Dynamical coupled channel calculation of pion and omega meson production

Mark W. Paris

Excited Baryon Analysis Center, Thomas Jefferson National Accelerator Facility,
12000 Jefferson Avenue M S 12H 2, Newport News, Virginia, 23606

(Dated: April 14, 2013)

Abstract

A dynamical coupled channel approach is used to study and omega meson production induced by pions and photons scattering from the proton. Six intermediate channels including N, N', N_N, N_N', N_N'', and N_N'' are employed to describe unpolarized and polarized data. Bare parameters in an effective hadronic Lagrangian are determined in a fit to the data for N, N, N_N, N_N', N_N'', and N_N'' reactions at center-of-mass energies from threshold to $W < 200$ GeV. The T matrix determined in these fits is used to calculate the photon beam asymmetry for omega meson production and the N, N, total cross section and N scattering lengths.

Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce this manuscript for U.S. Government purposes.

mark.paris@jlab.org
I. INTRODUCTION

Nucleon resonances are thought to play a decisive role in reactions of strong, electromagnetic and weak probes on nucleons at energies \(W < 2 \Omega \text{ GeV} \). The extent to which nucleon resonances determine unpolarized and polarized observables in meson production reactions and the role of non-resonant contributions in these reactions remain an open question in this energy region. Model determinations of the \(T \) matrix consistent with the observed meson production data in this kinematic regime seek to resolve the resonance spectrum of the nucleon. Such a determination offers the possibility of gaining insight into fundamental aspects of quantum chromodynamics, such as the role of chiral symmetry, confinement and a detailed understanding of the correlations among the strongly interacting quarks.

Limited experimental data for \(\pi \) meson production in the resonance region is being rapidly augmented. There is existing high precision data from the SAPHIR collaboration [1] for the \(p+\pi\) reaction from which the unpolarized differential cross section (DCS) and decay angular distributions have been extracted. Consistent with this data are the more recent measurements of the GRAAL collaboration [2,3]. More photoproduction data at similar kinematics is anticipated from the CLAS collaboration [4]. The \(N+\pi\) data from bubble and drift chamber experiments is of low precision and there is little overlap in different experiment's \([5,6]\) kinematics. Though there is some discussion in the literature about the validity of the extracted cross sections \([7,8]\) we assume the data is correct as originally published.

The importance of including o-shell effects in dynamical coupled channel formulations of strong and electromagnetic meson production reactions has been extensively studied \([9,10]\). The present study incorporates o-shell effects in a coupled channel approach and is comparable to the model treatments of Krehletal. \([10]\) and Chen et al. \([11]\). It should be contrasted with coupled channel calculations which take into account coupling of the intermediate states only to the continuum and neglect their o-shell contributions such as those of the Giessen group \([12]\) and KVI \([13]\). In the Giessen study, an effective Lagrangian is adopted for the channels \(N, N, N, \pi N, K, K\). They assume a resonant contribution similar to the one adopted in the present study.

Motivations for studying the \(\pi N \) reaction are manifold. Besides the insight into the \(T = \frac{1}{2} \) resonance spectrum and implications for meson production reactions, the vector
mesons are thought to be important components in very dense matter in the neutron-rich stellar environment \cite{14,15,16}. In nuclear matter, the NN coupling can play a large role in determining the equation of state in some models \cite{17}.

Any realistic model reaction theory for meson production necessarily incorporates a large number of parameters. In the non-resonant terms, we require intermediate state particle masses, bare couplings and cuts of the hadronic degrees of freedom. For the resonant terms we need the bare masses, bare couplings, and cuts for each resonance in a given partial wave. Given this large number of parameters required to fully determine the T matrix, the question arises as to the physical and predictive content of such a model. In order to address this question in the present study we take the following approach. We determine the T matrix by fitting a subset of the available data (described in detail in Section III) and using this, calculate another, unitted observable (here the photon beam asymmetry for meson production shown in Fig 15). The quality of the prediction of the unitted observable is a measure of the utility of the model in determining more detailed information such as polarization observables from less detailed ones, like unpolarized total or differential cross sections. Deficiencies of such a prediction indicate the need to improve the model assumptions and to augment the included dynamics.

In the next section we briefly describe the model theory for the six-channel model. The results of the fit to the data are presented and discussed in Section III. The final section gives conclusions and descriptions of improvements to the present study which are under development and outlines possible applications of the present approach to other reactions including and production, pion and meson electroproduction and reactions on nuclear targets.

II. MODEL REACTION THEORY

The T matrix for N ! MB and N ! MB \{ in this work the final MB state is restricted to N,!N \} is written as a sum of non-resonant, t, and resonant, R, contributions

\[T(E) = t(E) + R(E); \]

where \(E = W\) is the scattering energy of the particles in the center-of-mass frame. Qualitatively, the non-resonant contribution includes rescattering and coupled channel effects.
FIG. 1: The interactions $V_M \otimes \mu_B$ and $V_M \otimes N$ include 74 interaction mechanisms. In this figure and Figs. 2, 3 and 4 we show a subset of these. Here the $v_{M \otimes N}$ interaction mechanisms are shown. (a) s-channel nucleon exchange; (b) u-channel nucleon exchange; (c) t-channel exchange; (d) s-channel exchange; (e) u-channel exchange.

FIG. 2: The $v_{M \otimes N}$ interaction mechanisms. (a) s-channel nucleon exchange; (b) u-channel nucleon exchange; (c) t-channel exchange.

on the Born amplitudes while the resonant contribution includes these effects on the bare resonance transition form factors and bare resonance masses. No assumption is made about the relative size of the contributions of these terms. Our first objective in this work is to determine the $T(E)$ in its to the observed data.

Except for the $N \rightarrow N$ reaction where we t to energy dependent solution of Amelung et al. [18] for the $N \rightarrow N$ partial wave amplitudes, we t the unpolarized and polarized cross sections of the induced reactions. The DCS for induced reactions is related to the T matrix as

$$
\frac{d}{d} = \left(\frac{4}{k^2} \right)^2 \frac{\hbar}{M_N \otimes M_0} \left(\frac{k}{k} \right)^{\frac{1}{2}} X \frac{X}{X} T_{M_N \otimes M_0 \otimes M_0} \left(k, E \right)
$$

(2)

where k is the relative momentum of the initial N state and k^0 is the relative momentum of the initial nucleon-nucleon (M^0N^0) state, where $M^0 = 0$ or 1. The spin projection of the particles in the initial (final) state is M_N ($M_M \otimes M_N \otimes M_N$). The quantity $M_0 (p) = \frac{p_{E_M} (p) E_{N \otimes M} (p)}{E_{N \otimes M} (p) + E_E (p)}$, where $E_1 (p) = \frac{p^2 + m^2}{2} r$ is related to the density of states. A similar relation holds for the unpolarized photoproduction cross section $\frac{d}{d}$.

4
FIG. 3: The $v_{1N,1N}$ interaction mechanisms. (a) s-channel nucleon exchange; (b) u-channel nucleon exchange.

<table>
<thead>
<tr>
<th>ℓ_{ij}</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>!N</th>
</tr>
</thead>
<tbody>
<tr>
<td>S11</td>
<td>$(0;\frac{1}{2})$</td>
<td>$(0;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
</tr>
<tr>
<td>S31</td>
<td>$(0;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(0;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td></td>
</tr>
<tr>
<td>P11</td>
<td>$(1;\frac{3}{2})$</td>
<td>$(1;\frac{3}{2})$</td>
<td>$(0;\frac{3}{2})$</td>
<td>$(1;\frac{3}{2})$</td>
<td>$(1;\frac{3}{2})$</td>
</tr>
<tr>
<td>P13</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
</tr>
<tr>
<td>P31</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td></td>
</tr>
<tr>
<td>P33</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
</tr>
<tr>
<td>D13</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(0;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
</tr>
<tr>
<td>D15</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(4;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
</tr>
<tr>
<td>D13</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(0;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(0;\frac{1}{2})$</td>
</tr>
<tr>
<td>D35</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(4;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
<td>$(2;\frac{1}{2})$</td>
</tr>
<tr>
<td>F15</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
</tr>
<tr>
<td>F17</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(5;\frac{1}{2})$</td>
<td>$(4;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
</tr>
<tr>
<td>F35</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(1;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
</tr>
<tr>
<td>F37</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(5;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(3;\frac{1}{2})$</td>
<td>$(5;\frac{1}{2})$</td>
</tr>
</tbody>
</table>

TABLE I: The (L;S) terms for partial waves ℓ_{ij} for included channels.

A. Non-resonant contribution

The non-resonant contribution to the transition matrix in the partial-wave representation for the pion-induced $t_{\ell_{ij}S_{LM}}^{T}$ and the mixed partial-wave/helicity representation for

FIG. 4: The \(v_{N;N} \) and \(v_{i;N} \) interaction mechanisms. For photoproduction of mesons: (a) s-channel nucleon; (b) u-channel nucleon; (c) t-channel, and \(! \); (d) contact; (e) s-channel; (f) u-channel. For photoproduction of \(! \) mesons: (g) s-channel; (h) u-channel; (i) t-channel exchange.

The photon-induced \(t_{LSM}^{JT} \; (E) \) reactions are

\[
\begin{align*}
\mathcal{U}_{LSM}^{JT} (k;0,p;E) &= \mathcal{V}_{LSM}^{JT} (k;E) G_{0MB} (p;E) v_{LSM}^{JT} (p;0) ; \\
\mathcal{U}_{LSM}^{JT} (k;0,p;E) &= \mathcal{V}_{LSM}^{JT} (k;E) G_{0MB} (p;E) v_{LSM}^{JT} (p;0) ; \\
\end{align*}
\]

where \(T \) is the total isospin and \(T_{N;N} \) is the isospin projection of the nucleon in the initial state, \(J \) is the total angular momentum of the partial wave, \(L (L^0) \) is the partial wave orbital angular momentum of the initial (final) state, \(S (S^0) \) is the total intrinsic spin of the particles in the initial (final) state and \(\frac{1}{2} = J \) is the \(N \) initial state orbital angular momentum. The included partial waves are shown in Table I. Channels are denoted by the meson species \(M^0 \) of the final (intermediate) state and \(N \) (\(N^0 \)), the nucleon of the initial (final) state or \(B \) the intermediate state baryon associated with the meson \(M \) of channel \(MB \). The sum \(s, p \) are over channels \(N, N, N, N, N, \) and \(!N \). Here \(G_{0MB} \) is the relativistic free particle Green's function

\[
G_{0MB} (p;E) = \frac{1}{E - E_{MB} (p;E)} ;
\]

\(E_{1}(p) \) are the free particle energies with masses given in Table I and \(E_{MB} (p;E) \) is the self-energy of the unstable particle in channels \(MB = N; N \) including the effects
FIG. 5: Real part of $N ! N$ partial wave amplitudes $T_{\frac{1}{2}}^0, \frac{1}{1} \ N ; N \ (k \ N \ ; k \ N ; E)$ for $T = 1-2$ versus center-of-mass energy, W (in GeV) to single energy extraction of Ref. [13]. The dashed line shows the best obtained without the second resonance in D_{15}.

induced by the decay of the unstable particle in these channels [19]. Channels with stable particles $M_B = N ; N ; !N$ have $M_B = i$ corresponding to the coupling to the on-shell intermediate states. The width of the $!N$ meson $\Gamma = 85(1)$ MeV is neglected.

The $v_{M_B} N$ and $v_{M_B ; N}$ are the effective non-resonant interaction Hamiltonians for hadrons $\pi, K, \Lambda, \Sigma, \Xi, N, \Lambda$, and $
oughter$; these interactions are Born amplitudes derived from the Lagrangian of Ref. [13] and subjected to the unitary transformation method of Ref. [20]. It yields an interaction which is independent of the scattering energy, $E = W$, and depends only on the relative three-momenta of the incoming and outgoing particles.

In the present model there are 74 interaction mechanisms among the channels $N, N, N, N, N, !N$, and N. Figures [14] show examples of these explicitly for the terms involving $N, N, \ N$, and !N channels for pion induced and photoproduction amplitudes. In this work we neglect the contribution of the high-mass a_0 and f_0 mesons (except the $f_0 = (600))$. We make the further simplification in the non-resonant hadronic interaction involving the $!N$ channel of including only those terms which couple the $!N$ to itself and to N, that is: $v_{1N \ M_B} = v_{1N \ N \ M_B \ N} + v_{1N \ !N \ M_B \ !N}$. This simplification permits the
FIG. 6: Imaginary part of $N!N$ partial wave amplitudes $T^J_{N^J;N^J}(k_{NN};E)$ for $T = 1=2$ versus center-of-mass energy, W (in GeV) to single energy extraction of Ref. 18. The dashed line shows the best fit obtained without the second resonance in D_{15}.

The introduction of a minimal number of additional bare parameter sets for the $!N$ channel while retaining effects from each of the non-resonant t, u, and v mechanisms. In this way, we capture the behavior associated with each mechanism while maintaining a tractable model.

Equations (3) and (4) represent the bulk of the computational effort required to carry out the coupled channel dynamical approach (at the two-body level). Most of the computer time required (~ 5) is spent evaluating the Born terms. Much of the remainder is spent inverting the matrix representing the scattering wave function, $F^1 = (1 - vG_0)^{-1} = 1 + tG_0$ appearing in Eq. (3) on a momentum grid of 25 Gauss-Legendre points using standard subtraction methods [21]. Convergence has been checked with grids of up to 45 GL points. A parallel Fortran 90 code has been developed to cope with the long evaluation times for a single 2 evaluation (100 node m). It exploits the independence of the partial waves and energies in the evaluation of the T matrix. Typically $10^3 - 10^4$ 2 evaluations are required for optimization using the miniut package [21].

The amplitudes $t^J_{LSM B;N}$ include partial wave contributions up to and including $L = 3$ (F-wave). The same is true for the electromagnetic terms except for the t-channel pion
FIG. 7: Real part of $N! N$ partial wave amplitudes $T^{3}_{N! N ; N} (k_N; k_N; E)$ for $T = 3 = 2$ versus center-of-mass energy, W (in GeV) t to single energy extraction of Ref. [18].

exchange in Fig.4(i). In this case, all partial waves are required for convergence. For $L > 3$ the contribution to the electromagnetic non-resonant amplitude $T^{T}_{L \geq N} (k; q; E)$ is calculated at the Born amplitude level only and neglects the effects due to final state interactions and coupled channels, i.e., the second term of Eq. (4).

The non-resonant interaction depends on the masses of the hadrons and their coupling and cut-off parameters. These values obtained in the ve-channel of Ref. [19] are shown here in Tables III and IV for completeness. For the interaction term s, $\nu_M \nu_B \nu_B$ and $\nu_M B ; N$ (other than the mass of $f_0 = 600$ which is a cut parameter), the physical particle masses are used. Form factors are included at vertices in the non-resonant interactions, $\nu_M \nu_B \nu_B$ and $\nu_M B ; N$ have the form $F (\hat{q}^2) = (\hat{q}^2 + \hat{q}_f^2)^\nu M$. Here \hat{q} is either the momentum transferred at the vertex or the relative momentum [23]. We use the value $m = 2$ at all vertices.
FIG. 8: Imaginary part of N partial wave amplitudes $T^{13}_{N \to N}(k_{N}; k_{N}; E)$ for $T = 3$ versus center-of-mass energy, W (in GeV) to single energy extraction of Ref. [18].

B. Resonant contribution

The resonant contribution, $t^R(E)$ to the scattering matrix is given as

$$t^R_{LSM_B ; N T_{N';} N}(k; q; E) = \sum_{i,j} t^R_{LSM_B ; N T_{N';} N}(k; q; E) \mathcal{D}^{1}_{ij}(E)T^{13}_{N \to N}(k; E);$$

where the sum i,j run over the resonances in a given partial wave (at most two per channel in this work) and \mathcal{D}^{1}_{ij} is the dressed vertex function

$$-T^{13}_{LSM_B ; N T_{N';} N}(k; E) = \sum_{i,j} -T^{13}_{LSM_B ; N T_{N';} N}(k; E) \mathcal{D}^{1}_{ij}(E)T^{13}_{N \to N}(k; E);$$

$$-T^{13}_{LSM_B ; N T_{N';} N}(q; E) = \sum_{i,j} -T^{13}_{LSM_B ; N T_{N';} N}(q; E) \mathcal{D}^{1}_{ij}(E)T^{13}_{N \to N}(k; E);$$

$$-T^{13}_{LSM_B ; N T_{N';} N}(k; q) = \sum_{i,j} -T^{13}_{LSM_B ; N T_{N';} N}(k; q) \mathcal{D}^{1}_{ij}(E)T^{13}_{N \to N}(k; E).$$

(6) (7) (8) (9) (10)
FIG. 9: Differential cross section vs. center-of-mass angle, for $p!n$ (in mb/sr) compared to data from Refs. [5,6]. The center-of-mass energy, W (in GeV) is shown in the upper-right corner of each panel.

and $D_{ij}^{\pm}(E)$ is the dressed resonance propagator which depends on the resonance self-energy, $\Sigma_i(E)$:

$$D_{ij}(E) = (E - M_i^{(0)})_{ij} \Sigma_i(E)$$

$$\Sigma_i(E) = \int \frac{dk}{(2\pi)^3} k^2 F_{LT}^{LSM_B}(k) G_{M_B}(k; E) F_{LT}^{LSM_B}(k; E)$$

The bare vertex functions should, in principle, be calculated from appropriate ab initio hadronic models. This is beyond the scope of the present study. Instead, we parametrize the vertex function in the center-of-mass for the partial wave specified by $J;L;S$ for the hadronic channels as

$$F_{LT}^{LSM_B}(k) = \frac{1}{m} \left[\frac{1}{2} \right]^{3/2} C_{M_B}^{LT} \frac{k^L}{m} F_{LT}^{LSM_B}(k)$$

Here $M_B = 1$ for $M_B = N; N$; and $M_B = 1$ for $M_B = N; N; N$. At small values of the relative M_B momentum k, $F_{LT}^{LSM_B}(k)$ has the form appropriate to the threshold production behavior, k^L. It is regulated at large k by the form factor, $F_{LT}^{LSM_B}(k)$, described below.
FIG. 10: Unpolarized differential cross section vs. scattering angle in the center-of-mass system for $^0\!p$ reaction compared to data from Refs. 24, 25, 26, 27, 28. The center-of-mass energy, W (in GeV) is shown in the upper-right corner of each panel.

The bare electromagnetic coupling for $N!N$ for all N except the first P_{33} resonance (number 8' in Tables V and VI) is given by

$$f_{\mu N}^{JT} = \frac{r}{(2j+2)} \frac{m_N}{E_N(q_R)} A_{\mu N}^{JT} q_{\mu N}^{JT} (q) ;$$

with $A_{\mu N}^{JT} = (1)^{j+1} = 2$ $A_{\mu N}^{JT}$ where N is in partial wave j. The form for the first P_{33} resonance is shown in the Appendix. The photon momentum at the resonance threshold, q_R is $M_N^{(p)} = q_R + E_N(q_R)$ where the resonance mass is taken from the Review of Particle Properties [35]. The isospin projection of the initial nucleon is $T_{\mu N}$ and the helicities are i_{L+2} and l. We assume the forms $f_{\mu N}^{JT\mu N, LSM B} (k) = h N^2 (J + 1)^2 + (k \cdot k_N)^2$ and $g_{\mu N}^{JT\mu N, LSM B} (q) = 1$. The $C_{\mu N}^{JT\mu N, LSM B}$, $A_{\mu N}^{JT\mu N, LSM B}$, k_N, and $A_{\mu N}^{JT\mu N}$ are parameters.

III. RESULTS AND DISCUSSION

The first objective of the present study is the simultaneous description of the pion and photon induced single pion and omegas meson production data in a coupled channel approach.
Recent high precision measurements of π photoproduction make it possible to strongly constrain coupled channel model reaction theories. The DCS and π spin density matrix elements (SDME) have been measured at SAPHIR and published [1] and measured by the CLAS collaboration [2,36]. The only other observable measured is the single polarization observable, the photon beam asymmetry (PBA) ($\alpha(E)$) at GRAAL [2,3]. We have elected to also include the older induced reaction data from threshold (1.72 GeV) to 1.764 GeV from the Nimrod synchrotron [4] and the Alvarez detector data from 1.75 GeV to 2.05 GeV [5] (in 100 MeV bins).

The world data for pion photoproduction measurements of DCS, shown in Figs. 10, 11 and PBA shown in Figs. 12, 13 are obtained from the George Washington University Center for Nuclear Studies Data Analysis Center [37]. These high precision data in $p^0\pi^0$ were taken from Refs. [24, 25, 26, 27, 28] for DCS and Refs. [27, 30, 31, 32, 33] for PBA and in $p^+\pi^-$ from Refs. [25, 26, 28, 29] (25, 27, 31, 32, 33, 34) for DCS (PBA), respectively. For the purpose of optimization of the data with respect to the bare parameters of the theory a truncated data set of the highest precision data was used which covers as much of
two stages. At the first stage, the non-resonant couplings are set to zero and the resonance parameters are determined in Ref. [38] which sets the N!N partial wave amplitudes

$$
T_{J N}^{J'T N} (k_N; k N; E) = T_{J N}^{J'T N} (k_N; k N; E);
$$

(15)

extracted from observed data by Ref. [18] in the region 1.1 GeV < E < 2.0 GeV in a ve-channel approach, excluding N!N. The non-resonant parameters are fixed and shown in Tables II, III, and IV. The resonance parameters \(M_{N}^{(0)}, C_{J N}^{LSM B}, J_{N}^{LSM B} \) and \(k_N \) for coupling to hadronic channels \(M B = f N; N; N; N \) are shown in Tables V and VI.

Detection of the six-channel T matrix \(T_{J N}^{J'T N} (k_N; k N; E) \) proceeds in two stages. At the first stage, the N!N T = 1=2 partial wave amplitudes of Figs. 9 and 3, the p!N DCS of Fig. 9 and the p!p DCS of Fig. 14 are determined simultaneously. This is accomplished by adjusting the non-resonant couplings \(g_{NN}, c_{NN}, \) and \(k_N \) appearing in the s and u channel emission and absorption of Figs.(a), (b), Figs.(c) and Figs.(g)(h) and by adjusting the resonance parameters N!N, G_{N}^{J1}, N^{LS}N and J_{N}^{LS}N.
FIG. 13: Photon beam asymmetry, $\epsilon(E)$ vs. for p^+n reaction compared to data from Refs. 25, 27, 28, 30, 32, 33, 34. The center-of-mass energy, W (in GeV) is shown in the upper-right corner of each panel.

The introduction of the $!N$ channel to the calculation requires the addition of a second D_{15} resonance, shown in bold type in Tables V and VI, in order to fit the data. These points will be discussed in more detail below.

At the second stage of the fit, all non-resonant and hadronic channel resonant parameters are fixed and the single meson photoproduction data is fitted. Pion photoproduction data used for the fit includes the DCS in Figs. 10 and 11 and the PBA in Figs. 12 and 13 in the region $1.1 \leq E < 2.0$ GeV. Omega meson photoproduction data used for the fit includes only the SAPHIR measurement [1] of the DCS from threshold, 1.72 GeV to 2.0 GeV shown in Fig. 15. This is accomplished by varying the photon helicity couplings, A_N^{JT} and $T_N^{\pi\pi}$, for $J = \frac{1}{2}$, $\frac{3}{2}$, and $T_N^{\pi\pi} = +\frac{1}{2}$. The resulting fits compared to the existing world data are shown as solid curves in Figs. 10-13.

The overall quality of the fits to the complete set of data are in fair agreement for energies $E < 1.65$ GeV. The $T = 1=2$ $N!N$ partial wave amplitudes of Fig. 5 agree at the 1 level for all partial waves except the two highest. The $T = 3=2$ partial waves are of similar quality except for the S_{11} wave and the P_{11} wave at energies $E < 1.9$ GeV. The fits to the
FIG. 14: Unpolarized differential cross section for $p^+ p$ versus (b/sr) compared to data from Ref. [1]. The center-of-mass energy, W (in GeV) is shown in upper-right of each panel.

Photoproduction data are good at low energies but degrade significantly at $E > 1.65$ GeV especially in the $p^+ p^0$ reaction. Coupling to the NN channel is expected to be large here.

Large values of g_{NN} have been deduced from studies of the nucleon electromagnetic form factors [33] and various NN studies [40,41]. These studies yield a range of $10^2 \sim g_{NN} \sim 20$. Values of this order were assumed for the studies in Ref. [42] though with a strongly suppressing form factor due to a small cutoff, $\,_{\text{OTL}} = 0.5$ GeV. At early stages of the t when we attempted to use the values g_{NN}, $\,_{\text{t}}$, and $\,_{\text{NN}}$ determined in t to the NN data the resulting cross sections were too large by one or two orders of magnitude for both $p^+ n$ and $p^+ \bar{p}$ reactions. In order to reproduce the data within the present model for the limited parameter search which we have performed it was necessary to introduce the non-resonant coupling parameters g_{NN}^t, $\,_{\text{t}}$, and $\,_{\text{NN}}$. These parameters appear at vertices in the graphs of Figs. 2(a), (b), Figs. 3 and Figs. 4(g), (h). The interactions correspond, in a four-dimensional formulation to vertices with timelike momentum transfer. In the t to the NN data mesons appear only in graphs corresponding to spacelike momentum transfer. An similar situation obtains in pp^0 reactions [43] where different couplings...
FIG. 15: Predicted photon beam asymmetry, \(|\langle \gamma E \rangle| \) for \(p \rightarrow p \) (solid curve) for \(E = W \) shown in lower-left corner of each panel compared with data from Ref. [2]. At the lowest energy, the effect of removal of various resonances is shown. Removing all "for only" (thin dashed) and \(S_{11} \) (dotted), \(D_{13} \) (dashed), \(F_{15} \) (dot-dashed).

are used for exchanged and emitted s-wave pions. The small value obtained for the \(g_{\pi NN} \) coupling is near the result found by the Giesse group’s study [12]. The treatment here is certainly phenomenological but no more so than introducing other non-resonant reaction mechanisms involving heavy mesons (eg. including \(v_{iN;NN} \) or \(f_0 \) exchange in \(v_{iN;NN} \)) or resonances. These alternatives should nevertheless be explored as a guide, at least, to the model dependencies of the present approach.

We have found that the introduction of the \(\pi \) channel significantly modifies the behavior of the \(N \rightarrow N D_{15} \) partial wave amplitude. This can be seen in Figs. 3 and 4, where we show as a dashed-line curve in the \(D_{15} \) panel the optimally curves found in the first stage to \(N \rightarrow N, p \rightarrow p, \text{and } p \rightarrow p \) data described above. The \(A_{21}^{51} \) photocoupling is large and could be an important effect in, for example, the electroproduction reaction. Comparison of the \(N \rightarrow \pi N \) physical masses and branching fractions determined in this work with other calculations (as in Ref. 35) require the analytic continuation of the \(T \) matrix amplitudes to the physical pole position; this work is in preparation.
The prediction for the PBA \[44]\) in \(p!p\)

\[
\gamma(E) = \frac{?}{?} + \frac{\gamma}{?}
\]

is shown in Fig. 15. Here \(\gamma(\gamma)\) is the differential cross section for linearly polarized photons in (perpendicular to) the emission plane of the \(\gamma\) meson. At the lowest energy \(E = 1.743\) GeV a study is made of the sensitivity to the resonance contribution for three cases. The thin-dashed line is the result when all the resonance contributions have been removed. Other curves in the figure show the result when one of three dominate waves is removed.

<table>
<thead>
<tr>
<th>(\gamma)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>2.06</td>
<td>2.65</td>
</tr>
<tr>
<td>3.89</td>
<td>2.65</td>
</tr>
<tr>
<td>8.72</td>
<td>8.10</td>
</tr>
<tr>
<td>2.65</td>
<td>8.10</td>
</tr>
<tr>
<td>0.10</td>
<td>1.02</td>
</tr>
<tr>
<td>1.29</td>
<td>1.02</td>
</tr>
<tr>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>2.35</td>
<td>2.35</td>
</tr>
<tr>
<td>6.96</td>
<td>6.96</td>
</tr>
<tr>
<td>3.30</td>
<td>3.30</td>
</tr>
<tr>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>0.1027</td>
<td>0.1027</td>
</tr>
<tr>
<td>0.3247</td>
<td>0.3247</td>
</tr>
<tr>
<td>500.1</td>
<td>500.1</td>
</tr>
</tbody>
</table>

Table II: Propagator masses (MeV) appearing in Eq. \[5\].

<table>
<thead>
<tr>
<th>(m)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>938.5</td>
<td>910</td>
</tr>
<tr>
<td>138.5</td>
<td>829</td>
</tr>
<tr>
<td>547.5</td>
<td>1087</td>
</tr>
<tr>
<td>1300.0</td>
<td>1094</td>
</tr>
<tr>
<td>898.6</td>
<td>1523</td>
</tr>
<tr>
<td>811.7</td>
<td>589</td>
</tr>
<tr>
<td>782.6</td>
<td>624</td>
</tr>
</tbody>
</table>

Table III: Lagrangian bare

<table>
<thead>
<tr>
<th>(m)</th>
<th>(m)</th>
<th>(m)</th>
<th>(m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500.1</td>
<td>500.1</td>
<td>500.1</td>
<td>500.1</td>
</tr>
</tbody>
</table>
TABLE V: Bare masses $M^{(0)}$ (MeV) appearing in the resonance propagator of Eq. (4), and the ranges k_N (MeV), strong couplings $G^{JT}_{LSM,N}$ (MeV $1^{=2}$) and photo-couplings A^{JT}_{F} (10^{-3} GeV $1^{=2}$) in Eqs. (13) and (14).

<table>
<thead>
<tr>
<th>#</th>
<th>$l^{(N)}_J$</th>
<th>$M^{(0)}$</th>
<th>k_N</th>
<th>N</th>
<th>N</th>
<th>N</th>
<th>!N</th>
<th>A$_1$</th>
<th>A$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S$_{11}$</td>
<td>1676.6</td>
<td>599.0</td>
<td>554.0</td>
<td>801.0</td>
<td>1999.9</td>
<td>1893.7</td>
<td>500.2</td>
<td>817.9</td>
</tr>
<tr>
<td>2</td>
<td>S$_{11}$</td>
<td>533.6</td>
<td>500.0</td>
<td>1999.1</td>
<td>1849.5</td>
<td>796.8</td>
<td>500.0</td>
<td>503.1</td>
<td>622.0</td>
</tr>
<tr>
<td>3</td>
<td>S$_{33}$</td>
<td>2000.0</td>
<td>500.0</td>
<td>500.0</td>
<td>500.0</td>
<td>500.0</td>
<td>500.0</td>
<td>500.0</td>
<td>622.0</td>
</tr>
<tr>
<td>4</td>
<td>P$_{11}$</td>
<td>1203.6</td>
<td>1654.8</td>
<td>729.0</td>
<td>1793.2</td>
<td>622.0</td>
<td>1698.9</td>
<td>675.8</td>
<td>516.9</td>
</tr>
<tr>
<td>5</td>
<td>P$_{11}$</td>
<td>646.6</td>
<td>897.8</td>
<td>501.3</td>
<td>1161.2</td>
<td>500.0</td>
<td>922.3</td>
<td>533.7</td>
<td>950.1</td>
</tr>
<tr>
<td>6</td>
<td>P$_{13}$</td>
<td>1374.0</td>
<td>500.2</td>
<td>500.0</td>
<td>500.8</td>
<td>604.5</td>
<td>500.0</td>
<td>500.0</td>
<td>1645.2</td>
</tr>
<tr>
<td>8</td>
<td>P$_{33}$</td>
<td>746.2</td>
<td>846.4</td>
<td>781.0</td>
<td>585.0</td>
<td>500.2</td>
<td>1369.7</td>
<td>503.1</td>
<td>622.0</td>
</tr>
<tr>
<td>9</td>
<td>P$_{33}$</td>
<td>880.0</td>
<td>603.7</td>
<td>501.7</td>
<td>606.8</td>
<td>1043.0</td>
<td>528.4</td>
<td>500.2</td>
<td>817.9</td>
</tr>
<tr>
<td>10</td>
<td>D$_{13}$</td>
<td>1658.0</td>
<td>1918.2</td>
<td>976.4</td>
<td>1034.5</td>
<td>1315.8</td>
<td>599.8</td>
<td>1615.1</td>
<td>1499.5</td>
</tr>
<tr>
<td>11</td>
<td>D$_{13}$</td>
<td>1094.0</td>
<td>678.8</td>
<td>1960.0</td>
<td>660.0</td>
<td>1317.0</td>
<td>550.1</td>
<td>597.6</td>
<td>1408.7</td>
</tr>
<tr>
<td>12</td>
<td>D$_{15}$</td>
<td>1584.7</td>
<td>1554.0</td>
<td>500.8</td>
<td>820.2</td>
<td>507.1</td>
<td>735.4</td>
<td>749.4</td>
<td>937.5</td>
</tr>
<tr>
<td>13</td>
<td>D$_{15}$</td>
<td>1223.8</td>
<td>1990.2</td>
<td>1910.4</td>
<td>996.1</td>
<td>921.6</td>
<td>1022.0</td>
<td>1941.9</td>
<td>997.0</td>
</tr>
<tr>
<td>14</td>
<td>D$_{33}$</td>
<td>806.0</td>
<td>1359.4</td>
<td>608.1</td>
<td>1515.0</td>
<td>1999.0</td>
<td>956.8</td>
<td>930.2</td>
<td>998.2</td>
</tr>
<tr>
<td>15</td>
<td>F$_{15}$</td>
<td>1641.6</td>
<td>655.9</td>
<td>1899.5</td>
<td>522.7</td>
<td>500.9</td>
<td>500.0</td>
<td>1600.9</td>
<td>541.8</td>
</tr>
<tr>
<td>16</td>
<td>F$_{35}$</td>
<td>1035.3</td>
<td>1228.0</td>
<td>586.8</td>
<td>1514.8</td>
<td>593.8</td>
<td>1506.0</td>
<td>502.0</td>
<td>651.6</td>
</tr>
<tr>
<td>17</td>
<td>F$_{37}$</td>
<td>1049.0</td>
<td>1180.0</td>
<td>1031.8</td>
<td>600.0</td>
<td>600.0</td>
<td>600.0</td>
<td>600.0</td>
<td>600.0</td>
</tr>
</tbody>
</table>

TABLE VI: Resonance strong form factor cut parameters in MeV.
The total cross section of the reaction $^1\!N$ $^1\!N$ is of interest for realistic calculations of nuclear matter properties. The predicted total cross section for this reaction is shown in Fig. 16. The scattering lengths obtained from the T matrix are

$$a_J = \lim_{E \to m_i} \frac{m_i m_N}{m_i + m_N} T_{0J}^{^1\!N \!\to ^1\!N} (E);$$ \hspace{1cm} (17)

$$a_1 = [0.0454 \pm 0.0695] \text{fm};$$ \hspace{1cm} (18)

$$a_2 = [0.180 \pm 0.0597] \text{fm};$$ \hspace{1cm} (19)

related to the total cross section at threshold by $^1\!N (E = m_i + m_N) = 4 (a_1 + 2a_2) = 3$. The total cross section for $p \!\to \!\to ^1\!N$ is shown in Fig. 16 along with contributions from partial waves T_{sJ} with significant contributions. The error bars on the total cross section are statistical. Systematic errors are shown in Ref.[1] to be about 10-15%. They arise from, among other sources, the extrapolation of the DCS in the forward and backward directions for center-of-mass $^1\!N$ meson scattering angles < 15 and > 150. The systematic errors for the DCS from Ref.[1] are largest in the backward direction where the discrepancy from our calculated cross section, as seen in Fig. 18, is most pronounced. Nevertheless, the present calculated $p \!\to \!\to ^1\!N$ DCS appears to miss some small angle structure near $x' = 0.5$ above $E > 1.8$ GeV and $x' = 0.5$ and 0.5 for $E = 1.935$ GeV, possibly a result of destructive interference effects of some combination of additional higher mass resonances and

![Graph showing calculated total elastic $^1\!N$ cross section (mb) as a function of center-of-mass energy E = W.](image)
IV. CONCLUSION

A dynamical coupled channel model for six-channels has been employed in simultaneous fits of the pion and photon induced single pion and omega production reactions. The N partial wave amplitudes, unpolarized differential cross sections (DCS) and photon beam asymmetry (PBA) have been fitted with \(S_1 \) for center-of-mass energies from threshold to \(E < 1.65 \) GeV. At higher energies, the model is unable to accurately reproduce the data. There are several ways one might attempt to remedy this deficiency. If we work within the present model formulation and keep the same non-resonant mechanisms it is possible that a more thorough search of the parameters may yield a better fit at higher energies. The introduction of more resonances may also yield a better fit. However, for energies \(W > 1.8 \) GeV the existing data makes distinguishing non-resonant mechanisms from resonant mechanisms difficult. Particularly useful in this endeavor would be more high precision single and some double polarization observables for both pion and \(!-m \) eon.
FIG. 18: Semi-logarithmic version of Fig. 14, unpolarized DCS for \(p \rightarrow \pi^0 p \) (b/sr) vs. \(\cos \theta \). Center-of-mass energies are shown in the upper-right corner of each panel. The sharp angular features near are attenuated \(x' \approx 0.5 \) for \(E > 1.86 \text{ GeV} \) and \(x' \approx 0.5 \) for \(E < 1.935 \).

Additional mechanisms in the non-resonant terms are sure to contribute, perhaps significantly, to the calculated scattering observables at these higher energies. At the two-body level we have neglected couplings such as \(v_{1N;1N}, v_{1N;2N}, v_{1N;3N} \), and \(v_{1N;N} \). There may also be significant effects from additional mechanisms in the \(v_{1N;N} \) interaction. We have neglected the effects of \(t \)-channel exchange, exchange (generally thought to be small) and Pomeron exchange in \(p \rightarrow \pi^0 p \), known to have large contributions at forward angles at high energies. At energies above the two-pion production threshold, the \(N \) channel contribution can give a significant contribution and must be calculated. This can be accomplished in the present model formulation and is currently under study.

A fair prediction for the \(\pi^0 \) meson PBA, \((\pi^0; E) \) has been obtained near threshold, shown in the upper-left panel in Fig. 15. At higher energies, \(W > 1.8 \text{ GeV} \) the calculated beam asymmetry does not agree well with the shape of the data. This observable is sensitive to both resonant and non-resonant contributions could improve with any of the remnants discussed above.
The present model will be used to analyze the electroproduction data in the region Q^2. 5 GeV2 and the extension to the photoproduction of J/ψ and vector mesons. Photoproduction of J/ψ from nuclei gives information about the spectral function of the J/ψ meson in the nuclear medium \cite{46}. Inclusion of o-shell effects in such an analysis is required and the present model provides a starting point for their inclusion.

APPENDIX: $P_{33}(1232)$ TRANSITION FORM FACTOR

The transition form factor for $p! (1232)$ is taken as \cite{47}

$$
\frac{33}{2} (q) = \frac{1}{3} \left[K_M G_M (q^2) + (K_M + K_E) G_E (q^2) \right] \quad (A.1)
$$

$$
\frac{33}{2} (q) = \frac{1}{3} \left[K_M G_M (q^2) + (K_M + K_E) G_E (q^2) \right] \quad (A.2)
$$

$$
K_M = \frac{e}{(2 \pi)^2} \frac{E_N (q) + m_N}{2E_N (q)} \frac{1}{2m_N} \frac{3m + m_N}{2m_N} G_M (q^2) G_E (q^2) \quad (A.3)
$$

$$
K_E = \frac{4E_N}{(2 \pi)^2} \frac{1}{2m_N} \frac{m_N}{m_N} G_M (q^2) G_E (q^2) \quad (A.4)
$$

On resonance at the photon point, $Q^2 = 0$ the $G_M (0)$ and $G_E (0)$ are related to the value A_{33}^{33} in Table V as

$$
A_{33}^{33} = \frac{p}{3} \frac{e}{2} \frac{m}{2m_N} \frac{s}{m} \frac{G_M (0) + G_E (0)}{m_j} \quad (A.5)
$$

$$
A_{33}^{33} = \frac{1}{2} \frac{e}{2m_N} \frac{m_j}{m_j} \frac{G_M (0) + G_E (0)}{3G_E (0)} \quad (A.6)
$$

The values in the table correspond to

$$
G_M (0) = 1.62 \quad (A.7)
$$

$$
G_E (0) = 0.015 \quad (A.8)
$$

ACKNOWLEDGMENTS

The author wishes to thank T. Sato for Born amplitudes, F. Klein and M. Williamson for providing data, and to T. S. H. Lee and A. W. Thomas for useful discussions. This work is supported by the U.S. Department of Energy, Office of Nuclear Physics Division under contract No. DE-AC02-06CH11357, and contract No. DE-AC05-060R23177 under which
Je erson Science Associates operates Je erson Lab. This research used resources of the National Energy Research Scienti c Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

[49] This feature is also seen in recent precision data from the CLAS Collaboration [36].