}{k^2} = \sum_{n=0} \frac{m^2}{k^2} \; ; \; m^2 < k^2 \quad (3.3)
\]

\(^4\) Although these are not technically the eigenfunctions of the D'Alembertian in a de Sitter spacetime (which are hypergeometric functions), for homogeneous sources they do satisfy \(e^{i \omega t} = e^{i \omega t} \), where \(\omega \) is a complex 'eigenvalue'.
Where we draw attention to the fact that the sum in (3.4) commences at $n = 1$ whereas the sum in (3.3) commences at $n = 0$. From all this we see that for all sources with wavelengths much greater than the filter scale ($L = m^{-1}$) effectively gravitate:

$$G_{\text{eff}} = G_N O \left(k^2 = m^2 \right) k^2 \quad m^2; \quad (3.5)$$

whereas all sources with wavelengths much smaller than the filter scale gravitate almost normally:

$$G_{\text{eff}} = G_N \left(1 + O \left(m^2 = k^2 \right) \right) m^2 \quad k^2; \quad (3.6)$$

In other words, because the leading order term in (3.4) is proportional to O, any bona fide spacetime zero mode is annihilated by the gravitation filter. One might then wonder how this is consistent with causality, for how is the gravitation filter to know immediately whether an energy density is a legitimate zero mode, or whether it might change in the future? The answer to this lies in the fact that the filter is in fact sensitive to local changes in the energy density, as evidenced by the continuous dependence of (3.4) on the wavenumber of the source. Any local variation, no matter how small, will result in a non-zero Newton's constant in a manner that continuously approaches zero for a spacetime zero mode. In fact, as we shall see shortly, if our energy density were to suddenly jump from one constant in the present to another in the future, then the filter does not annihilate the source, except in the far future once the source has had enough time to look like a zero mode to an asymptotic observer.

Since we are interested in cosmological applications, we must restrict ourselves to the effect of the gravitation filter on homogeneous sources (with respect to the spatial coordinates). We can express such a source in terms of its inverse Laplace transform:

$$(t) = \frac{1}{2} Z_1^1 \int_1^0 d! e^{\gamma t} (i!); \quad (3.7)$$

where the Laplace transform is defined as

$$(!) = Z_1^1 \int_0^t e^{\gamma !} (t);$$

$$Z_0^1 \int_0^t e^{\gamma ^t} (t);$$

with the definition

$$\sim (t) = \begin{cases} (t) & t > 0 \\ 0 & t < 0 \end{cases}: \quad \{11\}$$
The use of the Laplace transform is relevant for a universe with a beginning in the finite past. To model an eternal universe we simply set \(\sim(t) = (t) \) for all times and understand the above as a Fourier transform. We now consider the effect of the filter (3.2) on a homogeneous source:\(^5\)

\[
\frac{8}{1 + \frac{m^2}{3H^2}} G_N Z(t) = 8 G_N \int_1^\infty \frac{e^{it}}{m^2} \left(\frac{i}{2} 3H \right) \left(i! \right) \frac{1}{m^2}.
\]

(3.8)

In order to study the effect of degravitation on various stationary scenarios, it suffices to consider energy densities corresponding to two special cases: a slowly varying potential, and a potential which is constant everywhere except for a finite jump/drop at a specific time (i.e., a step function).

In frequency space, a slow rolling potential can be modeled as the real part of

\[
V(\nu) = V_0(\nu) + V_1(\nu);
\]

(3.9)

which corresponds to the potential

\[
V(t) = V_0 + V_1 e^{i t};
\]

(3.10)

where \(\nu \) is taken to be some small frequency (relative to the degravitation and Hubble scales). Evaluating (3.8) in this context is rather straightforward:

\[
V_{\text{deg}}(t) = V_0 \sim(m^2) + V_1 \frac{e^{i t}}{m^2}.
\]

(3.11)

where \(V_{\text{deg}}(t) \) is the degravitated potential, and \(\sim(m^2) \) is formally defined as

\[
\sim(m^2) = 1; \quad m^2 = 0
\]

\[
= 0; \quad m^2 \neq 0.
\]

(3.12)

In this way, we again see how degravitation immediately annihilates any pure spacetime zero mode for any finite filter scale. For the slowly varying piece, for \(m \) and \(H \) much less than the time scale associated with the filter scale, we see then that (3.11) reduces to (3.10) immediately. In fact, for chaotic slow roll in action, we find that is typically given by

\[
m = \sim;
\]

(3.13)

where \(m \) is the mass of the photon and \(\sim \) is the standard dimensionless slow roll parameter. From this, we see that the condition \(m = \sim m = m \sim 1 \) is very easy to satisfy given that

\(^5\)For the moment, we make the approximation that in an stationary universe, the time scale set by the filter scale \(m^{-1} \) is far greater than at least one scale in the problem (e.g., the Hubble scale \(H^{-1} \), or the time scale over which we are considering a cosmological evolution). We will attempt to relax this requirement further on, but for the time being it allows us to simply act through with the D'Alembertian on (3.2), as it ensures that any time dependence in \(H \) (inferred from the modified Einstein equation) will be negligible. This is certainly justified up to terms of order \(m^{-1} \).
the Hubble scale is to be larger than the present Hubble scale in order not to effect gravity at presently accessible scales ($m^{-1} > H_0^{-1}$), and that the mass of the in atom is bound to be tens of orders of magnitude greater than this. Thus we conclude that aside from the non contribution of the zero mode (which is typically set to zero by hand anyway), slow roll in atom is virtually unaffected by the degradation filter once we account for the relevant scales.

The next example we turn to is that of a step function (in time) change in energy density, which is of interest to us for its utility in modeling various scenarios of interest. We represent the step function as

$$\left(t - \tau_0\right) = \text{sign}(t) \left| t - \tau_0 \right|$$

By applying the degradation filter to the above, we obtain

$$1 + \frac{m^2}{1} \left(t - \tau_0\right) = \text{sign}(m^2) \left| \text{sign}(t) \left| t - \tau_0 \right| \right| \left| t - \tau_0 \right|$$

which evaluates to

$$1 + \frac{m^2}{1} \left(t - \tau_0\right) = \frac{\text{sign}(m^2)}{2} + \frac{1}{2} \cdot \text{sign}(t) \left| t - \tau_0 \right| \left| t - \tau_0 \right|$$

with $\text{sign}(m^2)$ defined in (3.12), and where the denominator factors into the roots

$$\text{sign}(m^2) = \frac{3H}{2} - \frac{m^2}{2}$$

we see that (3.16) is readily evaluated in light of the pole structure at the points $\pm \sqrt{\text{sign}(m^2)}$. We see that for non zero values of m, both poles lie above the real axis, and when m vanishes, $\pm \sqrt{\text{sign}(m^2)}$ lies on the real axis. Hence for $t < \tau_0$, in closing the contour in (3.16) in the lower half plane, we encounter no poles unless $m^2 = 0$, in which case we get a contribution of $i=2$. That is, for $t < \tau_0$ we get

$$1 + \frac{m^2}{1} \left(t - \tau_0\right) = \frac{\text{sign}(m^2)}{2} = 0 ; t < \tau_0$$

which is exactly what we would have got in the undegradivated case. This should not be surprising, as degradation is engineered to preserve causality, and up to $t < \tau_0$ should not be able to tell the difference between a step function (with the step yet to come), and a zero mode. Proceeding similarly for $t > \tau_0$, we find in closing the contour in the upper half plane we will always enclose both roots, except that in the case where $m^2 = 0$, the root at $\pm \sqrt{\text{sign}(m^2)}$ contributes half the residue it would otherwise as it then lies on the real axis rather than above it. With this in mind, we can evaluate (3.16) for $t > \tau_0$ as

$$1 + \frac{m^2}{1} \left(t - \tau_0\right) = \frac{\text{sign}(m^2)}{2} - \frac{\text{sign}(m^2)}{2} = 0 ; t < \tau_0$$

which is exactly what we would have got in the undegradivated case. This should not be surprising, as degradation is engineered to preserve causality, and up to $t < \tau_0$ should not be able to tell the difference between a step function (with the step yet to come), and a zero mode. Proceeding similarly for $t > \tau_0$, we find in closing the contour in the upper half plane we will always enclose both roots, except that in the case where $m^2 = 0$, the root at $\pm \sqrt{\text{sign}(m^2)}$ contributes half the residue it would otherwise as it then lies on the real axis rather than above it. With this in mind, we can evaluate (3.16) for $t > \tau_0$ as

$$1 + \frac{m^2}{1} \left(t - \tau_0\right) = \frac{\text{sign}(m^2)}{2} - \frac{\text{sign}(m^2)}{2} = 0 ; t < \tau_0$$

which is exactly what we would have got in the undegradivated case. This should not be surprising, as degradation is engineered to preserve causality, and up to $t < \tau_0$ should not be able to tell the difference between a step function (with the step yet to come), and a zero mode. Proceeding similarly for $t > \tau_0$, we find in closing the contour in the upper half plane we will always enclose both roots, except that in the case where $m^2 = 0$, the root at $\pm \sqrt{\text{sign}(m^2)}$ contributes half the residue it would otherwise as it then lies on the real axis rather than above it. With this in mind, we can evaluate (3.16) for $t > \tau_0$ as
\[e^{\frac{3H}{2}(t - t_0)} \cosh \frac{3H}{2}(t - t_0) \]
\[+ \frac{1}{1 + \frac{4m^2}{9H^2}} \sinh \frac{3H}{2}(t - t_0) \]
\[r \frac{1}{9H^2} \]
\[(3.20) \]

whose leading order behavior in the inverse \(t \) scale \(m \) is given by:

\[1 + \frac{m^2}{9H^2} \]
\[(t - t_0) = 1 + \frac{m^2}{9H^2} e^{\frac{3H}{2}(t - t_0)} \]
\[\frac{m^2}{9H^2} e^{3H(t - t_0)} \]
\[\frac{1}{2} \]
\[(t - t_0)^2 \]
\[(3.21) \]

which around \(t_0, m \) in \(\text{ics} \) a Gaussian:

\[1 + \frac{m^2}{9H^2} \]
\[(t - t_0) = e^{\frac{3H}{2}(t - t_0)^2} \]
\[(3.22) \]

That is, the degravitation \(\text{iter} \) appears to transform the step function into a function that is zero before \(t = t_0 \), and decays exponentially afterwards with a characteristic \(\text{ime} \) \(t \) set by the inverse \(\text{iter} \) scale \(t = m \), which is typically larger than the present age of the universe.

In this way, we see that although degravitation kills any ‘bare’ cosmological constant term, energy densities which condense at some \(\text{ime} \) into the history of the universe will require a \(\text{ime} \) scale parametrically dependent on the inverse \(\text{iter} \) scale to degravitate. We apply these considerations to hybrid inflation [13], which evidently relies on the space-time zero \(\text{mode} \) of the inaton potential to drive inflation. The potential for a generic hybrid inaton model is given by

\[V(\sigma) = \frac{1}{4} \left(M^2 + \sigma^2 \right)^2 + \frac{m^2}{2} \sigma^2 + \frac{g^2}{2} \sigma^2 \]
\[(3.23) \]

where the mass of \(\sigma \) is tuned such that it rolls very slowly. Given that the effective mass for the \(\text{edl} \) is equal to \(M^2 + g^2 \), for \(c = M = g \), there is only one \(\text{ini} \) \(\text{min} \) for the \(\text{edl} \) at \(\sigma = 0 \). In this regime, the zero \(\text{mode} \) of the potential dominates \(V = M^4 \sigma^4 \) and drives inflation, which ends when \(\sigma \) rolls below \(c \). Were we to apply the degravitation \(\text{iter} \) to \((3.23) \), the zero \(\text{mode} \) of the potential would seem to be annihilated as evidenced from the expansion of the \(\text{iter} \) in \((3.4) \). However we note that one should really think of \((3.23) \) as being multiplied by a step function in \(\text{ime} \) which models the fact that the energy condenses at some \(\text{ime} \), or alternatively, models the beginning of the universe at some \(\text{ime} \) in the past\(^6\). Hence we conclude that degravitation leaves hybrid inflation unaected provided it lasts for a duration less than the \(\text{ime} \) scale associated with the \(\text{iter} \) scale, which it certainly does if \(m > H_0 \), where \(H_0 \) is the present day Hubble parameter.

\(^6\)To not do so would imply that this energy density has been around since the \(\text{ini} \) past, by which \(\text{ime} \) we expect degravitation to have naturally killed the constant part of the energy density. Hence in a non-eternal universe, we have to multiply all energy densities by a step function to model a universe with a beginning.
We next consider the effect of degravitation on the following potential:

$$V(t) = V_0 + \sum_{i=1}^{\infty} (V_i - V_1)(t - t_i); \quad t_i < t_i + 1$$

(3.24)

which models a series of potential drops from V_{i+1} to V_i at times t_i, i.e. $V(t) = V_k$ if $t_k < t < t_{k+1}$. Using the results from previous calculation, we find that the effect of the degravitation filter on the potential at a time $t_k < t < t_{k+1}$ is:

$$1 + \frac{m^2}{V(t)} = \frac{\sum_{i=1}^{\infty} (V_i - V_1) e^{-\frac{m^2}{2}} [\sinh \left(\frac{2m^2}{3} \right)]^i}{1 + \frac{m^2}{V(t)} \sinh \left(\frac{2m^2}{3} \right)}; \quad t_k < t < t_{k+1}$$

(3.25)

which to second order in the inverse filter scale m, is given by

$$1 + \frac{m^2}{V(t)} = V_k + \frac{m^2}{2} \sum_{i=1}^{\infty} (V_i - V_1)(t_i - t_{i+1})^2; \quad t_k < t < t_{k+1};$$

(3.26)

Here we again see how degravitation leaves the potential unacted for all times scales much smaller than the degravitation scale. Hence we see that observation, which can heuristically be modeled as such a single step function potential drop is unacted provided its duration is microscopic compared to the degravitation scale. We note here that the degravitated potential at any given time is always going to be slightly larger than the undegravitated potential for any series of cascades, as degravitation carries a memory of the previous vacua (suppressed by powers of m) in the second term in the above. It is this observation that suggests that today's cosmological constant m might be due to a similar such afterglow by considering the above in the context of some sort of potential (e.g., stringy) landscape. Supposing that our universe is presently in its true vacuum, but was once trapped in a series of false vacua, modeled by the transitions $V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_N = 0$. We find that although the matter sector potential energy in the present epoch vanishes, degravitation implies an inherited memory of previous false vacua such that immediately after the final tunneling event, we still feel an remnant energy density:

$$V_{\text{rem}} = \frac{m^2}{2} j V j T^2;$$

(3.27)

In the above, V is the total potential drop since the beginning of the universe and $T = t_0$, where we note that the longer the duration of the period we are stuck in the false vacua, the stronger the afterglow we feel, as the non-locality of the degravitation

\[\text{W} h\text{e}r\text{e we set } V_0 = 0 \text{ to model a universe where a potential energy of } V_1 \neq 0 \text{ appears at the beginning of the universe at time } t_1 = 0, \text{ and successively cascades down a series of steps.}\]
lter has a longer duration source to act on. In the context of the Einstein equations
\[3H^2 = 8 \, G_N \, V_{rem}, \]
this implies an apparent cosmological constant
\[\frac{3H^2}{M_{pl}^2} = \frac{\frac{m^2}{M_{pl}^2} + \frac{V}{2M_{pl}^2}}{2}; \]
(3.28)
whose scale is an energy density in dimensionless units parametrically suppressed by the
square of the lter scale in Planck units. Recalling that in requiring \(m < H_0 \), we see that
\[\frac{m^2}{M_{pl}^2} < \frac{\rho_{l}}{M_{Pl}^2} \frac{H_0^2}{R^2}; \]
(3.29)
where \(R \) is the size of the universe today. Hence we see that although degravitation kills
any spacetime zero mode (i.e. the bare cosmological constant), this calculation implies
a remnant cosmological constant \(m \) might still be observed today with a magnitude that is
suppressed by the degravitation scale:
\[\frac{\rho_{l}}{M_{Pl}^2} \approx 10^{120}; \]
(3.30)
if we take \(L \approx H_0^{-1} \). In the following sections, we will rederive this result through reform-
mulating the problem in a manner which admits its generalization to spatially inhomogeneous
sources. We will also uncover the result that in the scenario where we remain stuck in some
false vacuum state, although degravitation causes the vacuum energy density to decay over
time, it does so over a timescale that is typically too slow compared to the age of the
universe.

Before we continue however, we parenthetically note that all of the results and con-
cclusions we have just discussed generalize rather straightforwardly to other values of \(\nu \) in
\((1.7) \). For example, having accounted for subtleties involving branch cuts in the integral
\((3.2) \), we end in the context of \((3.19) \) that in place of \(\mu \) being given by \((3.17) \), we have
instead (for \(0 \leq \rho < 1 \))
\[\mu = \frac{3H}{2} \sqrt{1 + \frac{4m^2}{9H^2} e^{\left(-\frac{r}{H}\right)}}; \]
(3.31)
with similarly straightforward generalizations for other results in the above. We thus
continue to work with \(\rho = 0 \) in the next section for quantitative convenience, with the
results concerning values of \(\mu \) being similarly generalizable.

4. A n Afterglow Cosmological Constant?

We can formally recast \((3.2) \) as
\[\frac{8 \, G_N}{1 + \frac{m^2}{m}} = \frac{8 \, G_N}{1 + \frac{m^2}{m}} = \frac{8 \, G_N}{1 + \frac{m^2}{m}} (1 + \frac{m^2}{m})^{-1}; \]
(4.1)
so that its action on any source takes the form
\[G_N \frac{m^2}{x^2} (x) = 8 \int^Z_0 d^4x^D g(x^D)G (x; x^0) (x^0); \quad (4.2) \]

where \(G (x; x^0) \) satisfies

\[(x + m^2)G (x; x^0) = \frac{g(x^D)}{g(x^D)} ; \quad (4.3) \]

Acting through with \((4.2) \) and using \((4.3) \), we obtain the result

\[\text{degrav} (x) = \int^Z_0 d^4x^D g(x^D)G (x; x^0) (x^0); \quad (4.4) \]

which makes manifest the causality (and non-locality) of degravitation for the appropriate choice for the Green's function in the above. Furthermore, upon integrating \((4.3) \) we find

\[1 = m^2 \int^Z_0 d^4x^D g(x^D)G (x; y) + \int_M d^3 n^a \delta_{a} (\cdot y) ; \quad (4.5) \]

where we note that the surface integral vanishes at coordinate infinity by virtue of the finite mass scale \(m \) (which results in exponentially damped asymptotic behavior of the Green's function). Hence we find that the Green's function is normalized as \(1 = m^2 \int^Z_0 d^4x^D g(x^D)G (x^0; x^0) \), which allows us to recast \((4.4) \) as

\[\text{degrav} (x) = \int^Z_0 d^4x^D g(x^D)G (x; x^0) (x^0) ; \quad (4.6) \]

If we assume that we are in a de Sitter background, then we know that the retarded Green's function is\(^{14}\)

\[G (x; x^0) = (x_0, x^0)_0 e^{i \frac{2H}{16} \frac{2}{2} \frac{3}{2} + \frac{3}{2} \frac{F}{2} \frac{3}{2} + \frac{3}{2} \frac{1 + z + i}{2} ; (4.7) \]

with \(z \) being the de Sitter invariant geodesic distance\(^3\) between \(x \) and \(x^0 \) and \(^2 = 9^{-4} \frac{1}{4m^2=9H^{-2}} \). This suggests an interpretation of \((4.3) \) as the weighted average:

\[\text{degrav} (x) = (x) \frac{R}{R} ; \quad (4.8) \]

with the average defined by:

\[\text{he}_{x} = \frac{R}{R} \frac{g(x^D)G (x; x^0)F (x^0)}{g(x^D)G (0; x^0)} ; \quad (4.9) \]

We immediately see how a spatial zero mode (bare cosmological constant) is degravitated, as

\[\text{degrav} = (1 \text{ he}_{x}) = 0; \quad (4.10) \]

\(^6\)The integral is independent of the argument \(x \), which we pick to be the origin in the following

\(^3\)See \(4.3 \) for this and other aspects of de Sitter space physics used here.
Consider now a source corresponding to a bubble of one vacuum nucleating in another starting at time \(t = t_0 \) at the origin:

\[
V(x) = V_0 + (V_f - V_0) \left[z(x;0) 1 \right]; \quad (4.11)
\]

where we see that the product of step functions effects a potential of \(V_0 \) everywhere except inside the future lightcone of the nucleation event, where it is \(V_f \). Consider the effect of the degravitation here on the step function through \((4.2)\) and \((4.3)\):

\[
\int [t \; \xi] [z \; l_{\text{degrav}} = \int [t \; \xi] [z \; 1] \frac{R \; p}{gG(x)}; \quad (4.12)
\]

where \(z \) is the de Sitter invariant geodesic distance to the nucleation event \((z = 1 \implies \text{zero or null separation})\), \(R \) indicates an integral over the causal diamond bounded by \(x \) in the present, and the nucleation event in the past and \(R \) indicates an integral over the entire past light cone of any observer at the origin (see footnote associated with \((4.6)\)). For \(t < 0 \) there is no causal diamond between \(x \) and the nucleation event as it is yet to happen (the theta function vanishes in the integrand), so we get:

\[
\int [t \; \xi] [z \; l_{\text{degrav}} = \int [t \; \xi] [z \; 1] = 0 \quad t < \xi; \quad (4.13)
\]

which is exactly as we had obtained in our previous example (3.13). For \(t > t_0 \), the integral over the causal diamond coincides at zero and asymptotes to one as the integral over the entire past light cone of the origin event \((G! N G)\). Hence

\[
\int [t \; \xi] [z \; l_{\text{degrav}} = 1 \quad f(t); \quad f(0) = 0 \quad f(1) = 1; \quad (4.14)
\]

Since the function \(G(x;x^0) \) describes the propagation of a massive particle, we expect it to be an exponentially decaying function of the geodesic distance between \(x \) and \(x^0 \), with a characteristic scale set by \(m^2 \). To see this (and to reproduce the results of the last section), we work in co-ordinates where

\[
ds^2 = \frac{1}{H^2} \left(d^2 - dx^i dx^i \right); \quad (4.15)
\]

and consider for simplicity, a homogenous source as in the previous section. In this case, the relevant source is \((x) = (0_0)\). In this case, \((4.4)\) becomes

\[
Z \degrav \left(\frac{1}{m^2} \right) \int d^3x^D \frac{G(x^0)}{gG(x;x^0)} (0_0 \; 1); \quad (4.16)
\]

with \(G(x;x^0) \) given as in \((4.7)\). Since our source is now spatially homogenous, we can integrate the Green's function over the spatial coordinates to give us \((4.17)\)

\[
Z \int d^3x^D \frac{g(0)G(x;x^0)}{gG(x;x^0)} = \frac{(0_0)}{H^2} \frac{(0_0)}{\sinh \left[\ln \left(\frac{3 = 2}{3 = 2} \right) \right]} \quad (4.17)
\]

\[
= \frac{(0_0)}{2H^2} \frac{(0_0)}{\sinh \left[\ln \left(\frac{3 = 2}{3 = 2} \right) \right]} \frac{(0_0)}{\sinh \left[\ln \left(\frac{3 = 2}{3 = 2} \right) \right]} ;
\]
Hence the integral we have to perform is:

\[
Z \int_d^{x^P} g(x)G\left(m^2,x;x^0\right)dx = \frac{1}{2H} \int_0^{3\pi/2} \frac{h}{\sin(\pi/2)} = \frac{2}{3}\pi\int \frac{1}{m^2} \left(\frac{2}{m^2}\right) + \left(\frac{3}{2}\right)\left[\frac{3}{2}\right] \right) \r
protected quantum mechanically (e.g. against gauge field loops) by the gravitational Ward identities, hence any small mass causes the quantum mechanical corrections to the graviton mass to be proportional to the mass itself, and hence can be neglected.

We now turn our attention to the scenario that our universe is still stuck in some meta stable vacuum state (as implied by the notion that we live in potential landscape). We wish to explore whether or not degravitation can degravitate this false vacuum energy to a reasonably small value over the age of the universe, and whether or not it does so in a way that addresses the coincidence problem. As we shall see, the class of degravitation models [2] that we study here act over time scales that are far too slow to degravitate false vacuum energy densities in a way that addresses the coincidence problem. 10.

5. The Coincidence Problem

To offer us further perspective on the degravitation mechanism, and to study degravitation in other contexts, we reformulate the problem in yet another manner. We begin by acting on both sides of (3.2) with appropriate powers of \(\pm m^2 \), to rewrite the modified Einstein's equations as

\[8\, G_N \, T = G + m^2 \, \frac{1}{G} ; \]

whence the 00 equation becomes

\[8\, G_N \, (x) = 3H^2(x) + m^2 \int P \frac{g(x)G^0(x;\xi^0)3H^2(\xi^0)}{g(x)} ; \]

and where \(G^0(x;\xi^0) \) satisfies

\[xG^0(x;\xi^0) = \frac{g(x;\xi^0)}{g(x)} ; \]

Rewriting the above as

\[3H^2(x^0) = 8\, G_N \, (x^0) \int P \frac{g(x^0)dx^0G^0(x^0;x^0)3H^2(x^0)}{g(x^0)} ; \]

and substituting in the integrand in (5.2) and iterating, for a step function potential drop

\[V = V \left[t - t_0 \right] \left[z - 1 \right] = , \]

we arrive at the expression

\[3H^2 = \frac{V}{M} \frac{1}{h} \int P \frac{m^2(G^0; \cdot) + m^4(G^0;G^0; \cdot)}{m^6(G^0;G^0;G^0; \cdot)} + \cdots \]

where \(G^0 \) is the retarded Greens function for a minimally coupled massless scalar field in the fully degravitated spacetime (for its expression in pure de Sitter space, see for example [21]), and \((G^0; \cdot) = G^0 \) is the integral over the domain again defined as the causal diamond bounded by the nucleation event and the observation event. Clearly the right side

\[^{10}\text{However it might be that there are models that act over much faster time scales [3] which might work in this regard, we postpone this to a future study.} \]
of the above vanishes for $t < t_0$. For $t > t_0$, realizing the ordered nature of the multiple integrals in the above, for strictly homogenous sources (i.e. ones which are only functions of time) we can re-express (5.5) as

$$3H^2 = \frac{V}{M_{pl}^2} \left(\frac{h}{1} \right) m^2 + m^4 \frac{2}{2!} m^6 \frac{3}{3!} + \cdots ;$$

(5.6)

where h is given by

$$h = \frac{Z}{g_0};$$

(5.7)

and N denotes the backward lightcone of the observation event. This expression easily resums to the following expression for the degravitated step function11

$$\tau_{\text{degrav}}^{(t-t_i)} = e^{m^2 \int_N^0 g_0} ; t > t_i ;$$

(5.8)

In the context of (5.8), this implies the rather complicated integral equation

$$3H^2 = \frac{V}{M_{pl}^2} e^{m^2 \int_N^0 g_0[H]} ;$$

(5.9)

where the implicit dependence on H in the integrand is highlighted. This equation is exact, and in principle (though not in practice) solvable. We can make progress by invoking an adiabatic approximation, namely that we take the scale that sets spacetime curvature H to be a very slowly varying function of co-ordinate time. This implies at the very least that $m^2 << H^2$. For convenience, we also consider the modded alter function12

$$\frac{8}{1 + \frac{m^2}{H^2}} G_N ;$$

(5.10)

where G_N is some other IR length scale that is taken to be much less than m, and take the appropriate limit at the end of our calculations. In this case we find that (5.10) results in the expression

$$\tau_{\text{degrav}}^{(t-t_i)} = e^{m^2 \int_{t_i}^0 \int d^3 x G(\kappa x^0)} ;$$

(5.11)

with $G(\kappa x^0)$ given by (4.3), but with κ in place of κ, with κ given by

$$\kappa^2 = 9 = 4 \quad \kappa = \frac{H}{2};$$

(5.12)

As in the previous section, we can evaluate the integrand in the above to yield

$$\tau_{\text{degrav}}^{(t-t_i)} = e^{\frac{m^2}{2} \int_{t_i}^0 \int d^3 x G(\kappa x^0)} ;$$

(5.13)

11 the corresponding expression for a nucleating bubble (which is manifestly inhomogenous) is not so easily resumable.

12 In general, one might even expect a altered function of the form (5.11) as powers of and multiples of the identity operator m is readily under renormalization group transformations.
which in the limit $t \to 0$ evaluates to:

$$t \to t^\text{degrav} = e^{\frac{\nu^2}{2} (t - t_0)^2};$$

(5.14)

exactly as in (3.22). Hence, we can infer in a slightly different context, that the relevant time scale for degravitation to eect itself is set by the inverse light scale $= m^{-1}$. We thus reason that we were to require degravitation to degradative Planck or GUT scale energy densities (as one might expect if we were stuck in some metastable vacuum state in the landscape), down to the presently observed value, we then require that a time of at least an order of magnitude larger than m^{-1} to have elapsed. That is, from (5.14) we can estimate that we require a time interval of $t = m^{-1} 276$ to elapse13. Typically, we require $m^{-1} > H^{-1}_0$, where H_0 is the presently observed Hubble scale. Hence, we find that unless the universe began much earlier than we infer from current measurements of H_0 (as is entirely likely if we live in an eternally inat landscape), that degravitation is unlikely to have degraded primordial string or Planck scale energy densities sufficiently.

However, the main observation of this section, is that regardless of whether or not degravitation has had enough time to act in order to degradate potentially high scale primordial energy densities, if it is to satisfactorily address the coincidence problem, it has to act on a time scale comparable to the present Hubble scale:

$$t \to H^{-1}_0;$$

(5.15)

which we have already demanded not be the case so as not to conflict with other cosmological observations. Hence, it appears as if the degravitation light (1.7) acts too slowly to be of any help in addressing the coincidence problem without additional tuning. To conclude this report, we rework the calculation for how the degravitation light degrades a step function source for a different functional form for the light function. Consider the sample light function:

$$8 G_N \ln \left[\frac{e^{\frac{1}{2}}} + \frac{1}{2} \right] + \ln \left[\frac{e^{\frac{1}{2}}} + \frac{1}{2} \right];$$

(5.16)

(5.17)

which is easily checked to yield a degradative light function. We chose this functional form only for illustrative purposes. Using the representation\[10]\]

$$\ln[= 2^?], 0 \to 2 \left[\frac{1}{2} + \frac{1}{2} \right];$$

(5.18)

we find that the action of such a light function on a step function potential would result in

$$\text{degrav}(t \to t) = \text{Chi} \left[\frac{3H}{2} t \right] + \text{Shi} \left[\frac{3H}{2} t \right];$$

(5.19)

\[13\]The factor 276 comes from the fact that $e^{276} = 10^{120}$.\}
where $\text{Chi}(x)$ and $\text{Shi}(x)$ are the hyperbolic cosine integral and hyperbolic sine integral functions respectively. We compare this expression to (3.20) to infer the same characteristic dependence on the inverse Hubble scale, such that the time scale associated with degravitation is given by $\tau = 1$. In this way, we infer that the conclusions we drew in the previous sections would be true of this Hubble function as well, implying that degravitation appears to be somewhat insensitive to the precise functional form of the Hubble function. We now offer our concluding thoughts.

6. Conclusions

In this report, we have seen in detail how degravitation works in annihilating the bare cosmological constant whilst preserving inflation in all of its forms. We have also demonstrated how degravitation inherits a memory of previous energy densities in such a way that even if our universe were to exist in its true vacuum state today, degravitation would imply an afterglow cosmological constant which can naturally be arranged to mimic the dark energy that we infer today. The key physics of this observation is that such an afterglow is suppressed by the square of the inverse Hubble scale in Planck units $^{14} m^2 = \frac{L^2}{\text{pl}} = L^2 \times 10^{-120}$. We then showed that if we exist in a universe which is still trapped in some false vacuum state, degravitation can degravitate the energy of such a false vacuum into a remnant energy density of the order 10^{-120}, however this typically occurs over time scales at least an order of magnitude larger than the age of the universe. In this way, although degravitation answers why the cosmological constant is not large (the bare cosmological constant problem), as well as why it is not zero (that the cosmological constant might be the dark energy that we observe today) $^{[22]}$, it does not satisfactorily explain the coincidence problem, or why it only begins to dominate now (although this is not to say that other models of degravitation may not have something to say about this). However, any mechanism that contains hints of being able to address all three aspects of the cosmological constant problem if further developed (while preserving the successes of inflationary cosmology) certainly warrants closer attention, and we hope that the findings of this report will motivate further investigation into this promising paradigm.

7. Acknowledgements

I am grateful to Gia Dvali and the CCPP at NYU for hospitality during the time in which this work was initiated, and for illuminating discussions on the sidelines of various conferences throughout the year. Thanks to Justin Khoury and the Perimeter Institute for the invitation to attend a stimulating conference and many useful exchanges. Thanks to Gregory Gabadadze for many useful discussions, perspectives and a copy of the preprint $^{[23]}$. I remain indebted to Robert Brandenberger for his continued support and frequent dialogue. Special thanks to Zoe Greenberg, whose presence in my life has left a wake

14 In the context of massive gravity, it is interesting to note how our results appear as the reverse interpretation of the bound $m^2 = 3$ derived by Deser and Waldron concerning consistent values for the mass of the graviton in de Sitter backgrounds.
of inspiration that persists. The portion of this work undertaken whilst still at McGill University was supported in part by an NSERC discovery grant. This work is supported at the Humboldt University by funds from project B5 of the Sonderforschungsbereich 647 (Raum Zeit Materie) grant, for which I am grateful to Alan Rendall at Albert Einstein Institute and Jan Plefka at the Humboldt University, whom I also thank for his continued support and encouragement.

References

