THE EXO-PLANETARY SYSTEM OF 55 CANCRI
AND THE TITIUS-BODE LAW

Arcadio Poveda\(^1\) and Patricia Lara\(^2\)

Received 2008 February 13; accepted 2008 February 26

RESUMEN

El reciente descubrimiento de un quinto planeta ligado a 55 Cancri (Fischer et al. 2007) nos ha motivado a investigar si este sistema exo-planetario se ajusta a alguna forma de la ley de Titius-Bode (TB). Encontramos que una simple relación TB exponencial reproduce muy bien los cinco semiejes mayores observados si se asigna el número 6 al planeta con el semieje más grande. Esta forma de contar deja un vacío en la posición \(n = 6\), una situación curiosamente reminiscente a la ley TB en nuestro propio sistema planetario, antes del descubrimiento del Ceres. La aplicación de una ley T-B exponencial a 55 Cancris nos permite predecir la existencia de un planeta con \(a = 0.781\) AU y con un periodo de \(P = 260\) días localizado en la gran brecha entre \(a = 0.781\) AU (\(P = 260\) días) y \(a = 5.77\) AU (\(P = 5218\) días) correspondientes a los dos más grandes periodos observados. Con menos certeza, también predecimos un séptimo planeta en \(a = 15\) AU con \(P = 62\) años.

ABSTRACT

The recent discovery of a fifth planet bound to 55 Cancri (Fischer et al. 2007) motivated us to investigate if this exo-planetary system follows some form of the Titius-Bode (TB) law. We found that a simple exponential TB relation reproduces very well the observed major semiaxes, provided we assign the orbital \(n = 6\) to the largest. This way of counting leaves empty the position \(n = 5\), a situation curiously reminiscent of the TB law in our planetary system, before the discovery of Ceres. The application of an exponential TB relation to 55 Cancri allows us to predict the existence of a planet at \(a = 0.781\) AU with a period of \(P = 260\) days located within the large gap between \(a = 0.781\) AU (\(P = 260\) days) and \(a = 5.77\) AU (\(P = 5218\) days). With less certainty, we also predict a seventh planet at \(a = 15\) AU, with \(P = 62\) years.

Key Words: planetary systems | planets and satellites: general | stars: individual (55 Cancri)

1. INTRODUCTION

The two hundred year old saga of the Titius-Bode law is well known (see Neso 1972 for a well documented review). Since the discovery by Bode, in 1782, that the Titius relation "predicted" the major semiaxes of Uranus, a frantic search for "the lost planet" at position \(n = 5\) was initiated at various European observatories. The discovery of Ceres by Piazzi on the night of January 1st, 1801, with the major semiaxis predicted by TB, and the fact that the satellites of Jupiter, Saturn and Uranus also follow a TB relation, initiated a debate about the meaning of TB which is still alive nowadays. Is the TB law a matter of chance (Lynch 2003; Dubrulle & Graner 1994; Neslušan 2004)? Is it consequence of the early physical conditions in the protoplanetary disk (Graner & Dubrulle 1994)? Is it a refection of a process of dynamical relaxation in a system of planets subject to their mutual gravitational perturbation (Hayes & Tremaine 1998; Hills 1970; O vanden 1975)?

Because of the previous considerations and in view of the growing number of multiple exo-planetary systems, we decided to check whether the
TABLE 1

<table>
<thead>
<tr>
<th>Properties of 55 Cancri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent visual magnitude</td>
</tr>
<tr>
<td>Hipparcos parallax</td>
</tr>
<tr>
<td>Distance</td>
</tr>
<tr>
<td>Absolute visual magnitude</td>
</tr>
<tr>
<td>Effective Temperature</td>
</tr>
<tr>
<td>Rotation velocity vsini</td>
</tr>
<tr>
<td>Luminosity</td>
</tr>
<tr>
<td>Spectral type</td>
</tr>
<tr>
<td>Mass</td>
</tr>
</tbody>
</table>

55 Cancri system, for which a fifth planet has been recently announced (Fischer et al. 2007), follows the TB law.

The traditional TB relation is essentially a geometric progression in the number n, the running number of a planet according to its distance to the central star. This geometric relation can be represented by an exponential in n.

We tried to represent our planetary system by an exponential in n and found a good fit. Having verified that an exponential t for the Solar System was a good approximation we tried to represent the 55 Cancri system also by an exponential TB. The exponential t to the 55 Cancri system was very good (with a coefficient of correlation R^2 = 0.997) when we assigned the number n = 6 to the largest major semi-axis observed. The vacancy left at n = 5 leads us to propose the existence of a new planet with a major semi-axis a = 2 AU.

2. THE 55 CANCRI SYSTEM

The star 55 Cancri (55 Cnc = HD 75732 = HR 3522 = HIP 43587) is a well observed nearby star; in Table 1 we list some of its parameters taken from the paper by Fischer et al. (2007). In Table 2 the observed parameters for its planetary system are listed, including the year of discovery of each planet. Note in this table the enormous spacing between planets n = 4 and n = 5, whose major semi-axes are, respectively, less than 1 AU and more than 5 AU, and whose periods are 260 days and 5218 days.

3. THE TITIUS-BODE LAW

The equation

a = 0.4 + 0.3 \times 2^n \quad (a in AU) \quad (1)

represents the classical Titius-Bode law. Note the peculiar ordering system: Mercury corresponds to n = 1, Venus to n = 0, ...

\[a = 0.1912 \times e^{0.5594n} \]

R^2 = 0.992

Fig. 1. An exponential TB t to the Solar System. This t includes major semi-axes from Venus (n = 2) up to Neptune (n = 9). Note that the extrapolation of equation (n = 1, gives a(1) = 0.035 AU, close to the observed value a = 0.037.

In the equation

a = 0.1912 \times e^{0.5594n} ; \quad (2)

we present our best exponential t to the Solar System excluding Mercury and Pluto, but including Uranus and Neptune. Our exponential TB t to the Solar System excludes Mercury because in the traditional TB relation not only it is given an orbital number n = 1, but also the value of the constant (0.4) is arbitrarily chosen to give the approximately correct values of a for Mercury and the Earth. At the other end of our planetary system we exclude Pluto not only because of its pathological orbit, but also because we do not know if it is an object from the Kuiper belt, captured into the region of the outer planets, or a satellite ejected from Neptune; in any case its present orbit has followed a dynamical evolution different from that of the rest of the planets.

In Figure 1 we plot equation (2), and we mark the position of the orbit in n = 1. Note that although equation (2) does not include the value of a for Mercury, it predicts orbital scales close to the observed ones up to Neptune, n = 9. The traditional TB relation gave a good fit up to Uranus, but a very poor one for Neptune. Our exponential TB relation gives a poor representation for Uranus, but a good one for Neptune.

4. THE TITIUS-BODE AND THE 55 CANCRI EXOPLANETARY SYSTEM

If we plot, as we do in Figure 2, the major semi-axes of the five known planets versus n, we note that...
TABLE 2
OBSERVED PROPERTIES OF THE 55 CANCRI EXO-PLANETARY SYSTEM

<table>
<thead>
<tr>
<th>n</th>
<th>1</th>
<th>2</th>
<th>3 (1)</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed semi-major (AU)</td>
<td>0.038</td>
<td>0.115</td>
<td>0.24</td>
<td>0.781</td>
<td>5.77</td>
</tr>
<tr>
<td>Period (days)</td>
<td>2,817</td>
<td>14,651</td>
<td>44,344</td>
<td>260</td>
<td>5218</td>
</tr>
<tr>
<td>Msini (Jovian masses)</td>
<td>0.034</td>
<td>0.024</td>
<td>0.169</td>
<td>0.144</td>
<td>3.835</td>
</tr>
</tbody>
</table>

* Taken from Fischer et al. 2007.

55 Cancri

\[a = 0.0148e^{0.9781n} \]
\[R^2 = 0.990 \]

Fig. 2. An exponential TB t to the four closest planets in the 55 Cancri system. Note that the extrapolation to n = 6 corresponds to a major semi-axis close to the observed one.

55 Cancri

\[a = 0.0142e^{0.9975n} \]
\[R^2 = 0.997 \]

Fig. 3. The TB exponential t to the five observed planets of 55 Cancri, where we count the farthest observed one as n = 6. Planets n = 5 and n = 7, predicted by TB, are shown as open circles.

In the present paper we showed that the exponential Titius-Bode law holds for the 4 closest planets of 55 Cancri and that its extrapolation to well the major semi-axes of the fifth planet, provided it is assumed that it occupies the sixth orbital.

Having found another planetary system where the Titius-Bode law is valid makes it rather unlikely that it is due to chance.

The Titius-Bode law allows us to predict two new planets for the 55 Cancri system:

- a = 2.0 AU P 31 years
- a = 15.0 AU P 62 years

5. CONCLUSIONS

In the present paper we showed that the exponential Titius-Bode law holds for the 4 closest planets of 55 Cancri and that its extrapolation to well the major semi-axes of the fifth planet, provided it is assumed that it occupies the sixth orbital.

The Titius-Bode law is valid for the exo-planetary system 55 Cancri, and may be valid for other exo-planetary systems as well.
TABLE 3
THE TITIUS-BODE FIT TO THE 55 CANCRI SYSTEM AND THE TWO NEW PLANETS

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0.038</td>
<td>0.115</td>
<td>0.24</td>
<td>0.781</td>
<td>5.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>10^6</td>
<td>10^6</td>
<td>4.5</td>
<td>10^5</td>
<td>0.07</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Titius-Bode (AU)</td>
<td>0.039</td>
<td>0.104</td>
<td>0.283</td>
<td>0.768</td>
<td>2.08</td>
<td>5.643</td>
<td>15.3</td>
</tr>
<tr>
<td>Period (days)</td>
<td>2.817</td>
<td>14.651</td>
<td>44.344</td>
<td>260</td>
<td>1130</td>
<td>5218</td>
<td>22530</td>
</tr>
<tr>
<td>1</td>
<td>10^4</td>
<td>7</td>
<td>10^7</td>
<td>7</td>
<td>10^3</td>
<td>11</td>
<td>230</td>
</tr>
</tbody>
</table>

The existence of two hot Jupiter-like planets (n = 1;2), in this system opens the problem of how to understand the persistence of the Titius-Bode law against the phenomenon of planet migration.

The validity of TB for the 55 Cancri exoplanetary system does not yet help to understand the physics behind it. However, it may help to discover new planets by paying special attention to periodic signals in the radial velocities at values close to the predicted periods.

REFERENCES
Hayes, W., & Tremaine, S. 1998, Icarus, 135, 549
Ovenden, M. W. 1975, Vistas in Astron., 18, 473