General relativistic simulations of magnetcized binary neutron star mergers

Yuk Tung Liu,1 Stuart L. Shapiro,1 Zachariah B. Etienne,1 and Katsuke Taniguchi2
1Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
2Department of Astronomy and NC SA, University of Illinois at Urbana-Champaign, Urbana, IL 61801

Binary neutron stars (NSNS) are expected to be among the leading sources of gravitational waves observable by ground-based laser interferometers and may be the progenitors of short-hard gamma-ray bursts. We present a series of general relativistic NSNS coalescence simulations both for unmagnetcized and magnetcized stars. We adopt quasiequilibrium initial data for circular, irrotational binaries constructed in the conformal thin-sandwich (CTS) formalism. We adopt the BSSN formulation for evolving the metric and a high-resolution shock-capturing scheme to handle the magnetohydrodynamcis. Our simulations of unmagnetcized binaries agree with the results of Shibata, Taniguchi and Uryu [1]. In cases in which the mergers result in a prompt collapse to a black hole, we are able to use puncture gauge conditions to extend the evolution and determine the mass of the material that has a disk. We find that the disk mass is less than 2% of the total mass in all cases studied. We then add a small poloidal magnetcic field to the initial conditions and study the subsequent evolution. For cases in which the remnant is a magnetcic black hole, we see measurable differences in both the amplitude and phase of the gravitational waveforms following the merger. For cases in which the remnant is a black hole surrounded by a disk, the disk mass and the gravitational waveforms are about the same as the unmagnetcized cases. Magnetcic fields substantially affect the long-term, secular evolution of a magnetcic black hole (driving "delayed collapse") and an accretion disk around a nascent black hole.

PACS numbers: 04.25.Dr, 04.25.dk, 04.30.-w

I. INTRODUCTION

There is great interest in studying the effects of magnetcic fields in relativistic astrophysics. Magnetcic fields are always present in astrophysical plasmas, which are usually highly conducting. Even if the initial magnetcic field is small, it can be amplified via magnetcic winding and other magnetcic instabilities (see, e.g., [2,3] for review). Neutron stars (NSs) have the strongest observed magnetcic fields (up to \(10^{15}\)G) among astrophysical objects [4]. The strong magnetcic fields result from gravitational collapse, which amplify the magnetcic fields in the core of the progenitor, and from various dynamo processes after the collapse (see, e.g., [5] for a review). Strong magnetcic fields in NSs may trigger observable events such as pulsar glitches and the emission of large bursts of gamma rays and X-rays as a soft gamma ray repeater. Magnetcic fields in a binary neutron star (NSNS) system may also influence the dynamics of the remnant after the NSNS merger.

Mergers of binary neutron stars (NSNSs) are expected to be among the leading sources of gravitational waves observable by ground-based laser interferometers. Observations of short-hard gamma-ray bursts (GRBs) suggest that a substantial fraction of them may be formed from mergers of NSNSs or mergers of neutron star-black hole binaries (BHNSs). Many theoretical models of GRBs engines consist of magnetcic accretion disks around a spinning black hole [6,7]. General relativistic magnetcohydrodynamcis (GRMHD) is necessary to model such systems.

The first two GRMHD codes capable of evolving the GRMHD equations in dynamical spacetimes were developed by Duez et al. [8] (hereafter DLSS) and Shibata & Sekiguchi [9] (hereafter SS). These codes are based on the BSSN (Baumgarte-Shapiro-Shibata-Nakamura) scheme to integrate the Einstein equations, a high-resolution shock-capturing (HRSC) scheme to integrate the MHD and induction equations, and a constrained transport scheme to enforce the "no-monopole" magnetcic constraint. Subsequently, Giacomazzo & Rezzolla [10] and Anderson et al. [11] developed similar codes. Our code (DLSS) and the code of SS have been used to study magnetcic fields in hypermassive neutron stars [12,13,14,15], magnetcic rotational collapse of massive stellar cores to neutron stars [16], and (unmagnetcized) coalescing BHNSs [17,18,19,20,21]. We have also used our code to study the magnetcic rotational collapse of massive stellar cores to black holes [22] as well as coalescing BH BHs [23], which are pure vacuum simulations. Shibata et al. have also performed simulations of (unmagnetcized) coalescing NSNSs [24,25,26,27].

Recently, Anderson et al. have used their code to study the coalescence of both unmagnetcized and magnetcized NSNSs [28,29]. In the unmagnetcized cases, they find an initial conquration in [28] that leads to prompt collapse to a black hole following the merger. The total (baryon) rest mass of their initial conquration is \(M_{0}^{(TOV)} = 1.0M_{0}^{(TOV)} = 23\), where \(M_{0}^{(TOV)}\) is the maximum rest mass of a nonrotating neutron star for the n = 1 polytropic equation of state (EOS) adopted in their simulation. This result seems to contradict the earlier finding of Shibata, Taniguchi & Uryu [1] that prompt...
black hole formation is possible for this EOS only if $M_{0} > 1.7 M_{\odot}$($^{(TOV)}$). We note, however, that the initial data used by Shibata et al. and Andersson et al. are different. Shibata et al. use quasiequilibrium initial data for binaries in nearly circular orbits constructed using the conformal thin-sandwich (CTS) method. In contrast, Andersson et al. set up the initial data by superposing boosted metrics of two spherical neutron stars. Andersson et al.'s initial data results in an orbital eccentricity of about 0.2 $^{(23)}$, whereas the eccentricities of the CTS initial data are < 0.015 according to a post-Newtonian analysis $^{(24)}$. We point out that a quasi-circular orbit is more realistic because gravitational radiation would have circularized the orbit long before the binary separation reaches a few NS radii. A ISO, a NS in a quasiequilibrium circular orbit will be distorted by tidal effects.

Andersson et al. report in $^{(27)}$ that a NSNS with the same EOS and masses as in $^{(23)}$ but with different initial separation leads to a hypermassive neutron star after the merger. Later, the star undergoes "delayed collapse" to a black hole due to gravitational radiation. This finding is also surprising. The total rest mass $M_{0} = 1.0 M_{0}$($^{(TOV)}$) is smaller than the mass in an NS of a uniformly rotating star (the supranuclear limit), $M_{sup} = 1.15 M_{0}$($^{(TOV)}$) $^{(25)}$. Hence the remnant cannot be a hypermassive NS, i.e. a NS whose mass exceeds the supranuclear limit. As a result, the star will be unstable to gravitational collapse only if a very large amount of angular momentum is removed. A priori, the expected outcome is that gravitational radiation removes only some of the angular momentum, the remnant acquires some of the original rotation, and the star settles down to a stable, stationary, rotating configuration.

To better understand the coalescence of NSNSs and the role of magnetic fields, we perform a new series of simulations using our BSSC code. As previously used, we consider three models, using the same EOS and initial data as in $^{(1)}$. Specifically, we study the irrotational binary model $^{(14)}$, $^{(16)}$ and $^{(18)}$ in $^{(1)}$. In models $^{(14)}$, $^{(16)}$, and $^{(18)}$, the rest masses of the two NSs are ≈ 0.855.

We repeat the calculations of Shibata, Taniguchi & Uryu $^{(3)}$ for unmagnetized NSNS mergers. Our results agree with those reported in $^{(3)}$. Model $^{(14)}$ results in a dynamically stable, di-rotationally hypermassive NS. For models $^{(16)}$ and $^{(18)}$, the mergers lead to prompt collapse to a black hole. The simulations in $^{(2)}$ are terminated soon after black hole formation because of grid stretching. We are able to follow the evolution using puncture gauge conditions (see, e.g. $^{(37,38)}$) until the system settles down to a quasi-equilibrium state. This allows us to estimate the disk mass around the black hole more accurately, and our results are again consistent with those estimated in $^{(2)}$. We next consider the magnetized cases. We add a poloidal field with strength $B = 10^{16} G$ inside each NS of the three NSNS models and follow the evolution. While such interior field strengths may be larger than the value expected for a typical NS, it is comparable to the strength inferred for magnetars $^{(34)}$ and is high enough to demonstrate the dynamical effects of a magnetic field, if any. For model $^{(14)}$, the merger again results in a di-rotationally hypermassive neutron star. We see observable di-merger in the magnetized case after the merger as magnetic fields are amplified. For model $^{(16)}$, the system collapses to a black hole after the merger as before, leaving negligiblenant mass left to form a disk. This result is unaffected by the presence of the magnetic field. For model $^{(18)}$, about 1.5% of rest mass is left to form a disk for both magnetized and unmagnetized cases. Gravitational waves from models $^{(16)}$ and $^{(18)}$ show only a slight difference in amplitude during the entire simulations. This is because the remnants quickly collapse to a black hole after the merger and magnetic fields do not have enough time to amplify and alter the dynamics of the uid substantially. This result is not surprising since the ratio of magnetic to gravitational potential energy is $E_{B} = \psi^{(4)}$ initially, and hence the magnetic fields are not expected to have an impact on the dynamics before they are amplified.

For models $^{(14)}$ and $^{(18)}$, magnetic fields are expected to act in the long-term secular evolution of the remnant. For the cases where the remnant is a hypermassive neutron star ($^{(14)}$), magnetic fields are crucial for driving the "delayed collapse" of the star $^{(13,14)}$, and the resulting remnant could be a central engine for a short-hard GRB $^{(15)}$. The effect of a magnetic field may be diminished whenever the merged hypermassive remnant develops a bar $^{(25,26)}$. The bar leads to dissipation of angular momentum by gravitational radiation and may result in delayed collapse on a time scale faster than that of the magnetic field's amplification. However, a bar does not develop for model $^{(14)}$. In general, the development of a bar depends on the NS EOS. For cases in which the remnant consists of a black hole surrounded by a disk (model $^{(18)}$), magnetic fields may produce turbulence in the disk via MHD instabilities and may generate ultrarelativistic jets $^{(32,33)}$. In this paper, we are primarily interested in studying the effect of the magnetic field during the late inspiral, merger and the early post-merger phases, so we do not follow the long-term evolution of the remnants. We have previously studied the long-term secular evolution of magnetized hypermassive NSs in $^{(13,15)}$ and the evolution of magnetized disks around rotating black holes in $^{(42)}$.

This paper is organized as follows. In Sec. $^{(17)}$, we briefly summarize the basic equations and their specification in our GRMHD scheme. In Sec. $^{(18)}$, we present the results of our simulations and compare them with those in $^{(1)}$. We summarize our results in Sec. $^{(19)}$ and comment on future directions.
The fundamental variables for the metric evolution are the spatial three-metric \(g_{ij} \) and extrinsic curvature \(K_{ij} \). We adopt the BSSN formalism to evolve \(g_{ij} \) and \(K_{ij} \). In this formalism, the evolution variables are the conformal exponent \(\Lambda = 12 \), the conformal 3-metric \(i^{-1} g_{ij} \), three auxiliary functions \(i^{-1} K_{ij} \), the trace of the extrinsic curvature \(K \), and the tracefree part of the conformal extrinsic curvature \(i^{-1} K_{ij} \). Here, \(\Lambda = \det(\Lambda) \). The full spacetime metric \(g \) is related to the three-metric by \(g = g_{\alpha\beta} n^\alpha n^\beta \), where the future-directed, timelike unit vector \(n \) normal to the time slice can be written in terms of the lapse and shift \(n \) and \(\kappa \). As for the gauge conditions, we adopt an advective \(\Lambda + \log \kappa \) slicing condition for the lapse and a second-order non-shifting-shift \(\Lambda + \Lambda \) as in our BHNS simulations.

The BSSN equations are evolved with fourth-order accurate spatial di erencing and upwinding on the shift-advection terms. We apply Sod's
merging wave boundary conditions to all BSSN variables, as in [20]. Our code is embedded in the Cactus parallelization framework [40], whereby our second-order-iterated Crank-Nicolson time-stepping is managed by the Molr, or method of lines, therein. We use the moving puncture technique to handle any black hole that may form after the merger of the NSNS. The apparent horizon of the black hole is computed using the ahf
merging
direct Cactus thorns [43]. Before an apparent horizon appears, we nd that adding a Hamiltonian constraint term to the evolution equation \(\kappa \) as in [43] leads to smaller constraint violation during the evolution. However, when a black hole appears, we remove this term as it eventually leads to unstable evolution.

The fundamental variables in ideal MHD are the rest-frame density \(\rho \), specific internal energy \(E \), pressure \(P \), four-velocity \(u \), and magnetic field \(B \) measured by a normal observer moving with a 4-velocity \(n \) (note that \(B \cdot n = 0 \)). The ideal MHD condition is written as \(u^i F_i = 0 \), where \(F \) is the electromagnetic (Faraday) tensor. The tensor \(F \) and its dual in the ideal MHD approximation are given by

\[
F = \frac{1}{2} F_{ij} u^i u^j ;
\]

where \(F_{ij} \) is the Levi-Civita tensor. Here we have introduced an auxiliary magnetic 4-vector \(b = B_{[i]}/4 \), where \(B_{[i]} \) is the magnetic field measured by an observer comoving with the fluid and is related to \(B \) by

\[
B_{[i]} = \frac{1}{n} (u u)_B ;
\]

The energy-momentum tensor is written as

\[
T = T_{\text{FMHD}} + T_{\text{EM}} ;
\]

where \(T_{\text{FMHD}} \) and \(T_{\text{EM}} \) denote the fluid and electromagnetic contribution to the stress-energy tensor. They are given by

\[
T_{\text{FMHD}} = \rho u u + P g ;
\]

and

\[
T_{\text{EM}} = \frac{1}{4} F_{ij} F^{ij} ;
\]

where \(\rho, E, P \) is the specific enthalpy, and \(\rho = u u + b^2 \). Hence, the total stress-energy tensor becomes

\[
T = (\rho + b^2) u u + P + \frac{b^2}{2} g + b b ;
\]

In our numerical implementation of the GRMHD and magnetohydrodynamics equations, we evolve the densitized density \(\rho_s \), densitized pressure \(S_t \), densitized energy density \(\rho \), and densitized magnetic field \(B \). They are defined as

\[
\rho_s = \rho \kappa \kappa ;
\]

\[
S_t = S_{\text{FD}} \kappa \kappa ;
\]

\[
\rho = \rho_s - \kappa \kappa ;
\]

\[
B = B_s - \kappa \kappa ;
\]

During the evolution, we also need the three-velocity \(v^i = u^i - u^t \).

The MHD and induction equations are written in conservation form for variables \(\rho, S_t, \rho \), and \(B \) evolved using an HRSC scheme. Specifically, we use the m onotonized central (M C) scheme [43] for data reconstruction and the HLL (Harten, Ivan and van Leer) scheme [50] to compute the ux. The magnetic field \(B \) has to satisfy the non-monotonically constraint \(B \cdot B = 0 \). We adopt the ux-interpolated constrained transport (uxc-t) scheme [35, 52] to impose this constraint. In this scheme, the induction equation is di erenced in such a way that a second-order, corner-centered representation of the divergence is preserved as a numerical identity.
At each timestep, the hydrodynamic \textit{primitive} variables \((\rho, \rho v, E)\) must be computed from the \textit{conservative} variables \((\rho, \rho v, \rho E)\). This is done by numerically solving the algebraic equations (1) for \((\rho, \rho v, E)\) together with an EOS \(P = P(\rho, \rho v, \rho E)\). In this paper, we adopt a second-order EOS, \(P = (1 + \gamma)\rho\), with \(\gamma = 2\).

As in many hydrodynamic simulations in astrophysics, we add a tenuous \textit{atmosphere} that covers the computational grid outside the star. The atmosphere area density is set to \(0.10\) km, where \(m_{\text{in}}(0)\) is the initial mass density of the stars. As in (1), we apply outer boundary conditions on the primitive variables \(\rho, \rho v, \rho E\); and \(\gamma\). Out outer boundary conditions are imposed on the hydrodynamic variables, and the magnetic field is linearly extrapolated onto the boundaries. Finally, the evolution variables, \(S\), \(\rho\), and \(\gamma\) are recomputed on the boundary.

Our GRMHD code (DLS) has been thoroughly tested by passing a robust suite of tests. These tests include maintaining stable rotating stars in stationary equilibrium, reproducing the exact Oppenheimer-Snyder solution for collapse to a black hole, and reproducing analytic solutions for MHD shocks, non-linear MHD wave propagation, magnetized Bondi accretion, and MHD waves induced by linear gravitational waves (3). Our DLS code has also been compared with SS's GRMHD code (10) by performing identical simulations of the evolution of magnetized hyperasymmetric NSs (14), and of magnetorotational collapse of helium cores (11). We obtain good agreement between these two independent codes. Our code has also been used to study the collapse of very massive, magnetized, rotating stars to black holes (20), the evolution of merging BHBH (53) and BHNS binaries (24), and the evolution of relativistic hydrodynamic in matter in the presence of puncture black holes (22). Recently, our code has been generalized to incorporate (optically thick) radiation transport and its feedback on hydrodynamic matter (23).

B. Initial data

We adopt the same initial data as in (4). These initial data were generated by Taniguchi & Gourgouliatos (50, 51) by numerically solving the constraint equations of general relativity in the CTS framework. We consider three models studied in (5): M1414, M1616 and M1418.

All models assume an equal mass ratio EOS for the neutron stars: \(P = \frac{\rho}{\gamma}\). The compactness, \((M/R)\), is defined as the ratio of the ADM mass (a mass for a mass-energy momentum) \(M_{\text{ADM}}\) to the areal radius \(R\) of a spherical neutron star in isolation. For an equal mass ratio EOS, the compactness uniquely specifies the neutron star. We thus label the NSNS models by the compactness of each neutron star. M1414\ M1418 \(M_{1418}\) means the compactness of the two neutron stars are 0.14 and 0.18. Hence, the two neutron stars do not have the same rest mass. For models M1414 and M1616, the two neutron stars are of equal rest mass and their compactness are 0.14 (for model M1414) and 0.16 (for model M1616). It is convenient to rescale all quantities with respect to \(M_{\text{ADM}}\) and \(R_{\text{ADM}}\).

Recent years, our code has been used to study the evolution of relativistic hydrodynamic in matter in the presence of puncture black holes (22). Recently, our code has been generalized to incorporate (optically thick) radiation transport and its feedback on hydrodynamic matter (23).

B. Initial data

We adopt the same initial data as in (4). These initial data were generated by Taniguchi & Gourgouliatos (50, 51) by numerically solving the constraint equations of general relativity in the CTS framework. We consider three models studied in (5): M1414, M1616 and M1418.

All models assume an equal mass ratio EOS for the neutron stars: \(P = \frac{\rho}{\gamma}\). The compactness, \((M/R)\), is defined as the ratio of the ADM mass (a mass for a mass-energy momentum) \(M_{\text{ADM}}\) to the areal radius \(R\) of a spherical neutron star in isolation. For an equal mass ratio EOS, the compactness uniquely specifies the neutron star. We thus label the NSNS models by the compactness of each neutron star. M1414\ M1418 \(M_{1418}\) means the compactness of the two neutron stars are 0.14 and 0.18. Hence, the two neutron stars do not have the same rest mass. For models M1414 and M1616, the two neutron stars are of equal rest mass and their compactness are 0.14 (for model M1414) and 0.16 (for model M1616). It is convenient to rescale all quantities with respect to \(M_{\text{ADM}}\) and \(R_{\text{ADM}}\).

Recent years, our code has been used to study the evolution of relativistic hydrodynamic in matter in the presence of puncture black holes (22). Recently, our code has been generalized to incorporate (optically thick) radiation transport and its feedback on hydrodynamic matter (23).
the outcomes. We note that Anderson et al. [25] also set up the magnetic elds in a very similar way. Their setup corresponds to setting the paramaters $n_\nu = 0$, P_{cut} to the atmophere value, and A_ν such that the maximum B - eld strength in each NS is $9.6 \times 10^{15} \, G$ (1.78M☉ = M_ν).

We note that the interior magnetic eld strength of $10^{15} \, G$ is large compared to values inferred for the surface of a typical pulsar (B $\sim 10^{12} \, G$), but it is comparable to the strength in a magnetar [23]. We nd that for this B - eld strength, the magnetic pressure, $P_{\text{mag}} = b^2/2$, is about 0.1% of the gas pressure, and the total magnetic energy is 10^5 of the ADM mass. We note that the accuracy of the ADM mass of our CTS initial data is also of order 10^5 [3]. Hence, adding a B - eld of this strength induces negligible constraint violation and causes only a small perturbation to the equilibrium of the stars and their orbit. In addition, the magnetic eld produced inside a neutron star is not known. Our pro le is to make the ratio $P_{\text{mag}}/P_{\text{gas}}$ small initially in most regions. As a result, the magnetic eld introduces only a small perturbation to the NS and no "magnetic wind" is generated in the low-density regions of the star.

In nature, magnetic elds are not con ned inside the NS, but extend out to the NS exterior. The exterior elds of the two NSs in the binary will interact and modify the dynamics during the inspiral phase. This effect has been stud ed analytically in Newtonian and post-Newtonian calculations in [60,61,62]. As a rough estimate, we approximate the NS by a sphere of radius R. Consider a pure dipole exterior eld and a nearly uniform interior eld aligned with the orbital angular momentum. The magnetic dipole moment is related to the interior eld strength B by $BR^3 = 2$. The accumulated gravitational wave cycles during the inspiral phase from gravitational wave frequencies f_{gw} to f_{gw}, due to magnetic dipole interaction is estimated to be [63] (19)

$N_{\text{mag}} = \frac{25 B_1 B_2 R^3}{64} \left(\frac{1}{M_1} \right)^{1/3} \left(\frac{M_1}{M_2} \right)^{1/3} \frac{f_{\text{gw}}^{\text{in}}}{f_{\text{gw}}^{\text{in}}}$

where $M_1 = M_2 = (M_1 + M_2)^2$ is the symmetric mass ratio of the two NSs. To estimate the upper bound starting from our initial data, we set $f_{\text{gw}}^{\text{in}} = 1$ and $f_{\text{gw}}^{\text{in}} = 2$ of the initial orbital frequency of the binaries in our models. We nd $N_{\text{mag}} < 0.02$ for all three models. Hence the effect of magnetic dipole interaction during the inspiral phase is negligible, even assum ing large adopted eld strength. For this reason, any appreciable dynamical effects of the magnetic elds will occur only during and after the merger phase, for which our con ned eld models will be adequate.

C. Grid setup

Even though the dynamics of the system is mainly concentrated in the central region with radius $r < 10 M$, we set our computational grid to $r = 50 M$ in order to extract gravitational radiation. To reduce computational resources, we employ Chebyshev coordinates [63,64] to allocate the grid more eectively. These coordinates x^i are related to the original coordinates x^i through the following transformation:

$x^i = \frac{x^i}{r};$ (20)

$r(r) = \frac{a}{2} \left(\frac{1}{\sinh r}; \right) \ln \frac{\cosh(r + r_0) = s}{\cosh(r - r_0) = s}$; (21)
level of incidence with the magnetic field lines in axisymmetry. Contour surfaces spherical NS companion constructed from the vector potential in Eq. (13) for \(n_2 = 0 \) and \(P_{\text{cut}} = 0.04 P_{\text{ax}} \) (upper panel), and for \(n_2 = 3 \) and \(P_{\text{cut}} = 0.001 P_{\text{ax}} \) (lower panel). Here \(P_{\text{ax}} \) is the maximum pressure. The composition of this NS is \(M = R = 0.14 \). Dotted (black) concentric circles are rest-mass density contours drawn for \(r = \frac{a}{0} \approx 0.9, 0.7, 0.5, 0.3, 0.1 \) and \(0.001 \). Solid (green) lines are contours of \(A^r \), which coincide with the magnetic field lines in axisymmetry. Contour levels of \(A^r \) are drawn for \(A^r = (A^n_0)^{10} + A^n_{0i} \) with \(i = 1, 2, \ldots, 9 \), where \(A^n_{0i} \) and \(A^n_{ax} \) are the maximum and minimum value of \(A^r \), respectively.

where \(r = \frac{p}{x^2 + y^2 + z^2}, r = 0 \), and \(s \) are constant parameters, which are set to \(a = 3, r_0 = 2A, \) and \(1 + 2 \) in all of our simulations. With this choice, the grid spacing in the range \(1 + 2 \) is increased by a factor of 5.

We use a cell-centered grid with size \(2N \times 2N \times 2N \) in \(x \)-\(y \)-\(z \) (assuming equatorial symmetry), covering a computational domain \(x \leq 0, y \leq 0, z \leq 0 \). Here \(N \) is an integer, \(x \) is the grid spacing and \(z \) is the rotation axis. We set \(N = 150, 100, 100 \) for models M1414 and M1616, and \(N = 200, 100 \) for model M1418. These values are chosen so that the diameter of each neutron star in the equatorial plane is covered by \(> 40 \) grid points. This is the same resolution used in [1]. We have performed a simulation with 75% of the grid spacing (but with closer outer boundary) for the unmagnetized M1414 case and nd that the result is very close to our standard resolution.

III. RESULTS

A. Model M1414

Model M1414 is an equal-mass NS-NS binary. The total rest mass of the system is \(M = 16M_\odot \). In the absence of magnetic field (run M1414B0), the neutron stars merge after about one orbit (190M \(\odot \)), consistent with the result in [1]. We nd that magnetic field does not change the result. After the merger, the star becomes a hypermassive NS. Figure 2 shows the evolution of maximum density \(P_{\text{ax}} \) and minimum lapse \(\alpha \) for both unmagnetized and magnetized cases. Figure 3 shows the density profile along the x-axis and y-axis in the equatorial plane at three different times. We see that the unmagnetized case is very close to the simulation in [1] (see their Fig. 6a and Fig. 7b).

Figures 4 and 5 show the density contours and velocity field in the equatorial plane. We see that magnetic field causes some mass shedding in the low-density region. After the merger, we see double cores rotating around the center, as in [1]. The star is also pulsating with a large amplitude (see Figs. 6 and 7). These motions give rise to gravitational wave signals after the merger (see below).
Fig. 3: Nondimensional rest mass density \(\rho = \rho_0 \) along the x-axis (black solid lines) and y-axis (blue dash lines) in the equatorial plane at three different times for the unmagnetized (left) and magnetized (right) cases.

Figure 3 shows the contours of constant geodesic proper distance from the center of the grid. The geodesic proper distance between P and Q in a spatial slice is denoted as the proper length of the (spatial) geodesic joining P and Q. We have verified that the bar-like density contours roughly coincide with the constant geodesic proper distance contours, indicating that the density distribution in the bar-like region is actually close to axisymmetric.

Magnetic eids do not affect the dynamics of the system prior to merger, as expected. After the merger, we see a larger amplitude of pulsation in the magnetized case. However, we expect that the main effects of the magnetic eids occur on a longer (secular) timescale when the eids are amplified by differential rotation. Magnetic winding will occur on an Alfvén timescale \(t_A = \frac{R}{v_A} \), where \(v_A = \sqrt{\frac{B^2}{\rho}} \) is the Alfvén velocity. Additional amplification will be triggered by the magnetorotational instability (MRI) [13,15]. This amplification will lead to transport of angular momentum and may trigger a delayed collapse [13,15]. We do not follow the evolution for that long in this paper. We note that the grid resolution in our simulation is insufficient to resolve some of the MHD instabilities such as the MRI [13]. However, our current resolution is adequate to capture the main effects of magnetic eids on our simulation timescale (a few oscillation periods after the merger). We note, however, that we have already performed high-resolution simulations in axisymmetry to study the long-term secular evolution of magnetized hypermassive NS remnants [13,15].

Figure 7 shows the gravitational waveform for both the magnetized and unmagnetized cases. We compute the \(l = 2, m = 2, s = 2 \) spin-weighted spherical harmonics of the Weyl tensor \(\Psi_4 \) at three radii \(32M, 38M \), and \(43M \). As shown in Fig. 7a and 7b, the computed \(\Psi_4 \) at these three radii are hardly distinguishable when properly scaled, indicating that the extracted waveforms are being measured in the wave zone and are reliable. We see again that the waveform of the magnetized and unmagnetized cases show negligible differences before the merger. After the merger, the magnetic eids significantly affect the motion of the black hole, and the waveform exhibits observable differences in both the amplitude and phase. Notice that there are still gravitational wave signals after the merger. This is mainly caused by the rotation of the two cores and the pulsation of the merged remnant.

Figures 8 and 9 show the L2 norms of the Hamiltonian and moment constraint violations. The L2 norms are normalized as in [20]. We see that the constraint violations are less than 5% during the entire simulations (4P_0 = 772M).

B. Model M1616

Model M1616 is also an equal mass NSNS binary. The total rest mass of the system is \(M_0 = 1.78M_\odot \). In the absence of magnetic eids, the system merges at 150M (0.8P_0) and the star promptly collapses to a black hole.
An apparent horizon forms at $t = 192M$. Figure 11 shows the evolution of the maximum density ρ_{max} and minimum lapse α_{min}. Figure 10 shows snapshots of the equatorial density contours and velocity field. Our result again agrees with [1]. The simulation in [1] is terminated soon after the formation of an apparent horizon because of the grid stretching. Hence [1] can only give an estimate of the upper bound of $0.002M_0$ for the amount of material that can form a disk. We are able to use the puncture technique to continue the evolution until the system settles down to a stationary state. Figure 13 shows the rest mass of the material outside the apparent horizon M_{out}. We see that all the material falls into the black hole. The small residual value of $M_{\text{out}} 10^{-6}M_0$ at late times is due to the presence of our (artificial) atmosphere. After $t > 250M$, the system settles down to a vacuum rotating Kerr black-hole spacetime.

We perform two simulations for the magnetized cases with different initial magnetic field profiles (see Table I). Run M 1616B1 has the same profile as run M 1414B1. In run M 1616B2, a more magnetic field is placed in the outer layers of the neutron stars, and hence it could counteract the gravitational pull of the black hole more effectively. We see from Fig. 10 that runs M 1414B1 and M 1616B2 are qualitatively the same as run M 1616B0 (unmagnetized run). They both collapse promptly to a black hole. The small residual value of $M_{\text{out}} 10^{-6}M_0$ at late times is due to the presence of our (artificial) atmosphere. After $t > 250M$, the system settles down to a vacuum rotating Kerr black-hole spacetime.
hole. The apparent horizon appears at about the same time ($t = 192\ M$) in all three cases. Figures 12 and 13 show snapshots of equatorial density contours and velocity field. In Fig. 14, we see that $M_{\text{disk}} = M_0 < 10^4$ for both M 1616B1 and M 1616B2. We see that magnetic fields cause a substantial delay in the time at which material in the low-density region falls into the black hole. The effect is more pronounced for the case M 1616B2 when more magnetic field is in the low-density region. The simulations of M 1616B1 and M 1616B2 are terminated at $t = 500M$ when constraint violations start to become large (see Fig. 15). However, our current results already indicate that even in the presence of magnetic fields the amount of material outside the black hole is very small.

Figure 15 shows the gravitational waveforms for all M 1616 models. We see that the waveforms for the three runs are very close. This is expected because magnetic fields can affect the dynamics substantially only well after the merger. However, the merged remnants quickly collapse to black holes before the magnetic fields have enough time to change the uid's motion significantly. We do see, however, that the amplitude of the waves during the collapse are slightly larger for the magnetized cases.Figure 16 shows the two polarizations h_{+} and h_{\times} of run M 1616B0 as observed in the direction 45 to the z-axis axis.

Figures 17 and 18 show the L2 norm s of the constraint.

Fig. 5: Same as Fig. 4 but for run M 1414B1 (magnetized run).
FIG. 6: Constant geodesic proper distance from the center, D, in the equatorial plane at \(t = 4P_0 \) for run M 1414B0. Contours are drawn for \(D = M = 1.861 (i = 1, 2, 3, 4, 5) \).

FIG. 7: Gravitation waveforms for model M 1414. (a) \(\text{Re}(\mathbf{M}^{\mathbf{2}2}) \) extracted at \(r = 43M \) (black solid line), \(r = 38M \) (blue dotted line), and \(r = 32M \) (red dash line). (b) Same as (a) but for \(\text{Im}(\mathbf{M}^{\mathbf{2}2}) \). (c) \(\text{Re}(\mathbf{M}^{\mathbf{2}2}) \) extracted at \(r = 43M \) for the unmagnetized (black solid line) and magnetized (cyan dash line) cases. (d) Same as (c) but for \(\text{Im}(\mathbf{M}^{\mathbf{2}2}) \). Note that in (a) and (b), the lines are hardly distinguishable, showing good agreement of waveforms at various extraction radii.

FIG. 8: Constraint violations for the unmagnetized run of model M 1414. Upper panel: Normalized L2 norm of the Hamiltonian constraint. Lower panel: Normalized L2 norm of the x (black solid line), y (blue dotted line), and z (red dash line) components of the momentum constraint.

FIG. 9: Same as Fig. 8 but for the magnetized run of model M 1414.

FIG. 10: Constraint violations for runs M 1616B0 and M 1616B1. The plots for M 1616B2 are similar to those of M 1616B1 and so are not shown here. The peaks at \(t = 192M \) are due to the formation of a central singularity and are contained inside the event horizon. After the apparent horizon appears at \(t = 192M \), the constraints are computed only in the region outside the apparent horizon, and we see the

violations in (a) and (b) but not in (c) and (d).
constraint violations drop to much lower values. This result indicates that the large constraint violations in the strong-field region are trapped inside the event horizon. For run M 1616B B, the constraint violations are less than 3% of the time. For run M 1616B 1, the moment constraint violations are less than 5% of the time. The Hamiltonian constraint violation is less than 5% before the collapse, around 5% (10%) after the apparent horizon from s, and gradually increases to 12% at $t = 500 M$, after which the simulation is terminated.

C. Model M 1418

For model M 1418, the ratio of the rest masses of the neutron stars are $q = M_0^{(1)} / M_0^{(2)} = 0.855$. The total rest mass of the system is $M_0 = 1.76 M_{\odot}$, which is about the same as model M 1616. As in model M 1414, we perform an unmagnetized run (run M 1418B0) and a magnetized (run M 1418B1) simulation. The merger occurs at $t = 180 M$, $1 P_0$. The remnant remnant collapses to a black hole. An apparent horizon forms at $t = 232 M$ for both cases. Figure 13 shows the evolution of the maximum density ρ_{max} and minimum lapse α_{min}. Figures 13 and 22 show snapshots of equatorial density contours and the velocity vector field.

Figure 22 shows the remnant mass of the material outside the apparent horizon M_{out}. We see that for the unmagnetized case, M_{out} settles down to an equilibrium value 0.013, which is consistent with the upper bound 0.04 reported in [1]. The simulation is terminated at $t = 450 M$ since the constraint violations outside the apparent horizon increase to more than 15% and so the evolution becomes inaccurate. We suspect that the problem can be solved by increasing the grid resolution near the central singularity. We plan to investigate this issue in the near future. For the magnetized case, M_{out} drops to 0.018 at the end of our simulation. The simulation is terminated at $t = 380 M$ when the constraint violations exceed 15%. The magnetized run is qualitatively very similar to the unmagnetized run at this stage. Unlike model M 1616, however, there is a substantial amount of material left to form a disk in this case. Magnetic effects are expected to play an important role in the subsequent secular evolution of the disk. The disk could develop an HD turbulence and generate ultra-relativistic jets. However, the disk mass is probably not large enough to produce a short-hard GRB in this case [23,24]. We have already studied axisymmetric magnetized disk evolution around black holes in [24].

Figure 23 shows the gravitational waveforms. We see that the waveforms of the unmagnetized and magnetized simulations are very close, as we have found for model M 1616.

IV. SUMMARY

We have performed a series of new simulations involving the coalescence of NSNS binaries in full general relativity, using the CTS quasiequilibrium NSNS initial data. We considered three models M 1414, M 1616, and M 1418 previously studied by Shibata, Taniguchi, and Uryu [1]. We performed umagnetized and magnetized simulations for each model.

We find that our results for the unmagnetized runs agree with those in [1]. In particular, the remnant of the merger is a hypermassive neutron star for model M 1414, a rotating black hole with negligible disk for model M 1616, and a black hole surrounded by a disk with a rest mass less than 2% of the total rest mass of the system for model M 1418. Given our agreement with the results of Shibata, Taniguchi, and Uryu [1], we expect that the magnetic effects are less significant than those reported in [23,24].

For model M 1414, the remnant consists of a double core rotating around the center, and the star pulsates. The photon in this remnant emits gravitational radiation. We see observable di erence between the magnetized and unmagnetized cases in the amplitude of the pulsations. Gravitational waveforms also show di erences in amplitude and phase after the merger. We expect that...
Fig. 11: Same as Fig. 4 but for run M 1616B0 (unmagnetized run). The black region near the center in the last three panels denotes the apparent horizon.

For model M 1418 consisting of unequal masses, the merged remnant also collapses prompt to a black hole after the merger, but there is a substantial amount of material left to form a disk. We find that the disk mass is $< 0.013 M_0$ for the unmagnetized case and $< 0.018 M_0$ for the magnetized case, where M_0 is the total rest mass of the system. Magnetized disks are crucial for the subsequent, secular evolution of the disk. We have previously performed long-term, axisymmetric simulations of magnetized disks around black holes resulting from the collapse of hypermassive neutron stars. We find that the magnetic fields can cause outflows, depending on the EOS and the magnetic field configuration.
In summary, we find that the effects of magnetic fields during and shortly after the merger phase are significant but not dramatic. We believe that the most important role of magnetic fields are on the long-term, secular evolution of the merged remnants consisting of a hypermassive neutron star or a black hole surrounded by a disk, as we have demonstrated in our axisymmetric simulations in previous publications [13, 19, 42]. This is not to say that a long-term evolution in 3+1 dimensions is not necessary. For one thing, a 3+1 simulation of the remnant will evolve self-consistently from the NSNS initial data. For the other, MHD turbulence is expected to be more prominent in three dimensions than in axisymmetry [54], and hence may affect the dynamics in the long-term evolution. We therefore plan to follow the long-term evolution of the remnant in 3+1 dimensions in the future. We thus need to overcome the difficulty of growing constraint violations we observe in our black hole evolutions. We suspect the constraint violations can be controlled by increasing the spatial resolution near the singularity. We currently use a resolution of about $\mathcal{M}=7$ near the puncture in our simulations, which is a much lower resolution than the resolutions used in most recent binary black hole simulations. Higher resolution is also required in the case of model M 1414 to resolve the MHD instabilities. We also plan to perform simulations of NSNS binaries with larger initial separation. This will allow us to compute the gravitational waveforms with
more cycles so that they can be matched with the post-Newtonian waveforms.

Acknowledgments

Numerical computations were performed on the Abe cluster at the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign (UIC). This work was supported in part by NSF Grants PHY 02-05155, PHY 03-45151, and PHY 06-50377 as well as NASA Grants NNG 04GK54G and NNX 07AG96G at UIC.

15

FIG. 14: Rest mass of the material outside the apparent horizon M_{out} for runs M 1616B0 (black solid line), M 1616B1 (blue dotted line) and M 1616B2 (red dash line).

FIG. 15: Gravitational waveform h_{+} (t r) for runs M 1616B0 (black solid line), M 1616B1 (blue dotted line) and M 1616B2 (red dash line). Gravitational waves are extracted at radius $r = 43M$.

FIG. 16: Gravitational waveform h_{+} and h_{\times} for run M 1616B0 observed in the direction 45 to the z-axis.

FIG. 17: Constraint violations for the unmagnetized run M 1414B0. Upper panel: Normalized L2 norm of the Hamiltonian constraint. Lower panel: Normalized L2 norm of the x (black solid line), y (blue dotted line) and z (red dash line) components of the entropy constraint. Note that the large violations corresponding to the peaks at $t = 192M$ are trapped inside the event horizon. When the apparent horizon is detected ($t > 192M$), the constraints are computed only in the region outside the horizon.

[29] Note that it is the total rest mass that is conserved during the evolution. The rest mass of each NS in the binary is obtained by solving the Tolman-Oppenheimer-Volkov

FIG. 18: Same as Fig. 17 but for the magnetized run M 1414B1.

(VOV) equations with the same EOS and central density as those in [24].

FIG. 20: Same as Fig. 11 but for run M 1418B0 (unmagnetized run).

[48] M. D. Duez, P. M. Arronetti, S. L. Shapiro, and T. W. ...
FIG. 21: Same as Fig. 11 but for run M 1418B1 (magnetized run).
FIG. 22: Rest mass of the material outside the apparent horizon M_{out} for the unmagnetized (black solid line) and magnetized (blue dash line) runs of model M_{1418}.

FIG. 23: Gravitational waveform $\mathcal{M}^2(t-r)$ for the unmagnetized (black solid line) and magnetized (blue solid line) runs of model M_{1418}. Gravitational waves are extracted at radius $r = 43M$.

\[\text{Phys. Rev. D 68, 124006 (2003), arXiv:gr-qc/0308051.} \]