Finite Gluon Fusion Amplitude in the Gauge-Higgs Unification

Nobuhito Maru

aDepartment of Physics, Kobe University, Kobe 657-8501, Japan

Abstract

We show that the gluon fusion amplitude in the gauge-Higgs unification scenario is finite in any dimension regardless of its nonrenormalizability. This result is supported by the fact that the local operator describing the gluon fusion process is forbidden by the higher dimensional gauge invariance. We explicitly calculate the gluon fusion amplitude in an arbitrary dimensional gauge-Higgs unification model and indeed obtain the finite result.
Gauge-Higgs unification [1]-[6] is one of the leading candidates solving the gauge hierarchy problem without supersymmetry. In this scenario, the Higgs field is regarded as extra spatial components of the higher dimensional gauge field, which immediately forbids the local Higgs mass term thanks to the higher dimensional gauge invariance. Then, the nonlocal finite Higgs mass is obtained by Wilson loop dynamics regardless of the nonrenormalizability of the theory, which has been explicitly verified in various models [7]-[14]. The finite Higgs mass is very predictive since it is independent of the cutoff scale of the theory. This opens up a possibility to solve the gauge hierarchy problem without relying on supersymmetry and a huge number of interesting works on the gauge-Higgs unification have been reported from various viewpoints [15]-[57].

It is natural to ask whether there are any other finite physical observables in the gauge-Higgs unification. If there are, we can naively guess that it is the physical observables composed of the gauge field and the Higgs field, which are nontrivially transformed under the higher dimensional gauge symmetry. Along this line of thought, the divergence structure of S and T parameters was investigated [15]. Unfortunately, they are divergent in theories more than five dimensions as anticipated from the power counting argument, but a particular linear combination of them was found to be finite in six dimension case [15]. Surprisingly enough, the anomalous magnetic moment of the fermion was recently shown to be finite in any dimension although not only the gauge and Higgs fields but also fermions are included in the local operator describing the anomalous magnetic moment [16].

The Large Hadron Collider (LHC) experiments are just about to start and the various collider signatures predicted from the various extensions to the Standard Model have recently been studied. The present author and N. O. Kada also investigated the processes of the gluon fusion Higgs boson production and the two photon decay of Higgs boson, which are main processes in case of the light Higgs boson, in a five dimensional gauge-Higgs unification model [17] (see also [18,19]). We have found that the amplitudes of these processes become finite and are independent of the cutoff scale of the theory. This result itself is very natural from the power counting argument since the local operators relevant for the gluon fusion and the two photon decay are dimension six operators and our calculations were done in a five dimensional model. However, we can guess from the structure of Kaluza-Klein (KK) mass spectrum and Yukawa coupling that this finiteness nature holds true in any space-time dimensions. Also, the above mentioned local operator is composed of only the gauge and Higgs fields, which suggests that the gluon fusion and two photon decay amplitudes are finite.

In this paper, we show that the gluon fusion amplitude in the gauge-Higgs unification scenario is finite in any space-time dimension regardless of its nonrenormalizability. Here we take a toy model of (D + 1) dimensional SU(3) gauge-Higgs unification with a triplet fermion identified with third generation quarks. The extra spatial dimension is compacti-
ed on an orbifold S^1/Z_2. Although this model is a toy model in that the W einberg angle is too large $\sin^2 \theta_W = 3$, the top quark is massless and the bottom quark mass is equal to a W^- boson mass and so on, it is enough to show the finiteness of the gluon fusion amplitude and to avoid inessential complications.

The action of our model is given by

$$S = \int d^D x dy \left(\frac{1}{2} Tr(F_{MN}F^{MN}) + i \mathcal{D}_{D+1} \right)$$

(1)

where the $D+1$ dimensional covariant derivative is defined as $\mathcal{D}_{D+1} = \mathcal{D} + i y D_y$, $y^2 = 1$

in which \mathcal{D} is the D dimensional covariant derivative, y is the $(D+1)$-th coordinate of the compactified space. The field strength of the gauge fields, the covariant derivative and the triplet fermion are given by

$$F_{MN} = \partial_M A_N - \partial_N A_M - i g [A_M, A_N] (M;N = 0;1;2;3; \ldots; D)$$

(2)

and

$$D_M = \partial_M \mathcal{A}_M - A_M \mathcal{A}_M$$

(3)

$$g$$ is the $(D+1)$ dimensional gauge coupling constant. We impose the periodic boundary conditions for a circle S^1 and Z_2 parity assignments as

$$A = \begin{pmatrix}
0 & 0 & 0 & 0 \\
(++;+) & (+;+) & (++;+) & (++;+)
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
(++;+) & (+;+) & (++;+) & (++;+)
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
(++;+) & (+;+) & (++;+) & (++;+)
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 & 0 \\
(++;+) & (+;+) & (++;+) & (++;+)
\end{pmatrix}$$

(5)

where $(++;+)$ denotes that Z_2 parity are even at both fixed points at $y = 0$; R for instance. R is the compactification radius. $1, \frac{1}{2}(1 \ y) \ 1 \ (\ y \ i \ y)$ etc. is a D-dimensional index ($= 0;1;2;3; \ldots; D$).

This Z_2 parity assignments lead to the gauge symmetry breaking $SU(3)!$ $SU(2)_L$ $U(1)_Y$, the Higgs doublet is realized as the zero mode of A_y and the chiral fermions are naturally obtained.

Substituting the KK mode expansions for gauge fields and a fermion satisfying the above boundary conditions and integrating out y coordinate, we end the D-dimensional effective action of a fermion relevant for the gluon fusion amplitude calculation

$$S = \int d^D x \sum_{n=1}^{\infty} \left(\frac{(n)}{1} \left(\frac{(n)}{2} \ i \left(\frac{(n)}{3} \right) \right) \right)$$

(6)

$+$ gauge interaction part + zero-mode part:
where this effective action is written in terms of KK fermion mass eigenstates and the gauge interactions and zero mode terms are simply omitted since they are irrelevant for the gluon fusion amplitude calculations. The detail derivation of this effective action is summarized in Appendix.

The essential point to show the finiteness is that the structure of the mass eigenvalues and Yukawa couplings for KK mode fermions seen in the dimensional case [17] is unchanged. Namely the mass splitting happens as \(m_n^{(n)} = m_n + m \) for \(\sim_2 \), \(m_n^{(n)} = m_n \) for \(\sim_3 \) where \(m_n \), \(n = R \) is KK masses and \(m \) is a fermion mass. Their Yukawa coupling is given by \(m = v \) for \(\sim_2 \), \(\sim_3 \) respectively. The constant \(v \) is a vacuum expectation value (VEV) of Higgs field. As will be seen later, the gluon fusion amplitude is expressed as the difference between \(+\) " mode contributions and \(-\) " mode ones, which cancels the divergence. This property is in sharp contrast to the universal extra dimensional (UED) case [58] where we have no KK mass splitting like \(m_n^2 + m_2 \) and Yukawa coupling is given by \((m_n = v) \quad (m_n = m_n^2 + m_2) \) [60]. Thus, the divergence cannot be in general canceled in the UED case.

Following these observations, KK mode contributions to the gluon fusion amplitude is calculated, which is just the \((D + 1)\) dimensional extension to the result of [61],

\[
A = \frac{m}{v} g_s^2 \int_0^1 \frac{Z_1}{dx} Z_1 x \int_0^1 \frac{Z_1}{dy} \frac{d^D k}{(2\pi)^D} \frac{1^{(n)^+}}{2[2k^2 + 2kQ]} (m_n^{(n)})^2 \]

where \(g_s \) is a QCD coupling, \(x, y \) are Feynman parameters and

\[
I^{(n)} = \frac{2^D = 2 m_n^{(n)}}{4k^2} 2 + 2(k^2 p^2 + k^2 p^1) (p^2 p^2 + p^2 p^1) \]

\[
Q yp^2 x p^2 : \]

\[
p^2, p^2 \text{ denote external momenta of the gluons.} \]

Making use of a formula

\[
\frac{1}{D^a} = \int_0^1 \frac{dt}{s} \frac{D^a}{D^b} = \int_0^1 \frac{dt}{s} e^{\frac{D^a}{D^b}}, \]

we can rewrite \(A \) as

\[
A = \frac{m}{v} g_s^2 \int_0^1 \frac{Z_1}{dx} Z_1 x \int_0^1 \frac{Z_1}{dy} \frac{d^D k}{(2\pi)^D} \frac{1^{(n)^+}}{2[2k^2 + 2kQ]} (m_n^{(n)})^2 \]

\[
= \frac{m}{v} g_s^2 \int_0^1 \frac{Z_1}{dx} Z_1 x \int_0^1 \frac{Z_1}{dy} \frac{d^D k}{(2\pi)^D} \frac{1^{(n)^+}}{2[4(4\pi)^D] (m_n^{(n)^+})^2 + Q^2} \]

\[+ \quad \]

\[\]

In this paper, the electroweak symmetry breaking is assumed to take place. Strictly speaking, we have to analyze the Higgs potential to examine whether the electroweak symmetry breaking occurs or not. However, studying this issue is a hard task beyond the scope of this paper. Our obtained results are not affected by this assumption.
where
\[
\hat{\mathcal{F}}^{(n)} = 2^{D-2} m^{(n)} \Gamma + 2 \frac{D}{2} g \frac{1}{t} \tag{12}
\]
\[
\Gamma = 4Q Q + 2(Q p^1 Q p^2) + p^2 p^1 + (m^{(n)})^2 (1 2xy)p^1 + (1 2xy)p^2 + (4xy)^2 p^3 + (4x^2 2x)p^1 + (4y^2 2yp^2 + (m^{(n)})^2 (1 2xy)p^1 + (1 2xy)p^2 \tag{13}
\]

and the change of variable \(k^0 = k + Q\) and the Gaussian momentum integral
\[
\int \frac{d^D k}{(2 \pi)^D} e^{i \mathbf{k} \mathbf{t}} = \frac{1}{(4 \pi)^{D/2}} \int \frac{d^D k}{(2 \pi)^D} e^{i \mathbf{k} \mathbf{t}} = \frac{D}{2 \pi} t^{(4 \pi)^D/2} \tag{14}
\]
was performed to arrive at the final expression (11). Note that \(\hat{\mathcal{F}}^{(n)}\) is symmetric under \(x \leftrightarrow y\), \(s \leftrightarrow p\), and \(p^1 \leftrightarrow p^2\) as it should be.

As a consistency check, focusing on the case with \(D = 4\), integrating with respect to \(t\) and using the relation \(Q^2 = xym_H^2\) (\(m_H\) : Higgs mass) and the fermion propagator function
\[
F_{1=2}(\mathbf{t}) = \int_0^1 \int_0^1 \int_0^1 \int_0^1 \frac{4(1 \mathbf{x} \mathbf{y})}{4xy} \tag{15}
\]
we can verify that (11) with the case \(D = 4\) agrees with the results in [17].

It is convenient for the demonstration of the finiteness to include a half of zero-mode contribution \((n = 0)\) because (11) is further rewritten into the mode sum from 1 to +1 as
\[
A = \frac{m_g^2}{\sqrt{2} \pi} \int_0^1 \int_0^1 \int_0^1 \int_0^1 \frac{t^2}{4(4 \pi)^{D/2}} \hat{\mathcal{F}}^{(n)} e^{(m^{(n)})^2 + Q^2 t} \tag{16}
\]

In the second equality, Poisson resummation formula is used.
\[
\chi^1 \int_{n=1}^{\infty} \frac{n + a}{R} e^{(\frac{n+a}{R})^2} = \chi^1 \int_{n=1}^{\infty} \frac{R^2}{R^2} \frac{s^2}{(i n \epsilon^2)^2 \frac{\pi e^{(\frac{s^2}{2})^2}}{2 \pi}} \tag{17}
\]
which is just a Fourier transform from the KK momentum space into the coordinate space of extra spatial dimensions. In other words, \(n\) in the right-hand side of (17) has a physical meaning of winding number around \(S^1\).

\[\text{Here we mean by a zero mode in a D dimensional sense. In the present example, the zero mode contributions diverge in the case m one space as six dimensions. This is because the only one spatial dimension is compacted. In a realistic com} \text{ paction, the zero mode contributions are always finite. Therefore, the divergence from the zero mode contributions is a problem. Real problem is the divergences from KK mode contributions, and what we will show is that this KK mode contributions indeed become finite by showing that the full contribution is finite.}\]
The divergence usually appears from no winding mode \(n = 0 \) in (16) at \(t = 0 \), but this term trivially vanishes in the present case. Thus, the finiteness of the gluon fusion amplitude is verified.

Next, let us calculate the finite value explicitly. The finite value can be calculated from \(n \neq 0 \) part in (16). Taking into account the gluon polarization sum \(\sum_{1}^{}^{1}p = 2 \quad \sum_{2}^{2}p = 0 \) (\(\sum_{2}^{2} \): gluon polarization tensor) and doing the \(t \) integral, we end up with

\[
A = \frac{m^{2} g_{s}^{2} p^{\mu} p^{\nu}}{6} \sqrt{2} \frac{Z_{1}}{D} \int_{0}^{1} \frac{dx}{dx} \left(\frac{4xy}{4(3)^{2}} \right)^{2} (2^{\frac{p}{2}} - 1) \frac{1}{\sin(2 R n R)} \left(\sum_{1}^{n} \frac{R}{2} \right) \frac{\sin(2 R n R)}{n^{\frac{D}{4}}} \frac{D}{n^{\frac{D}{4}}} \quad (18)
\]

where \(K(2, \text{Bessel function}) \) is the modified Bessel function,

\[
A = \frac{m^{2} g_{s}^{2} p^{\mu} p^{\nu}}{6} \sqrt{2} \frac{Z_{1}}{D} \int_{0}^{1} \frac{dx}{dx} \left(\frac{4xy}{4(3)^{2}} \right)^{2} (2^{\frac{p}{2}} - 1) \frac{1}{\sin(2 R n R)} \left(\sum_{1}^{n} \frac{R}{2} \right) \frac{\sin(2 R n R)}{n^{\frac{D}{4}}} \frac{D}{n^{\frac{D}{4}}} \quad (19)
\]

In order to obtain the final expression (18), the approximations formula for the modified Bessel function is used,

\[
K_{D=2}(2, \text{Bessel function}) \quad \text{for } D=2 \quad \text{Bessel function} \quad D=2 \quad (2, 1): \quad (20)
\]

(18) is the final result of the gluon fusion amplitude. Although the finiteness was shown in this paper by using the modified compactification on \(S^{1} \equiv \mathbb{Z}_{2} \), we emphasize that the finiteness nature itself is not affected by the shape of the compactified spaces. This is because the information of the compactification is an infrared property not an ultraviolet one. Of course, the finite value might be changed depending on the way of the compactification. If we consider more realistic compactifications, the finiteness of the gluon fusion amplitude is trivial from the result in this paper but it is not so trivial to calculate the finite value in such a realistic compactification. We are now working on the analysis of the gluon fusion in a 6D gauge-Higgs unification model on \(T^{2} \equiv \mathbb{Z}_{2} \).

The finiteness of the gluon fusion amplitude can be also checked in a different way. Let us first take the mode sum before the momentum integration. The relevant mode sum is given by

\[
\sum_{n=1}^{X} \left[\frac{(k^{2} + 2 k Q)}{\sin(2 R n R)} \left(\frac{m_{n}^{2}}{2} \right)^{P} \right]^{\frac{1}{3}} \frac{I_{n}^{(n)}}{(k^{2} + 2 k Q)} \left(\frac{m_{n}^{2}}{2} \right)^{P} \quad (21)
\]
which can be rewritten by including a half of zero mode contributions as was done in the previous calculation,

\[\chi^l = \sum_{n=1}^{\infty} \frac{I^{(n)+}}{[(k_E^2 + Q^2 + (m_{(n)}^2)^2]^l} \]

where the change of variable \(k_0 = k + Q \) is carried out and \(k_E \) denotes a Euclidean momentum.

The relevant mode sum can be classified into the following two types.

\[\chi^l = \frac{4m_{(n)} A}{k_E^2 + Q^2 + (m_{(n)}^2)^2} \]

\[\chi^l = \frac{4g}{m_{(n)}^2} \]

where

\[A (k_E^2; p) = 4(k_E^2; k_E^2) + 4Q Q + 2(Q p^2 + Q p^2 + p^2 + p^2) \]

\[+ g \left[2Q^2 + p^2 + p^2 \right] \]

Making use of the formula,

\[\chi^l = \frac{2(a + 2n)}{[k^2 + (a + 2n)^2]^2} = \frac{\sinh x \sin a}{2x \cosh x \cos a} \]

\[\chi^l = \frac{4(a + 2n)}{[k^2 + (a + 2n)^2]^2} = \frac{\cosh x \sin a}{4x^2 \cosh x \cos a} \]

\[+ \frac{\sinh x \sin a}{4x^3 \cosh x \cos a} + \frac{\sinh^2 x \sin a}{2x^2 \cosh x \cos a} \]

we find that the relevant mode sum takes the following forms in the large momentum limit,

\[\chi^l = \frac{4m_{(n)} A}{k_E^2 + Q^2 + (m_{(n)}^2)^2} \]

\[= 4A \left(2 k_E R; 2 p R \right) \left(2 R \right)^2 R \]

\[= 4 \left[\begin{array}{c} 4(k_E^2; k_E^2) + 4Q Q + 2(Q p^2 + Q p^2 + p^2 + p^2) + g \left[2Q^2 + p^2 + p^2 \right] \end{array} \right] \]

\[+ 4 \left(\frac{2(a + 2n)}{[k^2 + (a + 2n)^2]^2} \right) \]

\[+ 4 \left(\frac{4(a + 2n)}{[k^2 + (a + 2n)^2]^2} \right) \]

\[+ \frac{\sinh x \sin a}{2x \cosh x \cos a} \]

\[+ \frac{\sinh^2 x \sin a}{2x^2 \cosh x \cos a} \]

\[! 4R (k_E) (k_E) \sin (2m R) e^{2 R k_E} \left(\frac{1}{k_E^2} + \frac{1}{2 R k_E^3} \right) \]

\[= \frac{R}{D} + \frac{1}{2 R k_E} g \sin (2m R) e^{2 R k_E} \]
\[\chi^4 \sum_{n=1}^{4g_m} \left(\frac{4g_m (n)}{k_E^2 + Q^2 + (m^+_n)^2} \right)^2 = g \left(\frac{(2R) \sinh (2R) k^2}{k_E^2 + Q^2} \right) \sin (2mR) \]

\[g \left(\frac{(2R) \sin (2mR)}{k_E^2} \right) e^{2Rk_E} (k_E + 1) \] (29)

(28) and (29) immediately implies that the loop momentum integral in any dimension becomes superconvergent. Namely, we have confirmed that the gluon fusion amplitude is also finite by taking the mode sum before the momentum integration.

This result can be understood by operator analysis in more general way. The local operator describing the gluon fusion is given by the dimension six operator

\[\mathcal{H}^\dagger \mathcal{H} G^\dagger G + h.c. \] (30)

where \(\mathcal{H} \) is the Higgs field and \(G^\dagger G \) is a field strength tensor for the gluons. In the gauge-Higgs unification, the Higgs is replaced by the extra component of the higher dimensional gauge field \(A_y \). Note that this \(A_y \) cannot be written by the covariant derivative \(D_y \) as in the case of \(S \) and \(T \) parameters [15] and the anomalous magnetic moment [16] since the Higgs is neutral under \(SU(3)_C \) gauge group. This implies that the operator (30) is forbidden by the higher dimensional gauge invariance, which leads to the finite result for the gluon fusion in the gauge-Higgs unification. This argument holds true for the brane localized operator of (30) \(\mathcal{H}^\dagger \mathcal{H} A_y G^\dagger G^\dagger \) since the shift symmetry \(A_y ! A_y + \text{const} \) is operative even at branes [9], which is a remnant of the higher dimensional gauge symmetry. Therefore, the brane localized operator is forbidden by this shift symmetry. Furthermore, this operator analysis argument is very powerful because this argument is model independent.

In summary, we have shown that the gluon fusion amplitude in the gauge-Higgs unification is finite in any space-time dimension regardless of its nonrenormalizability. Taking a \(D+1 \) dimensional \(SU(3)_C \) toy model of the gauge-Higgs unification with a triplet fermion compacted on \(S^1/Z_2 \) to avoid inessential complications, we have explicitly calculated the gluon fusion diagram and verified its finiteness by two different ways of calculations. Note that the finiteness nature is independent of the shape of the compact space because the information on the compactification is the infrared property not the ultraviolet one. On the other hand, the finite value is affected by the compactification.

This result can be more generally understood by the operator analysis. The dimension six local operator describing the gluon fusion process is forbidden by the higher dimensional gauge symmetry. The nonlocal finite term is generated by Wilson line effects. This operator analysis also holds true for the two photon decay process since the Higgs field cannot be replaced by the covariant derivative for a photon field. Thus, we can expect the two photon decay to be finite as well as the gluon fusion.

A few comments are in order. The first one is on the finiteness at higher order perturbations of the gauge coupling. In the second way of calculation taking the mode
Before the momentum integration, we have obtained that the gluon fusion amplitude is superconvergent. At the higher order perturbations, the convergence property for the momentum integral becomes worse due to the fact that the gauge coupling has a negative mass dimension in the nonrenormalizable theory. However, the integrand of the momentum integral is exponentially suppressed in the large momentum region. This suggests that the amplitude is finite even at any order of the perturbations similar to the Higgs mass case [?]. We note that we must renormalize order by order the divergences arising from the subdiagram such as the gauge coupling corrections, which cannot be forbidden by the higher dimensional gauge symmetry. The finiteness beyond one-loop level can be shown to such an operator with the renormalized gauge coupling as was done in Ref. [?].

The second one is on the finiteness of the two photon decay of the Higgs boson amplitude which is important mode at the LHC in the light Higgs boson case. The local operator describing the two photon decay amplitude is given by $HH^* if F F$ where F is the photon field strength. We can expect from this fact that the two photon decay amplitude is also finite because the local operator is forbidden by the higher dimensional gauge symmetry in the following. In the two photon decay case, the Higgs cannot be rewritten by the covariant derivative D_y to make a gauge invariant operator, $(D_y F) (D^* y F)$, because of the vanishing commutator between A_y and the photon part of $A^{(0)}$ after the electroweak symmetry breaking $[h A_y i A^{(0)}] = 0$. Thus, we can conclude that the two photon decay amplitude in the gauge-Higgs unification is also finite as well as the gluon fusion amplitude.

The third one is that our argument remains unchanged in a realistic model allowing the top quark mass although the top quark is massless in our toy model. The difference between our toy model and a realistic one lies in the representation of the fermions under the gauge group (see, for example [30]). Our argument based on the operator analysis is independent of which representation the fermion belongs to, which tells us that our results remain true even in a realistic model.

The results obtained in this paper give an impact on the LHC physics in the gauge-Higgs unification since the gluon fusion amplitude is calculable and predictive in any dimension in spite of the fact that the theory is nonrenormalizable. On the other hand, if we consider a theory of the UED with more than five dimensions, the gluon fusion amplitude will diverge or depend on the cutoff scale of the theory, which means that the results highly depends on the UV physics. Therefore, it is very interesting to calculate the gluon fusion amplitude in the gauge-Higgs unification more than five dimensions. This issue is also phenomenologically interesting. The Higgs mass is generically predicted to be twice of W boson mass $m_H = 2m_W$ from the tree level potential [23], which implies that the Higgs boson mainly decays into two W bosons by the standard model interaction. Namely, the effects of the gauge-Higgs unification are only contained in the gluon fusion amplitude. This leads to simplify the analysis greatly comparing to the two photon decay.
of Higgs boson. Following this observation, we are studying the gluon fusion process in the 6D gauge-Higgs unification compacted on $T^2 = \mathbb{Z}_4$ [62].

Acknowledgments

The author would like to thank C.S. Lim and N. Okada for useful discussions. He also would like to thank C.S. Lim for a careful reading of the manuscript. The work of the author was supported in part by the Grant-in-Aid for Scientific Research of the Ministry of Education, Science and Culture, No. 18204024.

A The derivation of D-dimensional effective action of a fermion

In this appendix, we derive a D-dimensional effective action for a triplet fermion needed for the calculation of the gluon fusion amplitude in more detail. The action in $D + 1$ dimensional we consider is simply given by

$$L = \frac{1}{2} \text{Tr}(F_M^a F^M_a) + i D^a$$

where

$$M = (i; y), (M = 0; 1; 2; 3; 4; D = 0; 1; 2; 3; 4),$$

$$F_{MN} = \partial_M A_N - \partial_N A_M - i g [A_M; A_N];$$

$$D^a = M (\partial_M i g A_M) (A_M = A_M^a \frac{1}{2} (a : Gell-Mann matrices));$$

$$= (1; 2; 3)^T.$$ (31)

The periodic boundary conditions are imposed along S^1 for all fields. The non-trivial Z_2 parities are assigned for each field as follows,

$$A = B \begin{pmatrix} (+ ; +) & (+ ; +) & (+ ; +) & (+ ; +) & (+ ; +) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

The periodicity is imposed along S^1 for all fields. The non-trivial Z_2 parities are assigned for each field as follows,

$$A = B \begin{pmatrix} (+ ; +) & (+ ; +) & (+ ; +) & (+ ; +) & (+ ; +) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

$$= B \begin{pmatrix} (0; 0) & (0; 0) & (0; 0) & (0; 0) & (0; 0) \end{pmatrix}$$

where $(+ ; +)$ means that Z_2 parities are even at the fixed points $y = 0$ and $y = R$, for instance. y is the $(D + 1)$-th coordinate and R is the compactification radius.

Following these boundary conditions, KK mode expansions for the gauge fields and the fermions are carried out.

$$A^{(+ ; n)}_{\rho}(x; y) = \sum_{n=1}^{D} A^{(n)}_{\rho}(x) \cos \frac{ny}{R};$$

(32)
$$A^{(s)}(x;y) = \frac{1}{R} \sum_{n=1}^{\infty} A^{(n)}(x) \sin \frac{n\pi y}{R} ;$$
(38)

$$A^{(+)}_{1L2L2R}(x;y) = \frac{1}{2R} \sum_{n=1}^{\infty} A^{(n)}_{1L2L2R}(x) \cos \frac{n\pi y}{R} ;$$
(39)

$$A^{(-)}_{3L4L2R}(x;y) = i \frac{1}{R} \sum_{n=1}^{\infty} A^{(n)}_{3L4L2R}(x) \sin \frac{n\pi y}{R} ;$$
(40)

It is useful to introduce the overall factor in the last expansion to make Yukawa coupling real after the chiral rotation performed later.

For the zero-mode in the bosonic sector, we obtain exactly what we need for the Standard Model:

$$A^{(0)} = \begin{pmatrix} 0 & 0 & 0 & 0 & h^+ \cr 0 & 0 & 0 & h^0 & 0 \end{pmatrix} ;$$

(41)

where W^3, B are SU(2)$_L$; U(1)$_Y$ gauge fields and $h = (h^+, h^0)$ is the Higgs doublet in the Standard Model. For the zero mode in the fermion sector, a fermion corresponding to the right-handed top quark t_R is missing, which is irrelevant for demonstrating the finiteness of the gluon fusion amplitude.

$$A^{(n)} = \begin{pmatrix} 0 & t_l \cr 1 & t_r \end{pmatrix} ;$$

(42)

The SU(2)$_L$; U(1)$_Y$ gauge symmetry is broken by the Higgs VEV, $v = v = \frac{\tan \beta}{2}$, in other words, $h_{SU} = v = 2$.

After the gauge symmetry breaking, D-dimensional effective Lagrangian among KK fermions, the Standard Model gauge boson and Higgs boson (h) defined as $h^0 = (v + h) = \frac{\tan \beta}{2}$ can be derived from the term $L_{\text{fermion}} = i \bar{B} \in Eq. (31)$. Integrating over the (D + 1)-th dimensional coordinate, we obtain a D-dimensional effective Lagrangian:

$$L_{\text{fermion}}^{D \text{dim}} = \sum_{n=1}^{\infty} \begin{pmatrix} 0 & i \circ m_n \cr i \circ m_n & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \cr 1 & 0 \end{pmatrix}$$

+ gauge interaction part + zero mode part

(43)

where $m_n = \frac{\tan \beta}{2}$ is the KK mass, $g = \frac{\tan \beta}{2}$ is the 4D gauge coupling, and $m = \frac{M}{2}$ is the bottom quark mass in this toy model. In deriving the D-dimensional effective Lagrangian, chiral rotations

$$1 \hat{\rho}, \hat{\beta} \rightarrow e^{i \tau \hat{\rho} \hat{\beta}}$$

(44)

have been made in order to get rid of $i \tau$. The gauge interaction terms and the zero mode terms are simply neglected because they are not needed to calculate the gluon fusion amplitudes.
We easily see that the mass matrix for the KK modes can be diagonalized by use of the mass eigenstates \(\sim^{(n)}_2 \), \(\sim^{(n)}_3 \),

\[
\begin{bmatrix}
0 & \sim^{(n)}_1 \\
\sim^{(n)}_1 & 0
\end{bmatrix} = U \begin{bmatrix}
0 & \sim^{(n)}_1 \\
\sim^{(n)}_3 & 0
\end{bmatrix} ;
U = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix} ; \quad (45)
\]

In terms of these mass eigenstates for non-zero KK modes, the Lagrangian is described as

\[
L_{\text{fermion}}^{\text{dim}} = \sum_{i=1}^{n} \begin{bmatrix}
\sim^{(n)}_1 \\
\sim^{(n)}_2 \\
\sim^{(n)}_3
\end{bmatrix}
\begin{bmatrix}
i @ m_n \\
i @ m_+ \rightleftharpoons \frac{m}{\sqrt{2}} \rightleftharpoons m
\end{bmatrix}
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\sim^{(n)}_1 \\
\sim^{(n)}_2 \\
\sim^{(n)}_3
\end{bmatrix}
+ \text{gauge interaction part} + \text{zero-mode part} ; \quad (46)
\]

The relevant Feynman rules for our calculation can be read off from this Lagrangian. Note that the mass splitting \(m^{(n)}_+ \) occurs associated with a mixing between the SU(2) doublet component and singlet component. Furthermore, the mass eigenstate for \(m^{(n)}_+ \) has Yukawa coupling \(m = v \), while Yukawa coupling of the mass eigenstate for \(m^{(n)}_- \) has an opposite sign, \(+ m = v \). Together with the mass splitting of KK modes, this property is a general result realized in any gauge-Higgs unification model.

References

[23] Phys. Rev. D 72, 055006 (2005);
[31] G. Panico and M. Serone, JHEP 0505, 024 (2005);

