IMPACT OF ORBITAL ECCENTRICITY ON THE DETECTION OF TRANSITING ExtrasolAR PLANETS

Christopher J. Burke
Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD, 21218
(Received 2007 November 09)

ABSTRACT

For extrasolar planets with orbital periods, \(P > 10 \) days, radial velocity surveys and non-circular orbital eccentricities are common. Future surveys for extrasolar planets using the transit technique will also have sensitivity to detect these longer period planets. Orbital eccentricity acts the detection of extrasolar planets using the transit technique in two opposing ways: an enhancement in the probability for the planet to transit near pericenter and a reduction in the detectability of the transit due to a shorter transit duration. For an eccentricity distribution matching the currently known extrasolar planets with \(P > 10 \) day, the probability for the planet to transit is \(125 \) times higher than the equivalent circular orbit and the average transit duration is \(0.88 \) times shorter than the equivalent circular orbit. These two opposing effects nearly cancel for an idealized transit survey with independent photometric measurements that are dominated by Poisson noise. The net effect is a modest \(4\% \) increase in the transiting planet yield compared to assuming all planets have circular orbits. When intrinsic variability of the star or correlated photometric measurements are the dominant source of noise, the transit detectability is independent of the transit duration. In this case the transit yield is \(25\% \) higher than that predicted under the assumption of circular orbits. Since the Kepler search for Earth-sized planets in the habitable zone of a Solar-type star is limited by intrinsic variability, the Kepler mission is expected to have a \(25\% \) higher planet yield than that predicted for circular orbits if the Earth-sized planets have an orbital eccentricity distribution similar to the currently known Jupiter-mass planets.

Subject headings: eclipses \| planetary systems \| techniques: photometric

1. INTRODUCTION

The known extrasolar planets possess a broad distribution of orbital eccentricity \cite{Butler2006} (see Figure 1). The short period, Hot Jupiter (\(P < 10 \) day) planets predominantly have circular orbits. However, at longer orbital periods circular orbits become a minority and the median eccentricity for extrasolar planets \(\approx 0.3 \). At the extreme eccentricity end, there are three planets, HD 80606b \cite{Naef2003}, HD 20782b \cite{Jones2003}, and HD 4113b \cite{Tanu2003}, having \(e > 0.9 \). HD 80606b comes closer to its stellar host (\(a = 0.033 \) AU) than many of the circular orbit Hot Jupiter planets. \cite{Ford2007} recently reviewed the various mechanisms invoked to explain the distribution of eccentricities for the known extrasolar planets. Interactions with a stellar companion, planetary companion, passing star, gaseous disk, planetesimal disk, and stellar jets have all been proposed to modify the orbital eccentricity of extrasolar planets.

Limited discussions in the literature have been given to the impact of eccentricity on transit surveys for extrasolar planets. \cite{Tingley2003} discuss the impact of eccentricity on their parameter (\(\alpha \), the ratio of the observed transit duration to an estimate of the transit duration). As expected, they noted that transits occur near pericenter (apocenter) are shorter (longer) in duration than the circular orbit case, and they show that the transit duration of an eccentric is typically shorter than a circular orbit of the same period. However, their discussion was focused on the impact of orbital eccentricity on their parameters. \cite{Moutou2006} also discuss how the transit duration is affected by orbital eccentricity, but they do not quantify the impact this will have on transit surveys. Recently, \cite{Barnes2007} derives the probability for a planet on an eccentric orbit to transit and concludes that the photometric precision of current surveys and future surveys, such as Kepler, is insufficient to determine the orbital eccentricity solely from the light curve. \cite{Barnes2007} concludes that without knowledge of the eccentricity from radial velocity data or independent measurement of the stellar host radius, the habitability of planets detected with Kepler will remain unknown.

Neglecting the impact eccentricity has on transit detections is justified for the current sample of transiting planets given the predominance of circular orbits for the Hot Jupiters and the strong bias of transit surveys against long-period planets on circular orbits \cite{Gaudet2009}. The announced transit for the planet orbiting HD 17156\(^1\) with a 21 day period and eccentric orbit \cite{Barberi2007} is a precursor for the kinds of planets detectable in transit surveys. As transit surveys continue, longer period transiting planets may be discovered. More importantly, the recently launched COROT mission will surpass current surveys for sensitivity to longer period planets \cite{Borile2003}. As a 3.5 year, the Kepler mission, scheduled for launch in 2009, has a goal to discover Earth-sized objects at 1 AU from their host stars \cite{Bonsack2004}. The main purpose of this paper is to show that given the distribution of eccentricities for the currently known ex-

\(^1\) First detected by the radial velocity technique \cite{Fischer2007}.
triasolar planets, eccentricity should not be ignored in assessing the detectability of transiting giant planets when the transit survey is sensitive to planets with \(P > 10 \) day.

In addition to longer period planets, the COROT and Kepler missions also detect transiting planets with small, Earth-sized radii. The eccentricity distribution for planets less massive than the currently known Jupiter-mass planets is beginning to be explored. \(e \) is a well-known parameter that describes the eccentricity distribution for lower mass planets (Golilke & Tremaine 1980; Cresswell et al. 2005). However, the theoretical models show that once the gas disk dissipates, dynamical interactions among the planets results in a random-walk diffusion that leads to an increasing eccentricity that takes on a Rayleigh-distribution similar to what is observed (dotted line in Figure 1; Juric & Tremaine 2003; Zhou et al. 2007). Opposing the increases in eccentricity from planet-planet scattering, late stage interactions with planets in a planet-planet system can preferentially damp the eccentricities of lower mass planets and possibly explain the current trend of lower eccentricities for lower mass planets (Ford & Rasio 2007). Given the number of potential physical processes that can affect the eccentricity of a planet, it is premature to assume that the typical Earth-like planet has an eccentricity near zero like the Solar System.

In this study, we review the observed eccentricity distribution of the known radial velocity extrasolar planets. The broad distribution of orbital eccentricity has two main effects on the sensitivity of a transit survey. First, the planet-host separation varies along an eccentric orbit, enhancing the probability of transits as the planet is closer to the star. Second, the planet velocity varies along an eccentric orbit, resulting in a rotation or elongation of the transit duration. eccentricity quantifies the distribution of transit durations resulting from a population of planets on eccentric orbits. eccentricity describes how the transit duration varies with eccentricity. eccentricity concludes by quantifying the net result of the two aforementioned effects, the enhanced probability to transit and the reduced detectability, on the yield from transit surveys.

2. ECCENTRICITY DISTRIBUTION

The solid histograms in Figure 1 show the observed distribution of eccentricities for known extrasolar planets with \(P > 10 \) day. The top panel shows the eccentricity distribution from planets reported before November 2006, and the bottom panel shows the eccentricity distribution including more recent discoveries (September 2007). The more recent radial velocity discoveries over the last year have increased the sample of low eccentricity systems. Results from this study are given for both epochs of the observed eccentricity distribution in order to characterize how the uncertainties in the underlying orbital eccentricity distribution affect the results. No attempt was made to select planets with well-determined eccentricities, avoidance of multiple planet or multiple star systems, correction for observational biases against high eccentricity planets (Cumming 2004), or evolution of orbital elements due to tidal circularization. Planets with \(P < 10 \) day are not included in order to examine the potential issues that future transit surveys sensitive to longer period planets will encounter. In this period regime \(e > 10 \) high eccentricity planets are quite common (\(h_\text{e} = 0.3 \) and \(e = 0.02 \)).

A two-piece model parametrizes the eccentricity distribution from the earlier epoch (top panel of Figure 1). The first piece at low eccentricity \((e < \text{crit})\) and the second piece at \(e = \text{crit} \), linearly decreases toward higher eccentricities, and is zero at \(e_\text{ax} \). The normalized two-piece model is given by the equation.

\[
P(e) \text{d}e = \begin{cases}
\frac{8}{e_\text{crit} + e_\text{ax}} e < e_\text{crit} \\
0 \leq e < e_\text{ax} \\
\frac{8}{e_\text{crit} + e_\text{ax}} (e - e_\text{ax}) \quad e_\text{crit} < e < e_\text{ax} \\
0 \quad e_\text{ax} \leq e < 1
\end{cases}
\]

A two-piece minimization yields the best model parameters \(e_\text{crit} = 0.25 \) and \(e_\text{ax} = 0.92 \). The two-piece minimization applied to the more recent epoch eccentricity distribution (bottom panel of Figure 1), yields \(e_\text{crit} = 0.02 \) and \(e_\text{ax} = 0.91 \). The relative increase in the number of low eccentricity planets discovered in the last year results in best-fit parameters that are effectively a single-piece model (Juric & Tremaine 2007 and Zhou et al. 2007) predict that the eccentricity distribution of dynamically active planetary systems approaches a Rayleigh-distribution due to planet-planet scattering, and they
show the Rayleigh-distribution is similar to the observed planet eccentricity distribution. The dotted curve in Figure 1 shows the Rayleigh-distribution with $e = 0.3$ that best describes the outcome of the planet-planet scattering calculations from Juric & Tremaine (2003). The Rayleigh-distribution under represents the low eccentricity systems in the most recent eccentricity data. Juric & Tremaine (2003) based their study on the sample of planets known at the time (April 2006). Subsequently, relatively more planets with low eccentricities have been announced. In addition, Juric & Tremaine (2007) included systems with $P > 20$ day whereas this sample has $P > 10$ day. The dotted histogram in the lower panel of Figure 1 shows the eccentricity distribution at the most recent epoch (September 2007), but with systems with $P < 20$ day removed; apparently the difference is slight and will hereafter be ignored. Although this study concentrates on the two-piece model to describe the eccentricity distribution, results are also given for the Rayleigh-distribution with $e = 0.3$. To provide results with the Rayleigh-distribution, the distribution is set to zero for $e > 0.95$.

3. Transit Probability

Barne (2003) derives the impact of orbital eccentricity on the probability for a planet to transit its stellar host (see also Seagroves et al. 2003). The probability to transit depends on the planet-star separation during transit. For an eccentric orbit, a transit occurring during pericenter enhances the transit probability and a transit occurring during apocenter decreases the transit probability. When averaged over observing angles, the net result is an enhancement of the probability to transit over the circular orbit case,

$$\text{Prob}_{r} = \frac{\text{Prob}_{c}}{1 - e} ;$$ \hfill (2)

where Prob_{r} is the transit probability of the circular orbit case Barne (2003). A planet with $e = 0.6$ is 1.5 times more likely to transit than a planet on a circular orbit.

With the observed eccentricity distribution from x3, it is possible to calculate the average enhancement in the transit probability over the circular orbit case,

$$\text{Prob}_{r} = \sum_{e} \text{Prob}_{c} P(e) \; \text{d}e ;$$ \hfill (3)

The resulting integral using Equation 1 for the eccentricity distribution is,

$$\text{Prob}_{r} = \int_{0}^{e_{\max}} \text{Prob}_{c} P(e) \; \text{d}e ;$$ \hfill (4)

where Prob_{r} is the transit probability of the circular orbit case Barne (2003). The probabiltiy $P(e)$ is given by the Rayleigh distribution $P(e) = \frac{e}{e_{\max}} \exp(-e^2/e_{\max}^2)$. The resulting integral can be approximated as

$$\text{Prob}_{r} = \int_{0}^{e_{\max}} \frac{e}{e_{\max}} \exp(-e^2/e_{\max}^2) \; \text{d}e ;$$ \hfill (5)

where the sign on top and bottom corresponds to the pericenter and apocenter transition probabilities, respectively. The Rayleigh distribution results in $\text{Prob}_{r} = 1.31$. Figure 2 illustrates the Prob_{r} for other choices of the eccentricity distribution model parameters. Figure 2 is a function of e_{\max} and the curves are for selected values of e_{\max} as labeled. Thus, it is expected that the yield from a transit survey that is sensitive to $P > 10$ day planets will be 25% larger than the assumption of circular orbits for all planets. This section discusses only the probability to transit, and does not address whether the planet has a transit signal that is detectable. Thus, the results from this section assume the enhanced probability for the planet to transit does not affect its detectability, which is the topic of the next section.

4. Transit Duration

4.1. Edge-on Transit

In addition to enhancing the probability for a transit to occur, the eccentricity results in the transit duration varying according to the planet’s longitude of pericenter during transit. The transit duration is shortest (longest) if the transit occurs when the planet is at pericenter (apocenter) when transiting its stellar host. A short transit duration may reduce the detectability of the transit event. A constant velocity during transit, the transit duration scaled to the edge-on ($i = 90$°) circular orbit case has an expression of

$$\tau = \frac{t_{\text{c}}} {t_{\text{o}}} = \frac{(1 - e) \; \text{e}}{1 + \text{e}} \; \text{e} = 2 \; \text{j} ;$$ \hfill (6)

where the sign on top and bottom corresponds to the pericenter and apocenter transition probabilities, respectively Barne (2003). When $e = 0.6$, the transit duration at apocenter is twice the circular orbit case. Given the range of eccentricities observed for extrasolar planets with $P > 10$ day, we expect significant variations in the transit duration compared to that of a circular orbit. Tingley & Sackett (2003) provides a simplified form of the transit duration, including longitude of pericenter, ψ, and orbital inclination, i. In deriving the transit duration, Tingley & Sackett (2003) assume a constant orbital velocity and planet-star separation during transit and the planet crosses the stellar disk.
along a straight path (a γ_i). An exact calculation (of a numerical nature) given the need to solve Kepler's Equation of the transit duration must be estimated. According to Tingley & Sackett (2009) the probability distribution of the duration of the transit duration scaled to the edge-on circular orbit case assuming all orbits are edge-on (i.e., $\iota = 90$).

The right panel of Figure 3 shows the probability density for transit duration with $\iota = 90$ for various orbital eccentricities. As expected, the probability density is heavily weighted toward the extrem a. The singularity in the probability density at the extrem a is integrable, making the probability density non-divisible.

4.2. Effect of Varying Inclination Angle

The previous section shows the expected transit duration for the circular orbit case as a function of the longitude of pericenter, γ, for several eccentricities as labeled. Right: For a uniform distribution of γ, solid curves show the distribution for transit duration scaled to the edge-on circular orbit case assuming all orbits are edge-on (i.e., $\iota = 90$).

![Graph](image_url)

Figure 3: Left: Edge-on transit duration, τ, as a function of the longitude of pericenter, γ, for several eccentricities as labeled. Right: For a uniform distribution of γ, solid curves show the distribution for transit duration scaled to the edge-on circular orbit case assuming all orbits are edge-on (i.e., $\iota = 90$).

The left panel of Figure 3 shows the transit duration with respect to the edge-on circular orbit case for a variety of orbital eccentricities as a function of ι. For a uniform distribution in ι, the shallow slope in transit duration at pericenter and apocenter results in a distribution of transit durations peaked at these extrem a (given by Equation 6) with low probability for a transit duration in between these extrem a.

Assuming a uniform distribution of ι, $p(\iota) \cdot d\iota = d\iota$, the probability distribution of transit durations, resulting in

$$p(\tau)d\tau = \frac{1}{\pi} \frac{1}{(1 + e \cos(\iota))^2} d\iota = \frac{1}{\pi} \frac{1}{1 + e d}$$(9)

where $a = (R_e + R_p)R_e$, R_e is the radius of the star, and R_p is the radius of the planet. The distribution is uniform in ι with respect to the line of sight. Thus, $\iota = 0$ means the pericenter is aligned with the observer line of sight, and $\iota = 180$ means the apocenter is aligned with the observer line of sight. This varies from the definition of the argument of pericenter, γ, which is defined with respect to the line of nodes on the plane of the sky ($\iota = \gamma = 90$).

The $\iota = 90$ case illustrates the first order impact of orbital eccentricity on transit duration. In this case, Equation 5 simplifies to

$$p(\tau) = \frac{1}{\pi} \frac{1}{(1 + e \cos(\iota))^2}$$(10)

where $a = (R_e + R_p)R_e$, R_e is the radius of the star, and R_p is the radius of the planet. The distribution is uniform in ι with respect to the line of sight. Thus, $\iota = 0$ means the pericenter is aligned with the observer line of sight, and $\iota = 180$ means the apocenter is aligned with the observer line of sight. This varies from the definition of the argument of pericenter, γ, which is defined with respect to the line of nodes on the plane of the sky ($\iota = \gamma = 90$).

The left panel of Figure 3 shows the transit duration with respect to the edge-on circular orbit case for a variety of orbital eccentricities as a function of ι. For a uniform distribution in ι, the shallow slope in transit duration at pericenter and apocenter results in a distribution of transit durations peaked at these extrem a (given by Equation 6) with low probability for a transit duration in between these extrem a.

Assuming a uniform distribution of ι, $p(\iota) \cdot d\iota = d\iota$, the probability distribution of transit durations, resulting in

$$p(\tau)d\tau = \frac{1}{\pi} \frac{1}{(1 + e \cos(\iota))^2} d\iota$$

where $a = (R_e + R_p)R_e$, R_e is the radius of the star, and R_p is the radius of the planet. The distribution is uniform in ι with respect to the line of sight. Thus, $\iota = 0$ means the pericenter is aligned with the observer line of sight, and $\iota = 180$ means the apocenter is aligned with the observer line of sight. This varies from the definition of the argument of pericenter, γ, which is defined with respect to the line of nodes on the plane of the sky ($\iota = \gamma = 90$).

The left panel of Figure 3 shows the transit duration with respect to the edge-on circular orbit case for a variety of orbital eccentricities as a function of ι. For a uniform distribution in ι, the shallow slope in transit duration at pericenter and apocenter results in a distribution of transit durations peaked at these extrem a (given by Equation 6) with low probability for a transit duration in between these extrem a.

Assuming a uniform distribution of ι, $p(\iota) \cdot d\iota = d\iota$, the probability distribution of transit durations, resulting in

$$p(\tau)d\tau = \frac{1}{\pi} \frac{1}{(1 + e \cos(\iota))^2} d\iota$$

where $a = (R_e + R_p)R_e$, R_e is the radius of the star, and R_p is the radius of the planet. The distribution is uniform in ι with respect to the line of sight. Thus, $\iota = 0$ means the pericenter is aligned with the observer line of sight, and $\iota = 180$ means the apocenter is aligned with the observer line of sight. This varies from the definition of the argument of pericenter, γ, which is defined with respect to the line of nodes on the plane of the sky ($\iota = \gamma = 90$).

The left panel of Figure 3 shows the transit duration with respect to the edge-on circular orbit case for a variety of orbital eccentricities as a function of ι. For a uniform distribution in ι, the shallow slope in transit duration at pericenter and apocenter results in a distribution of transit durations peaked at these extrem a (given by Equation 6) with low probability for a transit duration in between these extrem a. The right panel of Figure 3 shows the probability density for transit duration with $\iota = 90$ for various orbital eccentricities. As expected, the probability density is heavily weighted toward the extrem a. The singularity in the probability density at the extrem a is integrable, making the probability density non-divisible.
Eccentricity A ects D etection of Transiting Pl anets

5

Fig. 4. | Left: Transit duration distribution scaled to the edge-on circular orbit case for a uniform distribution of \(\cos(I) \) and xed eccentricity. The cases \(e = 0.2, 0.4, 0.6, \text{ and } 0.8 \) are shown. Right: A venage transit duration scaled to the average transit duration of a circular orbit as a function of orbital eccentricity (solid line), and taking the partial derivative with respect to \(e \). Performing this operation yields:

\[
P(\theta; s) = \int_p (1 + e \cos(s))^\frac{3}{2} e^{\frac{1}{2}} (1 + e^2)^\frac{3}{2} \cos(s) ds,
\]

where the lower-limit integration avoids an imaginary result and is given by:

\[
\frac{1}{e} \int_p 1 \; ds = \left(\frac{\theta}{\cos(I)} \right)^{\frac{3}{2}} \cos(s) ds = \left(\frac{\theta}{\cos(I)} \right)^{\frac{3}{2}} \cos(s) ds,
\]

For \(\theta = 0 \), \(\theta = 0 \), but as \(\theta = 0 \), \(\theta = 0 \) since only transits occurring closer to apocenter result in a transit duration long enough.

Finally, the conditional probability density for transit duration alone is obtained by integrating over \(s \):

\[
P(\theta; s) \sim \frac{1}{e} \left(\frac{\theta}{\cos(I)} \right)^{\frac{3}{2}} \cos(s) ds.
\]

A solution to the above integral is possible in terms of a summation of the incomplete elliptic integrals of the rst, second, and third kind (Byrd & Friedman [1954]). In practice, I choose to solve the integral numerically, which is readily solved using the Romberg open ended algorithm which takes into account the singularity at the lower-limit integration at \(s = \theta \) (Press et al. [1992]). Tests of convergence show Equation 10 has a singularity at \(s = \theta \), but it is integrable elsewhere over the range \(0 \leq s \leq \theta \).

The left panel in Figure 4 shows the probability density for transit duration scaled to the edge-on circular orbit case at several values of eccentricity. By comparison to Figure 3, the main impact of orbital inclination is to strongly enhance the probability of observing a short duration event at pericenter relative to a long duration event at apocenter. The probability density also allows arbitrarily short events due to the potential for grazing events.

The probability density for transit duration can be summarized by noting the average transit duration at xed eccentricity, \(h_{\theta} \), as:

\[
h_{\theta} = \int_0^\pi P(\theta; s) ds.
\]

The right panel in Figure 4 shows \(h_{\theta} i \) scaled to the average transit duration of the circular orbit case, \(h_{\circ} i = 4 \), as the solid line. The function,

\[
 h_{\theta} i = \frac{p}{4} \left(1 + e \right)^{\frac{3}{2}} e^{\frac{1}{2}} (1 + e^2)^\frac{3}{2} \cos(s) ds,
\]

is the relation to better than \(10^{-6} \) (similar to the numerical integration precision), which very strongly suggests this is the analytical solution to the integral in Equation 10. (Fleming & Sackett [2003]) and the same result in terms of the average value for their parameter at xed eccentricity (see their Equation 18).

4.3. Transit Duration Ddistribution For Observed Eccentricity Ddistribution

The previous section derives the transit duration distribution at xed eccentricity. This section derives the transit duration distribution assuming planets follow the observed eccentricity distribution. As in the previous section, deriving the transit duration distribution begins with the simplest distribution that is uniform in \(\cos(I) \), uniform in \(\theta \), and the distribution of \(e \) follows the observed distribution as given in Equation 20. The transformation law of probabilities enables transforming the simple distribution in \(\cos(I) \), \(\theta \), and \(e \) into the distribution expressed in \(\cos(I) \), \(\theta \), and \(e \).

The initial distribution is given by:

\[
P(\theta; s; e) ds = A P(e) \int_{0}^{\pi} \int_{0}^{\theta} \cos(I) ds d\theta.
\]

where the normalization constant \(A = \int_{0}^{\pi} \int_{0}^{\theta} \cos(I) ds d\theta \), and

\[
 \theta = \left(\frac{\theta_{ax}}{\theta_{cr}} \right) \left(2 \sinh^{-1}(\theta_{cr}) \right),
\]

for \(\theta_{ax} = \left(\frac{\theta_{ax}}{\theta_{cr}} \right) \left(2 \sinh^{-1}(\theta_{cr}) \right) \), and \(\theta_{cr} = \theta_{cr}. \)

The Jacobian transformation matrix simplifies as before, so that the transit duration distribution scaled to the edge-on, circular orbit transit duration is given by:

\[
P(\theta; s; e) ds de = P(\theta; s) ds de = \frac{\partial P(\theta; s; e)}{\partial P(\theta; s; e)} = \int_{0}^{\pi} \int_{0}^{\theta} \cos(I) ds d\theta.
\]

where the lower-limit integration to eccentricity, \(e_{ax} \), becomes necessary for \(e > 1 \), when too small an eccentricity cannot produce a transit duration as long as \(s \). Solving for \(e \) yields \(e_{ax} = \max [0, \theta_{ax}] \), and \(e_{ax} = \max [0, \theta_{ax}] \). Over all, the joint distribution is given by:

\[
P(\theta; s; e) ds de = P(\theta; s) ds de.
\]

Integrating over \(s \) and \(e \) provides the nal probability density for the assumed distribution of orbital eccentricities. Given the additional complication of integration over two variables, an analytical solution was not forthcoming. As in Figure 4, the singularities in the integrand are integrable, and the Romberg open ended algorithm which takes into account the singularity at the
Figure 5. Left: Transit duration distribution scaled to the edge-on circular orbit case for a uniform distribution of $\cos(i)$ and the observed distribution of ε as shown in the top panel (solid line) and bottom panel (long dashed line) of Figure 4. Given the bias against detecting high eccentricity planets in radial velocity surveys, a uniform distribution of orbital eccentricities up to high eccentricity ($e_{\text{min}} = 0.9$ and $e_{\text{max}} = 0.95$) will be highly skewed towards $e = 0.03$ (short dashed line). A Rayleigh distribution of orbital eccentricities results in relatively fewer transit durations due to the relatively fewer objects on circular orbits (dotted line). Right: Average transit duration scaled to the average transit duration of a circular orbit as a function of the observed eccentricity distribution models parameters. The abscissa indicates e_{max} and the curves are for selected values of e_{min} as labeled. For the models parameters shown in Figure 5, $e = 0.03$ times shorter than assuming all planets have circular orbits (dotted line).

The solid and long-dashed lines in Figure 5 show the distribution of transit duration scaled to the edge-on circular orbit case for a population of extrasolar planets that follows the observed orbital eccentricity distributions shown in top and bottom panels of Figure 4, respectively. The probability density has a broad distribution with $e = 0.03$ times shorter as expected. For comparison, the transiting duration distribution that would result from a nearly uniform distribution of orbital eccentricity up to high eccentricities ($e_{\text{min}} = 0.9$ and $e_{\text{max}} = 0.95$) is shown as the short-dashed line in Figure 5. Given the bias against detecting $e > 0.03$ extrasolar planets in radial velocity studies [Cumming et al. 2004], a large population of $e = 0.03$ planets cannot be ruled out. The transit duration distribution resulting from the Rayleigh distribution of orbital eccentricity (dotted line in Figure 5) has relatively fewer planets with $e = 0.03$ times shorter due to its relatively fewer circular orbits.

In the future, if statistically large samples of transiting planets with orbital $P > 10$ days are available with accurate stellar parameter error histograms of observed transit duration scaled to the edge-on circular orbit case may help characterize the underlying eccentricity distribution. After accounting for the selection effects, a large number of $e = 0.03$ detections relative to $e = 0.8$, as illustrated in the right panel of Figure 5, would indicate $e = 0.03$ planets are as common as circular orbits. Work toward understanding the sensitivity of Kepler for constraining the underlying eccentricity distribution is underway (E. Ford, private communication).

The right panel of Figure 5 summarizes the transit duration distribution by showing h_i in term of the parameter e_{orbit} and e_{max}. Each line corresponds to a fixed value of e_{orbit} as labeled, and the abscissa indicates e_{max} of the eccentricity distribution. For the eccentricity distribution in the top panel of Figure 4, $h_{\text{max}} = 0.88$ in $e = h_{\text{max}} = 0.89$. The Rayleigh distribution results in $h_{\text{max}} = 0.86$.

5. DISCUSSION: APPLICATION TO TRANSIT SURVEYS

The results from $x(E)$ quantify the impact of orbital eccentricity has on the transit duration. Overall, orbital eccentricity results are shorter transit durations than the circular orbit case, and the short transit duration reduces the transit detectability. This section quantifies the reduction in transit detectability for various noise models of transit surveys.

In a transit survey with independent photon error measurement, the transit signal to noise ratio is,

$$SNR = \frac{F}{P \sum N_{\text{obj}}}$$

where F is the transit depth (the transits as modeled as a box-car shape), P is the error on a photon error measurement, and N_{obj} is the number of objects in the survey. The observed eccentricity distribution (Figure 4) results in $\sim h_{\text{max}} = 0.88$, and on average the reduced transit duration results in a detection of a smaller SNR $e = 0.89$ per transit assuming all planets are on circular orbits.

The above impact on the observed transit signal SNR due to a shorter transit duration is for an individual star in a survey. However, the reduced SNR will have a larger impact on the overall transit detectability in a well-defined transit survey. As described in [Gaudi et al. 2003] and [Gaudi 2007], a specified SNR criteria for transit detection, SNR_{min}, in a well-defined transit survey corresponds to a maximum distance, h_{max} / SNR_{min}, which is out to which a planet is detectable. This proportionately assumes white noise and the dominant source of photon error is Poisson noise. In the studies of [Gaudi et al. 2003] and [Gaudi 2004], h_{max} is a function of the planet radius and stellar host spectral type (i.e., h_{max} is a smaller radius for a smaller planet radius or larger star radius). For this study, only the dependence of h_{max} on transit duration is of interest.

Overall, the yield from a transit survey is proportional to the number of objects in the survey that meets SNR_{min}, which is $N_{\text{obj}} / N_{\text{max}}$ for stars distributed uniformly in the survey volume as appropriate for nearby stars. The effective $SNR_{\text{min}} = SNR_{\text{min}} \sim 1$ when assuming all planets are on circular orbits. Thus, the number of objects in an ideal transit survey where a transit is detectable is $N_{\text{obj}} = 0.3 - 2 N_{\text{obj}} = 0.82 N_{\text{obj}}$ times smaller than the case where the detectability of a transit is based on assuming all planets have circular orbits, N_{obj}. Despite the reduced detectability of transits, this is set by the higher probability for the planet to transit in the case of significant eccentricity $X E$.

The overall yield of the idealized transit survey is discussed in $X(E)$ taking both the reduced detectability and enhanced probability to transit into account.

In practice, transit surveys typically are a function of correlated measurement events [Pont et al. 2003]. In this regime, the correlation time scale is similar to the transit duration and repeated measurements do not add independent information. When correlated measurements dominate the photon error, the SNR = FN_{obj} / P. h_{max} is a function of P_{min} and F_{min}, which are the minimum photometric error and the minimum flux for a transit event, respectively.
Ecceentricity Aects Dtection of Transiting Planets

6. Conclusion

Orbital eccentricity results in an enhanced probability for a planet to transit and potentially a reduction in the transit detectability. The overall yield from a transit survey is given by $N_{\text{det}} / \text{Prob}_0 \cdot N_{\text{obj}}$. The results from this study can be used to scale the overall yield from a transit survey based on assuming all planets are on circular orbits for an assumed distribution of orbital eccentricities. The enhanced probability for a planet to transit, Prob_e with a distribution of orbital eccentricity scaled to the circular orbit case is given by Equation (4). The reduced number of detectable planets is the product of the amount by which the signal is reduced due to the eccentricity of the orbit.

The overall yield from an idealized transit survey as a function of the observed eccentricity distribution model parameters can be estimated by assuming all planets have circular orbits. However, the reduced planet yield in a transit survey due to intrinsic stellar variability or correlated measurement errors is not properly accounted for. If every dwarf star has an Earth-sized planet in the habitable zone, then assuming circular orbits, the Kepler mission expects to detect 100 Earth-sized planets in the habitable zone (Bonakdari et al. 2004). The work presented here indicates that the probability of detecting a planet in the habitable zone is higher for Earth-sized planets with eccentric orbits than for those with circular orbits.

The dependence of the transit survey yield on the uncertain underlying orbital eccentricity distribution implies an uncertainty in measuring the frequency of terrestrial planets in the habitable zone (a major goal of the Kepler mission). An analysis of the transit yield from a transit survey that assumes all planets are on circular orbits will overestimate the frequency of habitable planets if high eccentricities are common and not taken into account. In practice, a variety of noise regimes exist, and a transit survey and accurate yields necessitate an accurate understanding of the photon noise, stellar spot, and underlying eccentricity distribution (Burke et al. 2006; Gould et al. 2006).
This paper benefited from discussions with Scott Gaudi, Will Clarkson, Peter McCullough, and Eric Ford. This work is funded by NASA Origins grant NNG 06GG92G.

REFERENCES

Raymond, S. N., Quinn, T., & Lunine, J. I. 2006, Icarus, 183, 265