O ($\frac{\alpha}{\pi}$) corrections to semi-leptonic decay $b \to c \ell_1$

Kirill Melnikov

Department of Physics and Astronomy,
University of Hawaii,
Honolulu, HI, D 96822

We compute the next-to-next-to-leading order (NNLO) QCD corrections to $b \to c \ell_1$ decay rate at a fully differential level. Arbitrary cuts on kinematic variables of the decay products can be imposed. Our computation can be used to study the NNLO QCD corrections to the total decay rate as well as to the lepton energy, hadronic invariant mass and hadronic energy on axis and to incorporate those corrections into global fits of inclusive semi-leptonic B-decays.

PACS numbers:

I. INTRODUCTION

Inclusive semi-leptonic decays of B-mesons into charged final states are benchmark processes at B-factories. Because of relatively large rates and clean experimental signatures, these decays may be studied with great precision. On the other hand, theoretical description of semi-leptonic B decays is robust thanks to the Operator Product Expansion (OPE) in inverse powers of the b-quark mass m_b. The application of the OPE to semi-leptonic B-meson decays leads to the conclusion that both the total decay rate and various kinematic distributions can be described by power series in $\frac{\alpha}{\pi} m_b$. For a heavy b-quark, the decay rate $B \to X_{c\ell} \ell_1$ coincides with the rate computed at the quark level. For realistic values of bottom and charm masses, a few non-perturbative matrix elements that enter at order ($\frac{\alpha}{\pi} m_b$)n, $n = 2;3$ are accounted for in existing theoretical predictions.

In recent years, any measurable quantities of $m_{c\ell}$ of charged lepton energy and hadronic invariant mass in $B \to X_{c\ell} \ell_1$ decays have been performed by BABAR, BELLE, CLEO, CDF and DELPHI. Comparison of these experimental results with theoretical predictions for corresponding observables leads to the determination of the Cabibbo-Kobayashi-Maskawa (CKM) matrix elements V_{cb}, bottom and charm quark masses and a number of non-perturbative parameters such as $\frac{\alpha}{\pi}$ and $\frac{\alpha}{\pi} m_b$. Typical precision claimed in these analyses is about one percent for V_{cb} and m_b and a few percent for m_c and non-perturbative matrix elements $\frac{\alpha}{\pi}$.

To achieve such precision, advances in theoretical understanding of semi-leptonic B-decays were necessary, including subtle interplay between perturbative and non-perturbative physics and significant developments in technology of multi-loop computations. While one-loop corrections to both $b \to c \ell_1$ total decay rate and a number of important differential distributions are known since long, it is interesting to remark that phenomenologically relevant triple differential distribution in charged lepton energy, lepton invariant mass and hadronic invariant mass was computed through $O(\frac{\alpha}{\pi})$ only a few years ago. This fact illustrates the complexity of perturbative calculations, when massive particles are involved, at a fully differential level.

Given the precision of available experimental measurements, good understanding of non-perturbative effects and a fairly large value of the strong coupling constant at m_b, it is expected that $O(\frac{\alpha}{\pi})$ corrections to $b \to X_{c\ell} \ell_1$ decays are required for a consistent theoretical description. However, as was realized long ago, technical complexity of such an endeavor is daunting. To simplify the problem, $O(\frac{\alpha}{\pi})$ corrections to $b \to X_{c\ell} \ell_1$ were computed in three specific kinematic points. These results were used in Ref.13 to estimate the NNLO QCD corrections to $b \to X_{c\ell} \ell_1$. Unfortunately, such a description is necessarily limited in its scope even for the total rate and a generalization of such an approach to more differential quantities, such as lepton energy and hadronic invariant mass and energy, is clearly out of question.

On the other hand, a subset of the NNLO QCD corrections, the BLM corrections, received significant attention recently. The BLM corrections are associated with the running of the strong coupling constant; they are potentially important since the QCD -function is large. For B decays, however, the BLM corrections are known to be modest if proper definition of quark mass is adopted and judicious choice of the renormalization scale in the strong coupling constant is made. The BLM effects are the easiest NNLO effects to calculate since they can be obtained from a one-loop computation if the latter is performed with a non-vanishing gluon mass.
For this reason, in the past, the BLM corrections to $b! c\bar{l}_1$ were calculated for the total rate and various kinematic events [18,21]. However, the NNLO QCD corrections beyond the BLM approximation, for which genuine two-loop computations are required, remain missing.

Calculation of these two-loop corrections became possible recently thanks to developments in numerical approaches to multi-loop computations [23]. These new techniques bene t from the absence of mass hierarchy in the problem which is the case for $b! c$ decays, since $m_{c\bar{l}}$ is above m_q and charm quarks are close. The possibility to use the approach of Ref. [23] to describe decays of charged particles was recently pointed out in [24] where electron energy spectrum in muon decay was computed through second order in the perturbative expansion in QED.

The goal of this Letter is to present the computation of $O(\alpha^3\alpha_s)$ corrections to $b! X\to l_1$ decay rate at a fully differential level. Our results can be used to calculate arbitrary observables related to inclusive $b! c$ transition through NNLO in QCD. For example, second order QCD corrections to such popular observables as lepton energy, hadronic invariant mass and hadronic energy in $m_{c\bar{l}}$ can be studied in dependence of the cut on charged lepton energy. Inclusion of the results of our computation into global fits should lead to a reduction of the theoretical uncertainty in the determination of γ_{cb}, the bottom and charm quark masses and the non-perturbative parameters that contribute to the decay rate.

II. COMPUTATION

In this Section, we set up our notation and brie y describe technical aspects of the computation. A detailed description of the method can be found in [21,22].

Consider the decay $b! X\to l_1$ where the final state lepton is massless. The differential decay rate can be written as
\begin{equation}
\frac{d}{\Gamma} = \frac{G_F^2\gamma_{cb}^2}{192\pi} \int_{F_0} \frac{dF_0 + a dF_1 + a^2 dF_2}{192\pi} ;
\end{equation}
where G_F is the Fermi constant, m_b is the b-quark pole mass, $a = \gamma_{l_1}$ and γ_{l_1} is the \overline{MS} strong coupling constant defined in the theory with $\alpha(s) = \alpha(s)$ and α independent at the scale m_b. For numerical computations, we use $m_b = 4.66\ GeV$ and $m_c = 1.55\ GeV$. While these numerical values for the quark masses may not be justi ed in the pole scheme, our choice is motivated by an eventual necessity to transform the pole scheme computation to a more suitable scheme. The values of the quark masses that we employ in this Letter correspond to the central values of $m_{b,c}$ in the \overline{MS} scheme [23], defined in recent ts to inclusive semi-leptonic B-decays [2,18].

To calculate the functions $d\Gamma_0$, we have to account for di erent processes. At next-to-leading order, $d\Gamma_0$ is computed by squaring the matrix element of the process $b! c\bar{l}_1$ and summing over spins and colors, as appropriate. At next-to-leading order, $d\Gamma_1$ receives contributions from γ_{γ} transitions to $b! c\bar{l}_1$ and from single gluon emission process $b! c\bar{l}_1 + g$. To compute $d\Gamma_2$, we require two-loop $O(\alpha^2\alpha_s)$ corrections to $b! c\bar{l}_1$, one-loop $O(\alpha\alpha_s)$ corrections to $b! c\bar{l}_1 + g$ and the double real-emission corrections $b! c\bar{l}_1 + X$, where X refers to two quarks or a quark-antiquark pair or a ghost-antighost pair. We will refer to these corrections as double virtual, real-virtual and double-real, respectively. In addition, we have to account for a family of renormalization constants, when computing higher order corrections. We do not include the process $b! c\bar{l}_1 + g$ in our calculation since the energy release in this process is so small that it can not be treated perturbatively.

To calculate the NNLO QCD corrections, the method for multi-loop computations developed in [21,22] is employed; in those references a detailed discussion of many technical issues relevant for the current computation can be found. One technical aspect that we will prove upon in the future is how virtual corrections to single gluon emission process $b! c\bar{l}_1 + g$ are treated. In Refs. [21,22], these corrections were dealt with by analyzing the master integral in the numerical evaluation of those. This method, however, becomes impractical quite rapidly, since the center of mass for external particles or the mass of $m_{c\bar{l}}$ in the problem increases. In principle, the real-virtual corrections can be computed numerically, but for heavy-to-light decays this is complicated because some Feynman diagrams develop in the quark mass.

The result of this Letter is to present the computation of corrections to $b! c\bar{l}_1$ decay rate at a fully differential level. Our results can be used to calculate arbitrary observables related to inclusive $b! c$ transition through NNLO in QCD. For example, second order QCD corrections to such popular observables as lepton energy, hadronic invariant mass and hadronic energy in $m_{c\bar{l}}$ can be studied in dependence of the cut on charged lepton energy. Inclusion of the results of our computation into global fits should lead to a reduction of the theoretical uncertainty in the determination of γ_{cb}, the bottom and charm quark masses and the non-perturbative parameters that contribute to the decay rate.
Because couplings of quarks and leptons to the charged current are chiral, proper treatment of the Dirac matrix in $d = 4$ dimensions is important. While this problem can be avoided in the computation of the total decay rate, for some differential quantities it becomes an issue. We use the approach of Ref.\cite{22} where a consistent formalism for extending the axial vector current to d-dimensional space is given.

Our computation can be checked in a number of ways. First, the double-virtual, real-virtual and double-real corrections are divergent when taken separately but these divergences must cancel in physical observables. We have checked these cancellations for a variety of observables, and the inclusive rate to various $m_c m_b$ cuts on both charged lepton energy and the hadronic invariant mass. Second, in the limit $m_c \to m_b$, the NNLO QCD corrections to the decay rate $b^\to c\ell\bar{\nu}$ are described by the so-called zero-recoil factors computed through $O(\frac{m_c}{m_b})$ long time ago \cite{23}. We have checked that in the limit $m_c \to m_b$, our computation reproduces the zero-recoil factors.

Third, we can use published results for the BLM corrections to the total rate and charged lepton energy, hadronic invariant mass and hadronic energy $m_c m_b$ events $\cite{22}$ to check parts of our computation related to massless quark contributions to gluon vacuum polarization. Finally, considering the limit $m_c \to m_b$, we reproduce the NNLO QCD corrections to $b^\to c\ell\bar{\nu}$ decay rate reported in Ref.\cite{22}.

III. RESULTS

We are now in position to discuss the results of our computation. We consider a number of observables, mostly for illustration purposes. We present the results in the pole m_c mass scheme and use the strong coupling constant renormalized at the scale m_b. While the pole mass scheme is known to be an unfortunate choice in χQCD as the convergence of the perturbative expansion is concerned, we decided to present our results in this way for clarity. However, we emphasize that the impact of the NNLO QCD corrections, computed in this paper, on the determination of γ_{cb} heavy quark mass and the non-perturbative parameters, including kinetic and chromo-magnetic heavy quark operators, can only be assessed once the pole mass scheme is abandoned in favor of a more suitable quark mass definition and the NNLO QCD corrections are included into the.

To present the results, we follow Ref.\cite{22} and define

$$L_n(E_{\text{cut}}) = \frac{h(E_{1}=m_b)\ell^0}{\ell d_{0}} \prod_{i=1}^{n} \ell(E_{i} \to E_{\text{cut}}) \ell d_{0}$$

$$H_n(E_{\text{cut}}) = \frac{h(E_{1}=m_b)\ell^0}{\ell d_{0}} \prod_{i=1}^{n} \ell(E_{i} \to E_{\text{cut}}) \ell d_{0}$$

where h denotes average over the phase-space of all final state particles, $E_{i,n}$ is the energy of the charged lepton or hadronic system in the b-quark rest frame and

$$d_{0} = \frac{G_{F} \gamma_{\ell 0}^{2} m_{b}^{4}}{192 \pi^{3}}$$

The lepton energy m_c moments introduced in Eq.\cite{22} can be written as

$$L_n = L_n^{(1)} + a L_n^{(2)} + \cdots$$

where a is the difference of the complete $O(\frac{m_c}{m_b})$ correction and the BLM correction computed with $N_f = 3$.

<table>
<thead>
<tr>
<th>n</th>
<th>E_{cut} (GeV)</th>
<th>$L_n^{(1)}$</th>
<th>$L_n^{(2)}$</th>
<th>$L_n^{(3)}$</th>
<th>$L_n^{(4,\text{BLM})}$</th>
<th>$L_n^{(5,\text{BLM})}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

TABLE I: Lepton energy m_c moments.

In Tables 11, the results for lepton energy and hadronic energy m_c moments with and without a cut on the lepton energy are displayed. The total rate of $L_n^{(0,1)}$, $\gamma_{\ell 0}^{2}$ and $L_n^{(2,3,\text{BLM})}$, $\gamma_{\ell 0}^{2}$ is about 0.1 - 0.2% whereas the numerical accuracy of $L_n^{(2,3,\text{BLM})}$, $\gamma_{\ell 0}^{2}$ is about 1 - 3%. It is possible to improve on the accuracy but this requires somewhat large CPU times. Nevertheless, for all practical applications the achieved numerical accuracy is sufficient.

There are a few interesting observations that follow from Tables 11. Quite generally, the non-BLM corrections and the BLM corrections have opposite signs given their relative magnitude and the value of a, it is easy to see that the $O(\frac{m_c}{m_b})$ corrections are about twenty percent smaller than what the BLM-based estimates suggest. The relative magnitude of the non-BLM and BLM corrections is largely independent of n and of whether the lepton energy cut is applied.

<table>
<thead>
<tr>
<th>n</th>
<th>E_{cut} (GeV)</th>
<th>$H_n^{(0)}$</th>
<th>$H_n^{(1)}$</th>
<th>$H_n^{(2,3,\text{BLM})}$</th>
<th>$H_n^{(5,\text{BLM})}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.0334</td>
<td>-0.5778</td>
<td>0.0318</td>
<td>1.02</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0.04111</td>
<td>-0.23456</td>
<td>0.0343</td>
<td>0.862</td>
</tr>
</tbody>
</table>

TABLE II: Hadronic energy m_c moments.

First row in Table 11 provides the NNLO QCD corrections to the total decay rate $b^\to c\ell\bar{\nu}$ in the pole.

mass scheme. Such corrections were estimated earlier in Ref.\[13\]. Note that in Ref.\[13\] the numerical results are given for the ratio of quark masses \(m_c=m_b=0.3\) and also the BLM corrections are defined with \(N_f=4\), rather than \(N_f=3\). Calculating the non- BL M corrections for the set of parameters employed in \[13\] we find \(L_0^{(2)} = 1.73\) which is to be compared with the estimate \(L_0^{(2)} = 0.9(3)\), reported in \[13, 14\].

The results of Ref.\[13\] were used in Ref.\[23\] to estimate the impact of the QCD corrections on \((B \to Xc\bar{l})\). In Ref.\[23\] the perturbative corrections to \(B \to \ell\) decay rates are described by a factor \(A_{\text{pert}}\), defined as

\[
(b \to Xc\bar{l}) = A_{\text{pert}}(r) d \omega_l i;
\]

where \(r = m_c=m_b\). \(A_{\text{pert}}\) depends on the adopted scheme for the quark masses. In the kinetic mass scheme, \(A_{\text{pert}}(0.25) = 0.908\) is quoted. To arrive at this result, Ref.\[23\] uses \(L_0^{(2)} = 1.4\) which is about a factor 2.5 smaller than the corresponding entry in Table\[1\]. Correcting for this discrepancy, we derive

\[
A_{\text{pert}}(0.25) = 0.919;
\]

We believe that this value for the perturbative renormalization factor in the kinetic scheme for \(m_c=m_b=0.25\) should be employed in global fits of semileptonic \(B\) - decays.

Further analysis of entries in Table\[1\] suggests that the QCD corrections in general and the non- BL M corrections in particular most likely affect the overall normal alization rather than shapes of kinematic distributions. This follows from the approximate scale independence of \(L_n^{(1,2)} = L_n^{(0)}\) of \(n\) and also of whether or not the cut on the lepton energy is imposed. It is therefore possible to speculate that the non- BL M corrections computed in this Letter will only affect the extraction of \(Y_{cbj}\) whereas their influence on, e.g., the s-quark mass determination will be minor. Concerning the \(Y_{cbj}\), the increase of the perturbative renormalization factor \(A_{\text{pert}}\) by 10 \(\times 10^{-3}\) in place of the change in the value of \(Y_{cbj}\) extracted in Ref.\[23\] by about 0.25 \(\times 10^{-3}\). On the other hand, since non- BL M corrections were not included in Ref.\[23\], the shift in the value of \(Y_{cbj}\) derived in that reference will likely be larger by a factor \(0.5 \times 10^{-3}\). Although expected shifts in central values of \(Y_{cbj}\) are not large, we stress that they are comparable to uncertainties in \(Y_{cbj}\) derived in the global fits \[4, 5\].

IV. CONCLUSIONS

In this Letter, the computation of the NNLO QCD corrections to the fully di-jet inclusive \(B\to\ell\) decay rates is reported. The di-jet inclusive nature of the computation makes it possible to apply arbitrary cuts on the kinematic variables of final state particles. This result allows to extend the existing determinations of the CKM matrix elements \(Y_{cbj}\) from bottom to charm quark masses and the non-perturbative parameters \(^2\) and \(^3\) from global fits to semileptonic decays of \(B\)-mesons, by including the NNLO QCD corrections exactly. We note that for a consistent high-precision analysis of semileptonic \(B\)-decays, also \(O(\alpha_s)\) corrections to Wilson coefficients of non-perturbative kinetic and chromodynamics are required. Such a correction is available for the kinetic operator \(2\) but is still missing for the chromodynamics.

We presented a few results for charged lepton energy \(m\) and hadronic energy \(m\) on events with and without a cut on the lepton energy in the pole mass scheme \(e\). These results suggest that the magnitude of the non-BLM corrections does not depend strongly on the kinematics; the non-BLM corrections are approximately \(2\%) for all the \(m\) events considered. We therefore expect that the non-BLM NNLO QCD corrections will only affect the determination of \(Y_{cbj}\) by about \(0.1\%\) whereas their impact on the quark masses and the non-perturbative parameters will probably be quite small.

As a final remark, we note that it would be interesting to extend this calculation to two transitions. First, one may consider the semileptonic decays of \(B\)-mesons into massive leptons. Such an extension, relevant for the description of \(B\to X c^+\ell^-\) decay is straightforward. Second, it is interesting to extend the current calculations to allow for a massless quark in the final state. This is a di-curl problem but it is highly relevant for the determination of the CKM matrix element \(Y_{ubj}\) from semileptonic \(B\) to \(u\) transitions.

Aknow ledgments: Discussions with F. Petriello and useful correspondence with T. Becher are gratefully acknowledged. I would like to thank A. Czarniecki and A. Pak for informing me about their results prior to publication. This research is partially supported by the DOE under grant number DE-FG-03-94ER-40833.

5

[14] The value of $L_0^{(2)}$ quoted in Eq. (10) of Ref. [13] is 1.4 but this value is in error due to an unfortunate m mistake in the interpolating procedure. Correcting for the m mistake, one obtains $L_0^{(2)} = 0.9(3)$.

