If the speed of sound were vastly larger in the early Universe a near scale-invariant spectrum of density fluctuations could have been produced even if the Universe did not submit to conventional solutions to the horizon problem. We examine how the mechanism works, presenting full mathematical solutions and their heuristics. We then discuss several concrete models based on scalar elds and hydrodynamical atter which realize this mechanism, but stress that the proposed mechanism is more fundamental and general.

PACS numbers: 0000000

1. Introduction The fact that the large scales we observe today were \"out of touch\" in the early Universe is one of the greatest annoyances of standard cosmology. This \"horizon\" problem prevents a causal explanation for the observed features of our Universe, which have to be added on \"by hand\" as initial conditions. Now here is this more unsatisfactory than in relation to the primordial density fluctuations that seed the structures we observe today. We have measured these structures with tremendous accuracy; yet the primordial fluctuations cannot be explained in the standard scenario and remain God-given initial conditions. This weakness has motivated many revisions to the standard Big Bang picture, notably in action 1.

Any explanation for the initial spectrum of fluctuations has to begin with a mechanism for causally connecting vast scales at the cradle. But this is barely the beginning: one then has to suggest a physical explanation that would render these scales homogeneously but not quite. In the detail lies the hurdle: the inhomo geneities must be near scale-invariant, i.e. look approximately the same on all scales, and have a well-defined amplitude, of the order of a part in 100,000. Herein lies the challenge for any structure formation scenario.

Solutions to the horizon problem rely on either accelerated expansion [1], a contracting phase followed by a bounce [2], or a freezing early phase [3]. An alternative was supplied by varying speed of light (VSL) theories [4,5,6,7]: the idea that the early Universe operated under a much larger axion speed, causing everything to freeze-out. The universe is initially homogenous apart from small quantum or thermal fluctuations. These are left imprinted \"outside the horizon\" after the speed of sound c_s has decreased suitably.

A varying speed of sound has been considered in other guises before. We nod at essence models based on (scalar) eld theories with non-standard kinetic terms [20]. These have been used as in ationary and quintessential models, but can be adapted to implement the varying speed of sound mechanism we advocate. The cuscuton model [13,14] provides a related framework. We can also bypass scalar elds, and simply regard the speed of sound c_s and the equation of state w as free phenomenological parameters [16,17]. Even though VSL is our leading motivation here, we stress that any other approaches may be linked with the conclusions in this paper. A VSL in un etion, however, may be required if additionally one wants to solve the atness, entropy and the other problems of Big Bang cosmology.

2. The mechanism We shall rst illustrate the mechanism in its simplest realization. Suppose that gravity remains undamaged and that we restrict ourselves to expanding Universes with w > 1/3. This is to avoid confusion with ationary and ekpyrotic scenarios (although constructive alliances should be investigated). The new ingredient, now, is the assumption that the speed of sound is density dependent and diverges with conformal time like c_s / (a = 0; note that is positive and increases from zero). A reparametrization in terms of the density will be examined later (with a striking result) but this is the most suitable expression for a mathematically natural solution. Concrete models realizing this setup will be presented but we do not want to wad what follows to any one of them.

Whether we employ a fluid or a scalar eld the density fluctuations are described by a modi ed hamonic oscillator equation. This can be written in terms of variables related to the Newtonian potential or the curvature perturbation, the so-called \"u\" and \"v\". The equation for v is [16,13,21]:

\[
v^{00} + \frac{c_s^2 k^2}{z} \frac{z^{00}}{z} v = 0 \quad (1)
\]

where z / = c_s. Thus c_s appears in two places in the k^2...
term responsible for sub-horizon oscillations and in the variable mass term, in z^{20}, as z. The equivalent equation for u has a variable mass term that does not contain c_0.

As with the action, this equation can be exactly solved with Bessel functions, but we'll first examine a WKB solution in order to establish the initial conditions. With $n > 1$ modes start inside the sound horizon but eventually leave it (the horizon scale is set by $c_0 k / l$, i.e., k / c_0). We can therefore initially ignore the term in z^{20}. Even though the frequency $= c_0 k$ is changing, the WKB condition 0 translates into $c_0 k$, which is always satisfied early on. This amounts to preserving the adiabatic invariants, i.e., the number of quanta in a given mode is kept fixed but not the total energy in that mode, which changes proportionally to the frequency. The appropriately normalized WKB solution is therefore

$$v = \frac{e^{iL - \frac{c_0 d}{c_0 K}}}{\frac{c_0 k}{c_0 K}} e^{iL - \frac{c_0 k}{c_0 K}}$$

where $= 1-(1) > 0$ and in the last we neglected a phase. We can also consider scenarios where c_0 is initially constant, then drops like a power law. The standard boundary condition may then be imposed in the constant c_0 phase and propagated using the WKB solution, with the same result.

As with the equivalent action, Eqn. (1) can be transformed into a Bessel equation, with solutions:

$$v = P(AJ(c_0 k) + BJ(c_0 k))$$

The order is given by $\frac{3(1 + w)}{2(1 + 3w)}$ and A and B are k-independent numbers of order 1, so that the boundary condition is satisfied. The spectrum left outside the horizon is now easy to find. Since c_0 is a decreasing function of the energy, the negative order solution is the growing mode, so that asymptotically we have:

$$v = \frac{P}{(c_0 k)}$$

Since the curvature fluctuation is related to v by $v = z$, its scale-invariance ($c_0^2 = \text{const}$) requires $= 3=2$, i.e.,

$$= 6 \frac{1 + w}{1 + 3w}$$

If we rephrase this expression by writing c_0 in terms of the density, we conclude, interestingly, that $c_0 /$ for all w. The spectrum can also be made red or blue depending on whether < 0 or > 0, especially

$$n_s = 1 - (0)$$

We note that an infinitely fast transition (1) in planes $n_s = 2$ for all w. All of these considerations depend on the sub-horizon normalization, here chosen to match a vacuum quantum state.

We can also work out the fluctuations' amplitude for near scale-invariant spectra. Considering the curvature, which "freezes-in" (i.e., is time independent outside the horizon, even with a variable c_0), it is found after straightforward algebra:

$$k^2 \frac{2}{1 + w} \frac{(5 + 3w)^2}{M_{Pl}^2} c_0$$

Those acquainted with this expression (say, from in action) will find here a good explanation for why c_0 leads to scale-invariance, even without action. If we replace the c_0 law to $c_0 = c_0 (1 + =)$, (where c_0, at low energy is density). This is not to say that this model is protected from the super-Planckian problem " (cf. [21] for a similar action). Indeed, choosing $= 1 = 1$ to x ideas, and taking into account the amplitude, straight forward algebra shows that the current Hubble scale left the sound horizon when $H_0^2 = H_0^2$ (a), (a), transiting into $= M_{Pl} 10^4$, or $E < 10^4 M_{Pl}$. This can only be evaded with a very large w, leading to $E < 10^4 M_{Pl}$ so that the current Hubble scale does freeze-in for $E < M_{Pl}$; however for the normalization to be correct one would need $w > 10^4$. We would not discount more standard scenarios (with w of order one), as this problem might be quite critical: it could well be that there is never a Planckian gravity phase.

Perhaps more interesting is the possibility that the initial conditions are "them all" rather than quantum vacuum fluctuations as assumed above [22]. The sub-horizon modes then have a spectrum obtained from the above by a multiplicative factor of $T_{c} = k$ (where $T_{c} = T_a = c_0$ is a constant). This re-acts the Rayleigh-Jeans law of the therm al occupation number $n(k)$ and implies a sub-horizon white-noise spectrum. This then propagates to the null result (Eqs. or 6), leading to the prediction

$$n_s = 1 - 1$$

Scale-invariance is now ensured by a very fast phase transition (0, i.e. something close to a step-function). The spectrum is always red but can also be made arbitrarily close to 0. The amplitude, if departures from scale-invariance are small, can be found following some simple algebra, keeping track of all sign multiplicatively constant, and is: $s^2 = (T_{c} = M_{Pl}^4) 10^{-10}$. Thus these models do not suffer from a trans-Planckian problem. With 100 we have $\gamma = 4 M_{Pl}^4 10^{-15}$ and the current horizon scale leaves the horizon at a density barely
an order of magnitude higher than this. If anything these scenarios may have the opposite problem: they push E_γ very low if the transition is extremely steep. For example with 10^9 the appropriate normalization would require $T_0 = 1 GeV$, within the current horizon scale leaving the horizon at around the same energy scale. This might bring these scenarios within the reach of direct experimental test. Perhaps the study of high energy therm plasms as [22] could provide a direct measurement of the horizon at around the same energy scale. This might be contrasted with the pathologies known to plague some scenarios [23].

3 M odels So far we have concentrated on investigating a new mechanism for producing scale-invariance and on its phenomenology. We specifically avoided wedging it to any non-modellable (although this has to be done to solve the atness and other Big Bang problem). However we will happily exhibit some possible models realizing this mechanism. These should be seen as proof of concept.

For example, one can appeal to a scalar field, endowed with non-trivial kinetic terms [10,11,12,20], a suitable potential to recreate constant w (i.e. a scaling solution), and a varying c_α. The Lagrangian for such models has the form $L_0 = \frac{1}{2} \partial \phi \partial \phi - V(\phi)$. From the stress energy tensor we nd $p = \frac{1}{3} \text{diag}$ and $\rho = 2\phi K_{XX} + \phi \rho$, i.e. ρ depends on both K and V.

In contrast the speed of sound is given by:

$$c_s^2 = \frac{\rho X}{\rho + 2 P X X}$$

(10)

ie. it depends only on K. For any power-law function $K(X)$ we can always nd a power-law potential $V()$ that ensures a constant w (scaling solution). An example is:

$$L_0 = \frac{1}{2} \partial \phi \partial \phi - \frac{1}{3} \phi^2$$

(11)

for which one can nd a consistency relation between parameters X, m, as well as initial conditions so that constant w solutions, for any w, can be generated. As is well known this model has an in nite speed of sound c_α (cf. Eqn. (10)): it's the so-called cuspon $[13,14]$. But if we now add to L_0 a new term $L_1 = X (X = X)^{n \frac{1}{1 - n} \text{with } n < 1 - 2}$ this term will sub-dominate when X, so that the initial constant w solution is still valid in this regime. However c_α will no longer be in finite, and using Eqn. (10) we nd $\phi^2 = \frac{1}{2} + \frac{n}{2}$, Thus for $n = 1 - 2$ we have c_α / m^2, as required for scale-invariance. Under them all initial conditions the more extreme $w = 1$ in it would have to be considered. Note that the theory has to contain a cut-off at low X ensuring that the kinetic term become linear in X at low X (or else the field should decay into non-alm matter).

This is only an illustration, but it highlights the limitations of standard therm dynamical arguments relating c_α and w. For hydrodynamical α $w = p$, whereas $c_s^2 = p$. If the in this expression is an adiabatic partial derivative and the background also evolves adiabatically [13,14] we must have $w = \sqrt{1 + w} (c_s^2 w)$, which results from $\rho = (c_s^2 w)$, itself a simple rearrangement of:

$$c_s^2 = \frac{\rho}{\rho + 2 P X X}$$

(12)

These relations contradict the assumptions in our perturbation calculation (w cannot be constant), however they are not violated by scalar elds endowed with a potential, as in the example just presented, or more prosaically in the cases of in action or quintessence (for which $c_s = 1$ but w can be anything).

Once this is noted there is no reason not to consider general forms of matter w in c_α and w regarded as independent variables [13]. Even with these generalized α the evolution may be non-adiabatic [14] either for theuctations, the background, or both, thereby violating [13]. If the background evolves adiabatically there must be entropy production $p = p c_s^2$, in order to have a constant w and a varying c_α. Specifically, the conditions of our calculation are if $\alpha > 1$, which can be seen as the appropriate \textquotedblleft non-adiabatic condition	extquotedblright.

It is also possible that a more complicated solution to [4], allowing for a varying w satisfying [12] and using the proposed variation c_α, mechanism, still nds a niche for scale-invariance. This possibility is currently under consideration, for example in the context of adaptations of the Chaplygin gas [26] (or generalizations of the work in [24,23]). The mathematical aspects of such models is considerably less straightforward, but there is one case where a simple solution may be found. If the initial conditions are the a priori discussed above, then we should have a step function in c_α in order to obtain scale-invariance (or require 1). Let this step in c_α happen at $t = \gamma$, and take $c_\alpha = \alpha$ (for γ into $c_\alpha = \alpha$ (for γ into γ). Integration of Eqn. [12] leads to $w = c_\alpha^2 + (c_s^2 - \gamma) / \gamma (1 - \gamma)$ (for γ) showing that in this case we can ignore variations in w while c_α is changing, enforcing the conditions for our calculation while complying with [12]. Thus the calculations presented do not need to be modified if therm al initial conditions are used to obtain scale-invariance; in contrast with quantum initial conditions (and c_α / γ), for which Eqn. [12] implies $w = c_s^2$, so that a whole new calculation is warranted.

We note that causality constraints [13,20] are bound to be model dependent. They don’t aect bimetric and cuspton models (see discussion in [13,20,31]), or more general essence models if they’re seen as bimetric theories [31]. It may be that one generally needs to embed $c_\alpha > 1$ in bimetric VSL in order to prevent causal violations, but the instantaneous change required in them all scenarios could open up other possibilities. But it could
also be that VSL is not required to resolve the causality paradoxes [22].

4. Conclusions In summary we have revisited VSL scenarios with reference to structure formation [23] in the context of what we hope is a simpler framework: a varying speed of sound. In VSL's initial formulation [3,4] the idea was to have increased symmetry as the Universe cooled down, transitioning from a Galilean Universe (with in finite speed of light) to the near Lorentzian Universe we see today. Obtaining a well-behaved formulation of such scenarios proved challenging, particularly under hard breaking of Lorentz invariance (for instance the issue of gauge choice became a physical one, and arbitrariness ruled). Machian scenarios, where the constants of nature evolve along with the Universe, as a power of a were also considered [4,22]. It is ironic that, as shown in this paper, them an and quantum initial conditions provide room for a phase transition [3,4] and a Machian scenario [1], respectively.

How can we understand our results heuristically? In in action a suitable heuristic can be obtained by noting that the curvature = $v=2z$ moves outside the horizon and that inside the horizon v becomes a regular Minkowski scalar field. The same is true in our scenario. In in action one has to match free oscillating modes of the form $v = 2k$ inside the horizon with $F(k)/k$ outside the horizon. The matching is done when $k = 1$ and therefore requires $z/\epsilon = 1$ for scale-invariance: a near de Sitter background. Here a similar argument can be made, but now inside the horizon modes have the well-known WKB form $v = c_k k/\epsilon = c_k k$, resulting from the variation in their frequency $c_k = \epsilon c_k$. These have to be matched with $F(k)/k$ outside the sound horizon, and the matching done when $c_k = 1$. Thus we should have $a^2 = 1/\epsilon$, resulting in the general condition [4]. In both cases study of the two extreme regimes (large and small) followed by suitable matching is enough to infer the final result. (Those conversant with Eqn. [29] say, from in action, or “essentially” will also quickly see why c_a / c_ϵ leads to scale-invariance.)

Are there any striking observational differences between this mechanism and in action? Deviations from $n_s = 1$ can be easily obtained in this scenario, so we do not expect striking differences in terms of observational quantities. However in the simple models we have considered the horizon problem remains unsolved for gravitational waves and so we do not expect any tensor modes. This is to be contrasted with in actionary modes with $c_a > 1$ where the tensor to scalar ratio is actually enhanced [11]. This feature may be bypassed, say in more complex bi-metric theories, a matter we are currently investigating. Concrete in large ensembles, such as the bi-metric VSL theory, have also to be considered if one wants to address the other problems of Big Bang cosmology.

I’d like to thank C. Amendiz-Picon, C. Contaldi, R.B. Brandenberger, P. Ferreira, A. Liddle, Y. Piao and A. V'akman for helpful comments.