Tensorial Structure
of the LQG graviton propagator

Emmanuel Alessi

Dipartimento di Fisica Universita di Roma Tre, I-00146 Roma EU
bCentre de Physique Theorique de Luminy, Universite de la Mediterranee, F-13288 Marseille EU

April 14, 2013

Abstract

We review the construction of the tensorial structure of the graviton propagator in the context of loop quantum gravity and spinfoam foam. The main result of this analysis is that applying the same strategy used to compute the diagonal terms, the Barrett-Crane vertex is unable to yield the correct propagator in the long distance limit. The problem is in the intertwiner-independence of the Barrett-Crane vertex. We also review the asymptotic behavior of an alternative vertex that is able to give the correct propagator.

1 The LQG Graviton Propagator

Loop quantum gravity (LQG) [1] is one of the main candidates for a theory of quantum gravity. However LQG has difficulties with the low energy limit of the theory and the possibility to calculate scattering amplitudes. A strategy for addressing those problems, based on the boundary formulation [2] of n-point functions, applied to the calculation of the graviton propagator, has been introduced [3] and developed [4]. Here we review the main achievements in the construction of the euclidean graviton propagator G $(x; y)$ in the context of LQG. If we choose a regular 4-simplex with two boundary tetrahedra n and m centered at the points x and y we can define $G_{n,m}^{(1,1)}(L) = G(x;y)(n_{i}^{(1)})(n_{i}^{(1)}) (n_{j}^{(1)})(n_{j}^{(1)})$, where the latin indexes label the ve tetrahedra bounding the 4-simplex and $n_{i}^{(1)}$ is the normal one-form to the triangle bounding the tetrahedra m and k, in the hyperplane defined by m, and L is the euclidean distance between x and y. Knowing $G_{n,m}^{(1,1)}(L)$ is the same as knowing G(x;y). $G_{n,m}^{(1,1)}(L)$ can be computed [3] in a background independent context as

$$G_{n,m}^{(1,1)} = H_{j}E_{n}^{(i)}E_{n}^{(i)} n_{i}^{(i)} n_{j}^{(i)} E_{m}^{(k)} E_{m}^{(k)} n_{k}^{(k)} E_{m}^{(k)} j_{q}i_{q}:$$

for an appropriate q. We refer to [3] as the LQG graviton propagator. Here H_{j} is the boundary functional. The operator $E_{n}^{(i)}$ is the triad operator at the point n, contracted with $n_{i}^{(i)}$. $j_{q}i_{q}$ is the boundary state, picked on a given classical boundary (intrinsic and extrinsic) geometry q. The diagonal components $G_{n,m}^{(1,1)}$ were computed in Ref. [3]. Using a gaussian form of the vacuum state and the Barrett-Crane (BC) dynamical expression of the diagonal components at large distance, agrees with the conventional graviton propagator! The next natural step was the reconstruction of the...
whole tensorial structure of the LQG propagator. This analysis has been performed in the articles Ref. and Ref. [3].

The construction of the non diagonal term s requires to think over the whole used theory, because the graviton operators \(E_i \) call into play the dependence of the spin networks with the intertwiners and in turns, the dependence of the boundary state and the vertex from these variables. In particular the BC dynamics used to com pute the diagonal term s has a trivial intertwiner dependence that appear insu cient to deal with the non diagonal term s. In Ref. [3] the authors nd that the BC vertex fails to give the correct propagator in the large-distance limit. In Ref. [3] is presented the asymptotic behavior of a vertex amplitude \(W \) that yields the correct propagator.

Eq. (1) to rst order in the GFT expansion, and in the limit in which the boundary surface is large receive the leading contribution for \(W \) with support only on spin networks with a 4-simplex. The action of the double grasping operators was computed in Ref. [3]. They act on a 4-valent node in four possible ways. The diagonal action (the only used in Ref. [3]) is \(E_{ij} \) of the ve intertwiners that color this graph, then in this approximation (1) reads \(G_{ij}^{nm} = \gamma_{ij} W (jj) E_{ij}^{n} E_{ij}^{m} C_{ij}^{n} C_{ij}^{m} \). The calculation of this expression requires the use of three ingredients: the double grasping operators, the boundary state and the vertex amplitude of a 4-simplex.

The action of the double grasping operators was computed in Ref. [3]. They act on a 4-valent node in four possible ways. The diagonal action (the only used in Ref. [3]) is \(E_{ij} \) of the ve intertwiners that color this graph, then in this approximation (1) reads \(G_{ij}^{nm} = \gamma_{ij} W (jj) E_{ij}^{n} E_{ij}^{m} C_{ij}^{n} C_{ij}^{m} \). The calculation of this expression requires the use of three ingredients: the double grasping operators, the boundary state and the vertex amplitude of a 4-simplex.

The last ingredient to com pute the propagator is the vertex. In Ref. [3] and Ref. [3], (a suitable adjoint of) the BC vertex was chosen for \(W \) and in this limit the propagator depends only on its asymptotic behavior, this has the structure \(G_{ij} \) of the ve intertwiners variables in different pairings, requires a state with a phase dependence in the intertwiner variables to be peaked on the background angles in any pairing. The correct value[10, 11] for this is \(\exp iA_{ij} \). The vertex and the state are written in term s of the intertwiner \(A_{ij} \) which is the virtual link of the node n in one chosen pairing. It follows that the vertex and the state do not have the full symmetry of the 4-simplex and Eq. (1) turn out not to be invariant under SO(4), as it should in the Euclidean theory. Two different strategies have been adopted in order to overcome this difficulty: sum over the three pairings[3] at each of the ve nodes or choose an arbitrary pairing at each node and then symmetry[3] summing over the 5! permutations of the ve vertices of the four-simplex. The rst procedure don’t allow to com pute the correct propagator[3].

2 Problems with the Barret Crane Vertex and Alternative Vertexes

The last ingredient to com pute the propagator is the vertex. In Ref. [3] and Ref. [3], (a suitable adjoint of) the BC vertex was chosen for \(W \) and in this limit the propagator depends only on its asymptotic behavior, this has the structure \(G_{ij} \) of the ve intertwiners variables in different pairings, requires a state with a phase dependence in the intertwiner variables to be peaked on the background angles in any pairing. The correct value[10, 11] for this is \(\exp iA_{ij} \). The vertex and the state are written in term s of the intertwiner \(A_{ij} \) which is the virtual link of the node n in one chosen pairing. It follows that the vertex and the state do not have the full symmetry of the 4-simplex and Eq. (1) turn out not to be invariant under SO(4), as it should in the Euclidean theory. Two different strategies have been adopted in order to overcome this difficulty: sum over the three pairings[3] at each of the ve nodes or choose an arbitrary pairing at each node and then symmetry[3] summing over the 5! permutations of the ve vertices of the four-simplex. The rst procedure don’t allow to com pute the correct propagator[3].
(the title indicate that the com ponent is not sym metrized under the 4-symplex symmetries) where the K_{ij} are linear expressions in $\frac{i}{4}$ and $\frac{j}{4}$ given in Ref. [5]. Com puting this expression, the crucial point is that the phase in the link variable in the boundary state cancels with the phase of one of the two term s of W, while the other term is suppressed [4] for large j, but the rapidly oscillating factor in the intertwiner variables is completely uncompensed by the dynamics and suppress the integral [5].

The intertwiner independence of the BC vertex prevents the propagator to have the correct long distance behavior.

In Ref. [6] has been proposed a vertex W with an asymptotic form that includes a gaussian in all the 15 variables, and most crucially a phase dependence also on the intertwiner variables. The proposed form for the asymptotic of W is $W(j;j) = e^{j^2/2} \frac{i}{1+e^{-j/2}},$ where G is a 15x15 real matrix, for which the only assumption is that it respects the symmetries of the problem and that it scales as j^{-1}. The quantity $W(15;j;j)$ is now a 15d vector: its 10 spin com ponents just reproduce the spin phase dependence of the BC vertex; while its 5 intertwiner com ponents are equal and xed to the value $n = \frac{1}{2}$. This phase dependence is the crucial detail, that makes the calculation work because it allows the cancellation of the phases between the propagator kernel and the boundary state through which the dynamical kernel reproduces the semi-classical dynamics in quantum mechanics. If this does not happen, the rapidly oscillating phases suppress the amplitude. In fact, now, all the phases in the boundary state cancels with the phase of one of the two term s of W, while the other term is suppressed for large j. Thus, [6] reduces to $G_{ij}^{jk} = \frac{j_2}{j_0} \frac{j_0}{j_0} e^{\frac{i}{1+e^{-j/2}}} K_{ij}^{jk}$, where $M = A + ijG$. This expression can be easily computed and the sum over permutations [6] gives a propagator that can be matched with the perturbative one (in hamonic gauge, compatible with the radial gauge) xing ve free parameters in the boundary state.

The results of Ref. [5] reinforce the idea that the BC model is not able to reproduce General Relativity (GR) in the low energy limit and have motivated the search for an alternative model [13] able to reproduce GR. Ref. [6] shows that it is possible to recover the full propagator of the linearized theory from the LQG propagator and gives indications on the behavior that an alternative vertex can have to reproduce GR. In particular it requires for the new model an oscillation in the intertwiners that can be analyzed with analytical and numerical methods [14]. Some preliminary num erical indications on one of the new models appear to show this dependence [14].

References

