In action-produced magnetic fields in $R^m F^2$ and IF2 models

L. Campanelli1,2 P. Cea1, G. L. Fogli1,2 and L. Tedesco1

1Dipartimento di Fisica, Università di Bari, I-70126 Bari, Italy and
2INFN – Sezione di Bari, I-70126 Bari, Italy

(Dated: February, 2008)

We re-analyze the production of seed magnetic fields during In action in $(R^{-m})^n F^2$ and IF2 models, where n is a positive integer, R the Riemann tensor, m a mass parameter, and I a power-law function of the conformal time, with a positive real number. If m is the electron mass, the produced fields are uninterestingly small for all n. Taking m as a free parameter, we find that, for $n = 2$, the produced magnetic fields can be sufficiently strong in order to seed dynamo mechanism and then to explain galactic magnetism. For $n > 2$, there is always a window in the parameter space allowing In action that the generated magnetic fields are astrophysically interesting. Moreover, if In action is almost de Sitter and the produced fields almost scale-invariant, their intensity can be strong enough to directly explain the presence of microgauss galactic magnetic fields.

PACS numbers: 98.62.En, 98.80.-k

I. INTRODUCTION

Microgauss magnetic fields are present in any type of galaxies. Up to now, astronomical observations have not been able to clarify the nature and origin of these fields, so that “galactic magnetic fields” is still an open issue in cosmology.

On the one hand, the presence of mm magnetic fields in all galaxies could be explained by the action of astrophysical mechanisms operating during or after large-scale structure formation [3]. On the other hand, the detection of mm magnetic fields in galaxies at high redshifts [4] represents a strong hint that mm magnetic fields could have been generated in the very early Universe. Clearly, the detection of magnetic fields in the Cosmic Microwave Background radiation would prove the primordial origin of cosmic mm magnetic fields [5]. In such a case, it is very probable that they have been generated during an inflationary epoch of the Universe, since only in this case it is possible to generate fields correlated on comoving scale as large as galactic ones.

Indeed, many mechanisms [4-6] acting during In action, have been proposed to produce seed fields since the seminal paper by Turner and Widrow [10].

It is worth noting that, in order to explain galactic mm magnetism, one needs the presence of seed mm magnetic fields prior to galaxy formation of intensity generally much less than 1 G. In fact, even when a protogalaxy collapses to form a galactic disk, mm magnetic fields survive an amplification due to mm magnetic turbulence and self-regulated dynamo action. Moreover, due to mm magnetohydrodynamical turbulence and differential rotation of galaxies, seed fields can be further amplified. Thus, in this case, knowledge of mm dynamo action becomes important. In some cases, these fields can be very e cient and, in principle, allow extreme e rely weak seeds to reproduce the properties of presently-observed galactic fields.

If a dynamo is operating, the present-day intensity and correlation length required for a successful amplification are $B \sim 10^{-3} G$ and $L \sim 10^4$ kpc. Without dynamo, a comoving seed field $B \sim 10^{-4} G$ correlated on comoving scales of order $1 Mpc$ is needed to explain galactic magnetism [8]. Note that, following Ref. [10], we are assuming that the redshift at which a protogalaxy separates from the Hubble flow to then collapse is $z_{eq} \sim 50$.

In this paper, we re-analyze the generation of seed magnetic fields during In action considering non-standard terms in the electromagnetic Lagrangian of the form $(R - m^2)^n F^2$ and IF2, where n is a positive integer, R the Riemann tensor, m a mass parameter, and I a power-law function of the conformal time, with a positive real number. Indeed, if $m = m_e$, the produced fields are uninterestingly small for all n. Nevertheless, taking m as a free parameter, the possibility to generate mm magnetic fields sufficiently strong in order to seed dynamo mechanisms is not excluded.

The first model was first proposed by Turner and W. Widrow [10] for the case $n = 1$ and then extended to the case $n = 1$ by Mazzioli and Speciaioli [6]. They found that, taking $m = m_e$ (m_e being the electron mass), astrophysically interesting seed fields can be generated during In action for adequate values of n. In Section II, we will show a different result from Ref. [6]. Indeed, if $m = m_e$, the produced fields are uninterestingly small for all n. Nevertheless, taking m as a free parameter, the possibility to generate mm magnetic fields sufficiently strong in order to seed dynamo mechanisms is not excluded.

The second model was first investigated by Baran and Sasavi [3] who assumed de Sitter In action and I to be a power-law function of the conformal time, I / L, with a negative real number. In Section III, we will extend this model to the case of positive real for both Power-Law and de Sitter In action.
In Section IV we draw our conclusions.

II. $R^n F^2$ MODELS

We consider a photon A described by the effective Lagrangian

$$L = \frac{1}{4} F \cdot F - \frac{1}{4} \tilde{F} \cdot F; \quad I = \frac{1}{m^2}; \quad (1)$$

where $F = \partial A / \partial t, \tilde{A}$ is the electron magnetic field strength, R the Ricci scalar, m a parameter having dimension of a mass, and n a positive integer. (From now on, Greek indices range from 0 to 3, while Latin ones from 1 to 3.)

We will work in a universe described by a Robertson-Walker metric $ds^2 = a^2 (d^2 x^2)$, where the conformal time is related to the cosmic time through $d = dt/a$. We normalize the expansion parameter so that at the present time $t = a(t) = 1$.

We consider the case of Power-Law inflation described by the equation of state $p_{tot} = \rho_{tot}$ with $1 < \frac{1}{3}$. In this case, the Hubble parameter $H = (1 + 3 s) \frac{m_p^2}{m} = \frac{m_p^2}{m}$ and the Ricci scalar $R = \frac{8 (1 + 3 s) \frac{m_p^2}{m}}{m}$ evolve as $H^2 / R / tot / n^2$, where $s = \frac{6(1 + 3)}{(1 + 3)}$. Here, $\rho_{tot} = \rho_{tot}$ is the total energy (pressure) density during inflation and $m_p^2 = 1.22 \times 10^{19}$ GeV / c is the Planck mass.

We assume that during inflation $R = m^2$, so that we can neglect the Maxwell terms in Lagrangian (2). Since R is a decreasing function of time, it suffices to impose that $R_1 = m^2$ or equivalently $m > m_{m_{ax}}$, with

$$m_{m_{ax}} = \frac{8 (1 + 3)}{(1 + 3)} \frac{M^2}{m_p^2}; \quad (2)$$

where $M^4 = \rho_{tot}$ is the total energy density at the end of inflation. Here and in the following, the subscript \"$m\"$ indicates the time when inflation ends.

The spectrum of gravitational waves generated at the end of inflation is subdominated by constraints coming from Cosmic microwave background analysis which requires ρ_{tot} to be less than about $10^8 m_p^4$ on the scale of the present Hubble radius (2). This turns in a upper limit on the value of M and s. $M^2 m_p^2$ and $s = \frac{m_{m_{ax}}}{m_p^2}$, where $m_{m_{ax}} \approx 10^{10} 4 \log_3 (M^4 m_p^2)\approx 10^5 3 \log_3 (M^4 m_p^2)$.

One must also assume that $\rho_{tot} < 10^1 G e V$, so that the predictions of Big Bang Nucleosynthesis are not spoiled (4).

We work in the Coulomb gauge, $A_0 = \frac{1}{2} \partial A_1 = 0$, and expand the electromagnetic field $A = (A_0, A_1)$ as

$$A (x) = Z \int d^3k \frac{k^i}{(2 \pi)^3 2k} w_{k_1} a_k; A_k (x) e^{ikx} + h.c.; \quad (3)$$

where $k = j k$ and w_{k_1} are the transverse polarization vectors satisfying the completeness relation

$$P_{ij} (k) w_i (k, k) = P_{ij} (k), \quad \text{with} \quad P_{ij} (k) = i \epsilon_{ij} k_j k_k = k^2.$$

In order that the annihilation and creation operators a_k and a_k^* satisfy the usual commutation relations $[a_k, a_k^*]_j = (2 \pi)^3 \epsilon_{ij} k_j$, we must impose the normalization condition $A_k (0) P_{ij} (0) A_{ij} (0) = I$, where a dot denotes differentiation with respect to t.

This assures, in turn, that the eddy A_i and its canonical conjugate \dot{A}_i satisfy the usual commutation relations:

$$[A_i (i x); j (i y)] = i \frac{d^3 k}{(2 \pi)^3} e^{i k x} P_{ij} (k); \quad (4)$$

The equation of motion for $A_k (x)$ follows from Lagrangian (2):

$$A_k (x) + \frac{ns}{A_k (x)} + k^2 A_k (x) = 0; \quad (5)$$

The solution of the above equation, taking into account the normalization condition on $A_k (x)$, is easily found:

$$A_k (x) = \int d^3 k \frac{e^{i k x}}{k} \left(e^{i \mathbf{k} \cdot \mathbf{r}} \right) H (2) (j k); \quad (6)$$

where $\rho = \frac{m^2}{A_k (x)}$ and $H (2) (j k)$ is the Hankel function of second kind. (Observe that, since both n and s are positive, it results $j = 0$).

We are interested in the study of large-scale electromagnetic eddies, that is in modes whose physical wavelength is much greater than the Hubble radius, $\rho_{phys} H$ or effectively $k \approx 2 \pi \times 3 j$, where $\rho_{phys} = a^\rho$ is the comoving wavelength, and we used $\rho_{phys} = 2(1 + 3)$. Therefore, in Eq. (5), we can replace the Hankel function with its small-argument expansion: $H (2) (j k) \approx i \frac{1}{2 j} (j k) x$ for $j = 0$, $H (2) (j k) \approx 2 (j k) x$ for $j = 0$, and $H (2) (j k) \approx e^{i j k x}$ for $j = 0$, where $\rho (k)$ is the Green function.

After inflation, the universe enters the so-called reheating phase, during which the energy of the inflaton is converted into ordinary matter. In this paper, we restrict our analysis to the case of instantaneous reheating, that is after inflation the universe enters the radiation dominated era. In radiation era, the general expression for the electromagnetic field is given by

$$A_k (x) = \frac{e^{-ikx}}{k} + \frac{e^{i kx}}{k}; \quad (7)$$

where λ and λ are the so-called Bogolubov coefficients [10], determining the spectral number distribution of particles produced from the vacuum. By matching expressions (6) and (7) and their first derivatives at the time of the end of inflation, we find the spectrum of the...
electron magnetic field generated from the vacuum at large scales:
\[
\mathcal{A}_k^{\text{vac}}(1) = j_k j^d \frac{2(1 + j^d)^2}{2 \beta_1 k_j^2} \tag{8}
\]
valid for \(0.1 = 2 < 0 \), the electron magnetic vacuum fluctuations go like \(\mathcal{A}_k^{\text{vac}}(1) / k_j j^d \) and then are vanishingly small for \(j_k j^d \). In the case \(j = 1 \), conformal invariance is recovered and then, as it should be, we nd \(\mathcal{A}_k^{\text{vac}}(1) = 0 \), exactly, for all \(j_k j^d \).

We can derive, now, the average magnetic field on a comoving scale as [3]
\[
B_k^2 = a^4 \hbar \Omega j^d y W (k y j^d A (y j^d)) \tag{9}
\]
where \(W (k y j^d) \) is a suitable (real) window function, and the vacuum state \(\Omega j^d \), so that \(a_k j^d \) is normalized as \(\hbar \Omega j^d = 1 \). Taking into account Eqs. (3) and (9), we obtain
\[
B_k^2 = \frac{1}{2} \frac{d}{dk} W^2(k) P_B (\Omega j^d); \tag{10}
\]

where \(W (k) \) is the Fourier Transform of the window function and
\[
P_B (\Omega j^d) = \frac{2}{k^2} \mathcal{F}_k (\Omega j^d) \tag{11}
\]
is the magnetic power spectrum. As a window function we can take a gaussian window, \(W (k y j^d) = (2^{1/2})^{3/2} e^{-k^2 j^d} \), so that \(W (k y j^d) = e^{-k^2 j^d} \).

From the end of inflation until today, due to the high conductivity of the cosm ic plasma, the magnetic field evolves adiabatically [14], \(a^2 B = \) const, so that \(B_{\text{today}} = a^2 B (1) \). Inserting Eq. (3) in Eq. (11) and taking into account Eq. (10), we readily obtain:
\[
B_{\text{today}} = \frac{2}{k^2} \frac{d}{dk} W^2(k) P_B (\Omega j^d); \tag{12}
\]

\[
I_1 = \frac{m \alpha}{m}; \tag{13}
\]

\[
j_1 j^d = \frac{3}{k^2} j^d \frac{g_s (T_0)}{M T_0}; \tag{14}
\]

In Eq. (13), we used the fact that during radiation and matter dominated eras the expansion parameter evolves as \(a^2 / g_s (T) \), where \(T \) is the comoving scale and \(g_s (T) \) the number of effectively massless degrees of freedom referring to the entropy density of the Universe [13]. The temperature at the end of inflation, that is called reheating temperature, is \(T_1 = M \), while \(T_0 \) is the actual temperature.

In the following we will use the values [13]: \(T_0 = 2 \times 10^3 \) GeV, \(g_s (T) \) \(= 3.5 \), and \(g_s (T_1) = 106.75 \) (referring to the number of effectively massless degrees of freedom of Standard Model). It is useful to recall that \(10 \text{ GeV}^2 \) and \(10^{16} \text{ GeV}^{-1} \).
Ref. [6] where it is argued that, for adequate values of n and μ, the produced e-mils can serve as seeds for the cosmological magnetic field. The discrepancy resides in the fact that, the astrophysically interesting e-mils they obtained correspond, indeed, to values of n and μ (and then of λ) such that the related power spectrum is infrared-divergent, and then are non-physical.

In the "optimistic" case $m = m_{\text{max}}$, for all $n > 2$ there is a range in the parameter M such that the intensity of the produced magnetic field is greater than the minimum seed field required for dynamo amplification, $B \leq 10^{33} \text{ G}$.

III. IF2 MODELS

We consider now a model given by Lagrangian (1) with I an arbitrary power function of the conformal time:

$$ I = I_1 \cdot t^{-1} ; \quad (15) $$

where I_1 is a constant and we assume that I is a positive real number. The above parametrization of the function I, already used in the literature [3], is not the unique admissible one. However, leaving I an arbitrary function of the conformal time, if on the one hand this would render our analysis more general, on the other hand would allow us just to get qualitative results.

We study the production of seed fields during an inflationary epoch described by both Power-Law and de Sitter Inflation. In the latter case, the equation of state describing the evolution of the Universe is $p_{\text{tot}} = \rho_{\text{tot}}$ with $\Lambda = 1$, so that the Hubble parameter is a constant and $\Omega = \text{H}$. If $I_1 = 1$, we can neglect the Maxwell term in Eq. (1) and then the analysis performed in Section II applies also to the case at hand. In particular, Eqs. (5), (6), (12), and (13) are still valid provided $n=1$ is replaced by 1. Consequently, now it is clear that $t = 1$ and the condition $0 < 3 \sigma$ translates to $1 < 4$. The expression for the actual magnetic field can be recast as:

$$ B_{\text{today}} = \frac{10^{12}}{I_1^{1/2}} \frac{55}{3} \left(\frac{2}{3} \right)^{2} \frac{M}{m_{\text{pl}}}^{2} G; \quad (16) $$

where $10^{10} \text{ Gpc} = 10^{10} \text{ G}$ and is an increasing function of σ (order of zero, such that $I = 0$, the cosmological scale is 10^{10} G).

In Fig. 2, we show the value of actual magnetic field both for Power-Law (in the best case scenario corresponding to $s = s_{\text{max}}$) and de Sitter Inflation as a function of M (which in this case can assume all values in the interval 1 Gyr. $M < 10^{2} m_{\text{pl}}$) for different values of the parameter μ at the cosmological scale 10^{10} Gpc and for $I_1 = 1$. We find that for $n > 2$ there is always a minimum value of M, M_{min}, such that if $M > M_{\text{min}}$ the generated magnetic field is greater than the minimum seed field required for a successful dynamo amplification. Moreover, if the field is almost scale-invariant, we take $\Lambda = 4$, and if M is large enough, its intensity can be strong enough to directly explain galactic magnetism (see the first two curves from the top in Fig. 2 referring to $s = 10^{10}$ Gpc). In fact, expanding Eq. (16) about $\Lambda = 4$ and taking $\Lambda = 1$ (which corresponds to take large values of μ), we find

$$ B_{\text{today}} = \frac{2}{10^{10}} \frac{10^{7}}{I_1^{1/2}} \frac{M}{m_{\text{pl}}}^{2} G; \quad (17) $$

giving $B_{\text{today}} < 10^{14} \text{ G}$ for $M < 3(10^{7})^{4} 10^{15} \text{ G}$.

III. CONCLUSIONS

Why are large-scale magnetic fields present in all galaxies is still a debated question in cosmology. Their origin could reside in an amplification of Inflation-produced electromagnetic vacuum fluctuations through galactic-dynamo mechanism.

In this paper, we have re-analyzed the production of seed magnetic fields during inflation considering non-conformal and scale-invariant terms in the electromagnetic Lagrangian of the form $R - m_{\phi} F \Phi$ and $IF F$. The first model was first proposed by Turner and Widrow [10] for the case $n = 1$ and then extended to the case $n = 1$ by Mazzitelli and Spedalieri [3].

The second model was first investigated by Bamba and Sasaki [11] in the framework of de Sitter Inflation and assuming $\Lambda = 1$ to be a power-law function of the conformal time, $I = \sigma$, with a negative real number. The second model, Mazzitelli and Spedalieri [3] found that, taking $m = m_{\phi} (m_{\phi}$ be-
the presence of microgauss galactic magnetic fields. The intensity can be strong enough to directly explain the Sitter inflation. We have found that, for $n = 2$, there is a window in the parameter space in which such generated magnetic fields are astrophysically interesting. Moreover, if in addition to the produced fields α the generated magnetic fields are scale-invariant ($\alpha = 4$), their intensity can be strong enough to directly explain the presence of microgauss galactic magnetic fields.

- Electronic address: luigi.teDESCO@ba.infn.it
- Electronic address: paolo.ceA@ba.infn.it
- Electronic address: gianni.fogli@ba.infn.it
- Electronic address: luigi.teDESCO@ba.infn.it

