A decade ago, Faddeev and Nijmig suggested that knots might exist as stable solitons in a three-dimensional classical field theory, thus opening up a way to investigate physical properties of knot-like structures [1]. They further proposed [2] that their model can be interpreted as the low-energy limit of the Yang-Mills theory, where knots are suggested as a natural candidate for describing glueballs (massive particles made of gluons).

In cosmology, topological defects are considered to be important for understanding the large-scale structure of our universe [3]. Although recent measurements of the cosmic microwave background (CMB) have shown that topological defects are not the dominant source of CMB anisotropies, the search for topological defects in the universe, such as cosmic strings, continues to be actively conducted. Recently, it has been suggested that a cosmic texture, classified by the homotopy group of $S^3 = \pi_3(\mathbb{R}) =\mathbb{Z}$, generates cold and hot spots of CMB [4]. This texture is a spherical or point-like object that is unstable against shrinkage according to the scaling argument. In cosmology, the instability is favored for evading cosmological problems such as a monopole problem. Three-dimentional skyrmions [5] and Shankar monopoles [6,7] are topological objects belonging to the same homotopy group. On the other hand, knots, which belong to a distinct homotopy group, $\pi_1(S^3) = \mathbb{Z}$, have thus far been ignored by cosmologists; however, they would be a potential candidate for topological defects in our universe.

Knots are unique topological objects characterized by a linking number or a Hopf invariant, as discussed in a seminal paper on super uid He [8]. Other familiar topological objects, such as vortices Ω, monopoles Θ, m onopoles Θ, and skyrmions Θ, are characterized by winding numbers, which have recently been discussed in relation to spinor Bose-Einstein condensates (BECs) [9,10,11,12,13,14]. However, little is known about how to create such knots experimentally. In this Letter, we point out that spinor BECs offer an ideal testing ground for investigating the dynamical creation and destruction of knots. We also show that knots can be imprinted in an atom ic BEC using conventional magnetic field configurations.

We consider a BEC of spin-1 atom with mass μ that are trapped in an optical potential $V(x)$. The energy functional for a BEC at zero magnetic field is given by

$$
E = \frac{Z}{2M} \int_0^{2 \pi} \frac{d^3 x}{2 \pi} \sum_j \left[\frac{\delta_j}{Z} + \frac{\delta_j^2}{2} + \frac{\delta_j^3}{2} \right]
$$

where $\delta_j(x)$ is an order parameter of the BEC in a magnetic sublevel $\delta_j = 1$ or 0 at position x, and δ_j are the number density and spin density, respectively. Here $E = (F_x, F_y, F_z)$ is a vector of spin-1 matrices. The strength of the interaction is given by $g_0 = 4/3(a_2 + a_3)(3M)$ and $g_1 = 4/3(a_2 - a_3)(3M)$, where a_3 is the s-wave scattering length for two colliding atoms with total spin S. The ground state is polar for $g_1 > 0$ and ferromagnetic for $g_1 < 0$ [22].

The order parameter for the polar phase can be described by the super-uid phase $\#$ and unit vector $\text{ekl} \# n$ in spin space, whose components are given in terms of δ_j as

$$
\begin{align*}
\theta &= 0 \\
\phi &= 1 \\
\gamma &= P \exp(i \theta) \frac{A_B}{n_x} C_A \\
\end{align*}
$$

This order parameter is invariant under an arbitrary rotation about an arbitrary axis,

$$
\begin{align*}
\exp[i \theta] A \exp[i \phi] A_B C_A &= A_B C_A
\end{align*}
$$

where θ is a fixed real number. This is also invariant under simultaneous transformations $\# \# \# \# n$ and $\# \# \# \# n$. The order parameter manifold for the polar phase is therefore given by $M = (U(1), S^3) = Z_2 \times \mathbb{R}$, where $U(1)$ denotes the manifold of the super-uid phase $\#$, and S^3 is a three-dimensional sphere whose points specify the direction of n.

Knots are characterized by mappings from a three-dimensional sphere S^3 to S^2. The S^3 domain is prepared by imposing a boundary condition that takes on the same value in every direction at spatial infinity, so that the medium is compactified into S^3. Since neither $U(1)$ nor Z_2 symmetry contributes to homotopy
groups in spaces higher than one dimension, we have $\chi^3(M) = \chi^3(S^2) = 2$. The associated integer topological charge Q is known as the Hopf charge which is given by

$$Q = \frac{1}{4\pi} \int d^3x \ ijk F_{ij}A_k; \tag{3}$$

where $F_{ij} = \partial_i A_j - \partial_j A_i = \nabla \times A$ and $\nabla \times$ is a vector of spin-1 matrices in the Carteisan representation, i.e., $F_i^j = i \epsilon_{ijk} (jkF^l_l = x_{ij}y_{kj}z_j)$. A given mapping $\nabla(\text{;}) : S^2 \rightarrow S^2$ deteremines the charge Q, and we choose $\nabla = (\sin \phi; \sin \phi; \cos \phi)$ in Fig. 1(a). The radial pressure function (r) is an monotonically decreasing function of r, subject to the boundary conditions $(0) = 2$ and $(1) = 0$. Here we consider $\theta = 2\pi \tan^{-1}(r)$, where r is the characteristic size of the knot. Although there is no singularity in the texture, it is in possible to wind $\theta \rightarrow 0$ to a uniform con guration because this texture has a nonzero Hopf charge of 1. The left part of Fig. 1(b) describes the or der to the boundary for the $m = 1$ component in real space, where we plot the isoporic surface of the density and the color on the surface represents the phase. Here we consider the torus shape of the $m = 1$ component as a white tube in Fig. 1(b). On the right side of the figure, we show the extracted prem age for $n = (0; 0; 1)^T$ (white tube) and that for $n = (1; 0; 0)^\perp$ (black tube).

The torus shape of the $m = 1$ component appears as a double-ring pattern in the cross-sectional plane at $z = 0$, as shown in Fig. 1(c), where the density distributions of the $m = 1$ (left) and $m = 0$ (right) components are shown in the gray scale. The distributions of $m = 1$ com ponents overlap completely; therefore the system remains unmagnetized. This double-ring pattern can serve as an experimental signature of a knot and it should be probed by performing the Stem-Gerlach experiment on the BEC that is sliced at $z = 0$.

Next, we show that knots can be created by manipulating an external magnetic field. In the presence of an external magnetic field, the time-dependent phase differences between different spin comp onents are induced because of the linear Zeeman effect, which causes the Lam or precession of n, while n tends to become parallel to the magnetic field because of the quadratic Zeeman effect. Suppose that we prepare a BEC in the $m = 0$ state, i.e., $n = (0; 0; 1)^T$, by applying a uniform magnetic field B_0 in the z direction. Then, we suddenly turn off B_0 and switch on a magnetic field B.
B(x) = b(r)(sin cos(+ φ); sin sin(+ φ); cos f r), where b(r) is an arbitrary function and φ is a real parameter. This magnetic field configuration is quadrupolar if φ = 0 and monopolar if φ = 0. In what follows, we shall consider the case of φ = 0 and b(r) = b₀, unless otherwise specified. Because of the linear Zeeman effect, n starts rotating around the local magnetic field and as \[n = \exp[i(b = 2)B(x) f t = -(0; 0; 1)^T], \] and therefore the n field winds as a function of t.

Figure 2 shows the dynamics of the creation and destruction of knots in a spherical trap subject to the quadrupole field. Figures 2(a)/(d) show the snapshots of (left) and pre-images of \[n = (0; 0; 1)^T \] and \[n = (1; 0; 0)^T \] (right) at (a) \(t = 0.5T_L \), (b) \(1.1T_L \), (c) \(2.3T_L \) and (d) \(3.7T_L \), where \(T_L = 2\hbar/(bR_{TF}) \) is the period of the Landau or precession at the Thomas-Fermi radius \(R_{TF} \). The solid circle indicates the periphery of the BEC on the xy plane. Knot-like objects enter the BEC from its periphery [Fig. 2(a)], and the number of knots increases as the n field winds more and more with time [Fig. 2(b), (c)]. With the passage of further time, however, the knot structure is destroyed, as shown in Fig. 2(d). The knots therefore have a finite lifetime, which will be discussed later. Figures 2(e)/(h) show cross sections of the density for \(m = 1 \) (top) and \(m = 0 \) (bottom) components on the xy plane at (e) \(t = 0.5T_L \), (f) \(1.1T_L \), (g) \(2.3T_L \), and (h) \(3.7T_L \). We end that as the n field winds more with time, the number of rings increases. This prediction can be tested by the Stern-Gerlach experiment.

The knot soliton in the simple nonlinear model without a higher derivative term is known to be energetically unstable, since the energy of the knot is proportional to its size \(r \), which can be calculated by integrating the kinetic energy \(\frac{1}{2} r^2 \) in the volume of the soliton \(r \). K nots will therefore shrink and finally disappear. In the case of an atomic gaseous BEC, however, the total energy of the system has to be conserved; therefore, the above-mentioned energetics argument does not imply the instability of knots in trapped systems.

The dominant mechanism for destroying the knot in the spinor BEC is the spin current caused by the spatial dependence of the n field. The spin current induces local magnetization according to

\[\frac{\partial r}{\partial t} = r \frac{\partial}{\partial t} \frac{X}{M} n r^2 n, \tag{4} \]

thereby destroying the polar state. The initial polar state will spontaneously develop into a biaxial nematic state, and eventually result in a fully polarized ferromagnetic domain. While n is well-defined in a biaxial nematic state as one of the symmetry axes, it is ill-defined in the fully-magnetized region.

Substituting \(n = e^{i(x)} \sim (0; 0; 1)^T \) as used for Fig. 1 into Eq. (4), we analytically calculate the time derivative of the local magnetization, whose maximum value is

\[\frac{\partial r}{\partial t} = r \frac{\partial}{\partial t} \frac{X}{M} n r^2 n. \tag{4} \]
The time shown in Fig. 1. The time is measured in units of M_{knot}^{-1}. The dashed line shows $f(x)j_{ax} = t_{\text{knot}}$ (see text), which agrees well with the numerical result. The insets show $f(x)$ in the xz plane, and the numbers below each panel show the time elapsed in units of M_{knot}^{-1}. The size of each panel is $15knot \times 30knot$.

Given by $\frac{\partial f(x,t=0)}{\partial x} = 143 = (M_{\text{knot}}^{-1})^2$, as the magnetization initially increases linearly as a function of time (see Fig. 3), we define the lifetime of a knot as $t_{\text{knot}} = (143 = (M_{\text{knot}}^{-1})^2)^{-1}$. We also numerically calculate the dynamics of the knot shown in Fig. 1 by solving the time-dependent Gross-Pi hole equation; the result is shown in Fig. 3. In Fig. 3, we plot the maximum polarization as a function of time. The dashed line represents $f(x)j_{ax} = t_{\text{knot}}$, which agrees well with the numerical results. The insets of Fig. 3 show the distribution of $f(x)$ in the xz plane. The fermion magnetic domain is an ergodic because of the spin current caused by the spatial dependence of n, and then expand outward. In the case of a α^{2}Na BEC, the lifetime for a knot with $n_{\text{knot}} = 10$ is $t_{\text{knot}} = 25$ ms. The lifetime increases with increasing the size of knots.

Finally, we point out that knots in a BEC may be used as an experimental signature of a magnetic monopole. A magnetic monopole induces the magnetic field $B = \frac{\alpha}{2\pi} \epsilon\epsilon'$, which acts in a manner similar to the quadrupole field and creates knots. Although $b(x)$ in this case diverges at $r = 0$, it forms a knot-like structure on a large scale. For instance, knots expand up to 10 m in the period 43 s of Larmor or precession at $r = 10$ m, where $B = 33$ G.

In conclusion, we have shown that a spin-1 polar Bose-Einstein condensate can accommodate a knot, which is also shown to be created using a quadrupole magnetic field. Contrary to knot solutions known in other systems, the knots in spinor BECs are immune from energetic instability against shrinkage, because the energy of the system is conserved; however, they are vulnerable to destruction caused by spin currents because of the rapid change. The lifetime of a knot increases in proportion to the square of the size of knots and is shown to be sufficiently long to be observed in a Stern-Gerlach experiment.

This work was supported by a Grant-in-Aid for Scientific Research (Grant No. 17071005) and by a 21st Century COE Program at Tokyo Tech \"Nanometer-Scale Quantum Physics\" from the Ministry of Education, Culture, Sports, Science and Technology of Japan.