Dissipative hydrodynamics and heavy ion collisions

A. K. Chaudhuri
Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata - 700 064
E-mail: akc@veccal.ernet.in

Abstract. Space-time evolution and subsequent particle production from minimally viscous (\(v/s = 0.08 \)) QGP uid is studied using the 2nd order Israel-Stewart's theory of dissipative relativistic uid. Compared to ideal uid, energy density or temperature evolves slowly in viscous dynamics. Particle yield at high \(p_T \) is increased. Elliptic ow on the other hand decreases in viscous dynamics. Minimally viscous QGP uid found to be consistent with a large number of experimental data.

1. Introduction
Success of ideal hydrodynamics \([1]\), in explaining bulk of the data in Au+Au collisions at RHIC, has led to a paradigm that in Au+Au collisions, a nearly perfect uid is created. However, the paradigm of perfect uid, produced in Au+Au collisions at RHIC, need to be clarified. Experimental data do show deviations from ideal behavior; at large \(p_T > 1.5 \) GeV, in peripheral collisions or at forward rapidity \([2]\), presumably due to increasingly important role of dissipative effects. ADS/CFT correspondence \([3]\) also suggests that in a strongly coupled matter, the shear viscosity to entropy ratio is bounded from the lower side, \(\frac{\eta}{s} = 4 \). At the minimum, \(\frac{\eta}{s} = 1 = 4 \), 0.08 for QGP uid. Hydrodynamics is applicable only when, \(\frac{s}{s} < T \) \([4]\). In Au+Au collisions at RHIC, at the early time, \(t = 0.6-1.0 \) fm, temperature is \(T = 300-350 \) MeV, which limits the viscosity to \(\frac{s}{s} < 0.9-1.8 \). ADS/CFT bound is smaller by factor of 10-20 from the limiting viscosity.

Though the theories of dissipative hydrodynamics \([5,6,7]\) has been known for more than 30 years, significant progress towards its numerical implementation has only been made very recently \([8,9,10,11,12,13,14,15,16]\). Several groups have solved the equations for causal hydrodynamics. The program is still ongoing and consensus is not reached between different groups. In the following, we discuss some aspects of viscous hydrodynamics and associated results.

2. Causal dissipative hydrodynamics
We consider QGP uid in the central rapidity region, with zero net baryon density and chemical potential, \(n_B = 0; \tilde{B} = 0 \). We neglect the effects of heat conduction (\(\tilde{B} = 0 \)) and bulk viscosity and account only for the shear viscosity. We work in the Landau-Lifshitz energy frame. The energy-momentum tensor, including the shear stress tensor, is written as,

\[
T = (\" + p) u u + \eta g \quad ;
\]
where ρ is the energy density, p is the hydrostatic pressure, and u is the hydrodynamically 4-velocity, normalized as $u \cdot u = 1$. T satisfies the energy-momentum conservation law,

$$\nabla \cdot T = 0;$$

In the Israel-Stewart’s 2nd order theory of dissipative fluids\(^[6]\), the dissipative fluxes are treated as extended thermodynamic variables which satisfy relaxation equations. The relaxation equation for the shear stress tensor reads

$$D = \frac{1}{2} (2 h^i u^i)$$

where $D = u \otimes$ is the convective time derivative, η is the shear viscosity coefficient and $h^i u^i$ is a symmetric, traceless tensor,

$$h^i u^i = \frac{1}{2} [r u + r u] \frac{1}{3} u$$

where $r = \nabla \cdot u$ is the transverse gradient operator and $\eta = \eta_0 u$ is the projector orthogonal to the ow velocity u. In the time scale \(\tau\), viscous pressure relaxes to 1st order value, $2 h^i u^i = [\eta_0 u u]$. The viscous pressure tensor is symmetric ($\eta = \eta_0 u$), traceless ($\eta^i u_i = 0$) and transverse to the hydrodynamic 4-velocity, $u^0 = 0$. It has 5 independent components. There are 10 unknowns (ρ, p, three components of the hydrodynamic velocity u, and 5 viscous pressure components) and 9 equations (4 energy-momentum conservation equations and 5 transport equations for the independent components of η). The set of equations is closed by the equation of state $p = p(\rho)$. We note that presently there is disagreement about the form of the relaxation equation as given in Eq\(^[3]\). Some authors\([14,15]\) have solved the relaxation equation containing an extra term $R \equiv [u + u \cdot D u]$. The term ensures that throughout the evolution shear stress tensor remains traceless and transverse to fluid velocity. Israel-Stewart developed the theory on gradient expansion of entropy density. Gradients of equilibrium thermodynamic variables are assumed to be small. Since dissipative terms are small, term $D u$ is neglected. Consequently, Eq\(^[3]\) is restricted to situations where gradient of velocity is small. In the present paper, we have limited our study to minimally viscous fluid ($\eta_0 = 0.08$). It will be shown later that for minimally viscous fluid, contribution of the term R is small and fluid evolution is hardly changed whether the term R is included or not in the relaxation equation.

Assuming longitudinal boost-invariance, we solve Eqs\(^[2]\) and $p = p(\rho, u)$ in ($\rho = \left(\frac{p}{\rho} \right)^{\frac{1}{2}}$, z, x, y, $\eta_0 u = \frac{1}{2} \ln \frac{\rho}{\rho_0}$) coordinates. The assumption reduces the number of unknowns to 6 (ρ, two components of u and three components of shear stress tensor). We choose σx, σy and σv as the independent shear stress tensor components. There can be other choices also\([14,15]\). Six partial differential equations are solved simultaneously with the code "AZHYDRO-KOLKATA" developed at the Cyclotron Centre, Kolkata. We use the standard initial conditions and equation of state EOS-Q (incorporating first order phase transition at $T_c = 164$ MeV), described in [1]. At initial time $t_i = 0.6$ fm, the QGP fluid was initialized with central entropy density $S_{\rho i} = 110$ fm$^{-3}$, with a GLauber model transverse density profile. It corresponds to peak energy density $35 G eV=f m^3$. Initial fluid velocity is zero. In viscous hydrodynamics, additional, one has to initialize the shear stress-tensor. Viscous effects are enhanced if initially non-zero rather than zero. We choose to maximize the effect of viscosity. Instead of choosing any arbitrary non-zero value, we initialize shear stress-tensor to boost-invariant value, $\sigma x = \sigma y = 2 \sigma z = 3 i$, $\sigma v = 0$. For the relaxation time, we use the kinetic theory approximation for a Boltzmann gas, $\tau = \frac{1}{\eta_0} \frac{\rho}{\rho}$. For the viscosity, we have used the ADS/CFT lower bound $\eta_0 = 0.08$. Throughout the evolution, bound on the shear viscosity to entropy ratio is maintained.
A \textit{HYDRO-KOLKATA} was tested extensively \cite{13} for numerical accuracy and consistency (see Fig. 1). In any details of uid evolution in m iminimally viscous hydrodynamics can be found in \cite{13}. For completeness, in Fig. 2, we have compared evolution of minimal viscous uid and ideal uid, in a b = 0 Au+Au collision, both initialized similarly. As expected, uid cools slower with viscosity. In Fig. 3, evolution of shear stress tensor components, xx and yy in x-y plane is shown. Initially xx and yy both have similar distribution. After a few fm of evolution, the distribution starts to differ. xx and yy are related by x! y and y! x.
relation is maintained throughout the evolution. In Fig. 4, black and red lines show the constant energy density contours in the plane for ideal and viscous uid respectively. In (14,15) it was observed that at late time, centre of the uid cools faster in viscous evolution than in ideal evolution. However, we do not have a contrary result, even at late time, centre of the uid cools slower than ideal uid. However, in peripheral region and at late times, we found that viscous uid cools faster than ideal uid. As mentioned earlier, relaxation equation Eq. 2 neglect the term R = u + u D u. To check that indeed the term R contributes negligibly, in Fig. 4 we have shown results obtained with the term R included in the relaxation equation. The blue lines in Fig. 4 indicate that uid evolution with or without the term R is nearly identical. For minimally viscous uid neglect of the term R = u + u D u in the relaxation equation is justified.

3. Particle spectra and elliptic ow

Hydrodynamic equations give the space-time evolution of themodynamical quantities e.g. energy density (or temperature), uid velocity and the shear stress tensor. The information is converted into particle spectra using the standard Cooper-Frye prescription. In Cooper-Frye prescription, invariant distribution of a particle, say , is obtained as,

$$\frac{dN}{dyd^3p_T} = z \int d^3p \left. f^{(0)}(x;p)[1 + (x;p)] \right|_{x=0};$$

where is the freeze-out hyper surface and \(f^{(0)}(x;p) \) is the equilibrium one-body distribution function and (x;p) = \(\frac{p \cdot p}{2T (T^2 + p^2)} \ll 1 \), is the non-equilibrium connection to the equilibrium distribution function. Accordingly, in viscous dynamics, invariant distribution has two parts,

$$\frac{dN}{dyd^3p_T} = \frac{dN}{dyd^3p_T}^{eq} + \frac{dN}{dyd^3p_T}^{neq};$$

where \(\frac{dN}{dyd^3p_T}^{neq} \) is the non-equilibrium connection to the equilibrium distribution \(\frac{dN}{dyd^3p_T}^{eq} \). Similarly, for viscous hydrodynamics, elliptic

$$v_2(p_T) = R \frac{d}{dyd^3p_T} \frac{\cos(2 \cdot)}{d} \left. v_2^{eq}(p_T) + v_2^{neq}(p_T) \right|_{x=0};$$

Figure 4. (Color online) Evolution of energy density in a b = 0 fm Au+Au collision. The black lines are constant energy density contours in \(x^2 + y^2 = su^2 + v^2 \) plane in ideal dynamics. The red lines are for initially \(s = 0.08 \) viscous uid with Israel-Stewart’s relaxation equation Eq. 2, which neglect the term R = u + u D u. The blue lines are energy density contours when the relaxation equation contain the term R. At early time, uid evolution, with or without the term R remain essentially unchanged. Only at late time, evolution is marginally changed if the term is included in the relaxation equation.
where \(v_{2}^{eq} \) and \(v_{2}^{neq} \) are the equilibrium and nonequilibrium contributions, respectively.

Since the nonequilibrium correction to equilibrium distribution \((v|p) \ll 1 \) it is then necessary that the ratio \(R = \frac{\partial n_{eq}}{\partial y} \cdot \frac{\partial p_{eq}}{\partial y} < 1 \). In Fig. 5, \(p_{T} \) dependence of the ratio \(R \) in a b= 6.5 fm Au+Au collision is shown. \(R \) depends on the freeze-out temperature, decreasing with lowering \(T_{F} \). \(p_{T} \) range over which hydrodynamics remain applicable also increases as \(T_{F} \) is lowered.

In Fig. 6 and 7, we have demonstrated the effect of viscosity on \(p_{T} \) spectra and elliptic flow. For both ideal and minimally viscous \(p_{T} \) yield in a b= 7 fm Au+Au collision is calculated from freeze-out surface at temperature \(T_{F} = 130 \) MeV. For perfect ideal dynamics particle yield is increased in viscous dynamics, more at large \(p_{T} \), e.g. \(p_{T} = 3 \) GeV, yield is increased by a factor of 10. Elliptic flow on the other hand decreases in viscous dynamics. As shown in Fig. 7, while in ideal hydrodynamics elliptic flow continues to increase with \(p_{T} \), it nearly saturates in viscous hydrodynamics. It is well known that ideal hydrodynamics underestimate the \(p_{T} \) spectra and over-predict the elliptic flow. Viscous dynamics seem to remedy the drawbacks of ideal hydrodynamics.

Data setting is a complex process in viscous hydrodynamics. A part from initial time, initial energy density and fluid velocity (as in ideal hydrodynamics), in a minimally viscous fluid, production depends on the initial shear stress tensor, the relaxation time (see Fig. 8 and 9). Viscous effects are enhanced with increasing relaxation time. Effects are also increased with non-zero initial , a result contrary to where \(p_{T} \) spectra or \(v_{2} \) show little sensitivity to the initial shear stress tensor.

Presently we have the PHENIX data on differential elliptic flow in 16-23% centrality Au+Au collisions, by varying only \(T_{F} \). The other parameters are kept fixed, \(y_{0} = 0.6 \) fm, \(S_{y_{0}} = 110 \) fm, \(v_{y} = v_{y} = 0 \) to minimize effects of transverse momentum. In Fig. 10, elliptic flow in a b= 6.5 fm Au+Au collision is compared with the PHENIX data for a range of freeze-out temperatures. We have shown the equilibrium \(\psi_{2}^{eq} \) (the dash-dotted lines), the nonequilibrium correction \(\psi_{2}^{neq} \) (the dash-dot-dotted lines) and total \(\psi_{2} \) (the solid lines) separately. It is interesting to note that \(v_{2}^{eq} \) change marginally from \(T_{F} = 130-160 \) MeV. It indicates that equilibrium \(\psi_{2} \) is early time phenomena. Most of the \(\psi_{2} \) is generated by the time fluid cools to \(T = 160 \) MeV, and further evolution do not generate significant \(\psi_{2} \). The black arrows in Fig. 10 indicate the \(p_{T} \) above which

Figure 5. Ratio of nonequilibrium to equilibrium contribution in b= 6.5 fm Au+Au collisions.

Figure 6. \(p_{T} \) spectra of ideal and minimally viscous \(p_{T} \), in b= 7 fm Au+Au collisions.

Figure 7. Elliptic flow in ideal and minimally viscous \(p_{T} \), in b= 7 fm Au+Au collisions.
Figure 8. (a) p_T spectra and (b) elliptic flow in $b=6.5$ fm Au+Au collisions. Solid and dashed lines are for initial $= 0$ and $= 2$ =3 i respectively.

Figure 9. (a) p_T spectra and (b) elliptic flow in $b=6.5$ fm Au+Au collisions. The solid, dashed and short dashed lines are for $= 3$ =st, 6 =st and 9 =st respectively.

Figure 10. PHENIX data on the p_T dependence of elliptic flow in 16-23% Au+Au centrality collisions are compared with minimally viscous uid evolution (see text).

Figure 11. Predictions from minimally viscous hydrodynamics for v_2 in different centrality ranges of collisions are compared with the STAR and PHENIX data (see text).

viscous hydrodynamics break down. As seen in Fig. 11], for TF = 130 MeV, the total elliptic flow agrees well with the PHENIX experiment. For comparison, in Fig. 11 we have also shown the v_2 in ideal dynamics (the blue lines). In ideal dynamics, no constant v_2 is obtained.

As shown in Fig. 11, minimally viscous hydrodynamics, with TF = 130 MeV, also reasonably well explain the PHENIX data on differential v_2 in 0-10%, 10-20%, 20-30% and 30-40% centrality Au+Au collisions (the colored symbols) and the STAR data (open symbols) for minimum bias v_2. The black lines (from bottom to top) are v_2 from minimally viscous hydrodynamics in b= 3.2, 5.7, 7.4 and 8.7 fm Au+Au collisions. They roughly correspond to 0-10%, 10-20%, 20-30% and 30-40% centrality Au+Au collisions. v_2 in 10-20% or 20-30% centrality collisions are reasonably well explained, but v_2 is underpredicted in 0-10% centrality collision and overpredicted in 30-40% centrality collisions. Interestingly, STAR data
on minimum bias v_2 is correctly explained (the blue line in Fig. 11). In minimum bias, all the centrality ranges of collisions are included. Two opposing effects (under-predicted in central collisions and over-predicted in peripheral collisions) are cancelled in minimum bias v_2.

Minimal viscous hydrodynamics with freeze-out temperature $T_F = 130$ MeV also reproduces the centrality dependence of p_T spectra of identified particles. In Fig. 12, we have compared viscous hydrodynamics predictions with PHENIX data [20] on K^+ and proton p_T spectra in 0-5%, 5-10%, 10-20%, 20-30%, 30-40%, and 40-50% centrality Au+Au collisions. The spectra are normalized by a factor $N = 1.4$, which is reasonable considering that we have neglected resonance contribution. While ideal hydrodynamics can reproduce p_T spectra only up to $p_T \approx 1.5$ GeV [1], viscous hydrodynamics can reproduce the spectra throughout the p_T range. Viscous hydrodynamics also reproduces centrality dependence of charged particle multiplicity, mean p_T and p_T integrated v_2 (see Fig. 13).

The present study indicates that minimally viscous QGP uid, with central energy density 35 GeV/fm3, is consistent with experiments if the hadronic uid freeze-out at $T_F = 130$ MeV. However, it must be mentioned that initial or final condition of the uid may be changed at a different or initial is used. A comprehensive analysis, exploring all the variables upon which the uid evolution depend is required to identify the initial condition of the uid produced in Au+Au collisions at RHIC. Apparently, present simulation contradicts simulations in [12,15]. Different initial conditions, choice of system, evolution parameters etc. makes direct comparison between different simulations difficult. Song and Heinz [15] studied viscous uid in Cu+Cu collisions. They did not compare with data but ψ in Cu+Cu indicate that possibly minimally viscous uid will be inconsistent with the RHIC data. Romatschke et al. [13] studied Au+Au collisions. Minimally biased elliptic ω is under-predicted for minimally viscous data require $v_2 = 0.03$. However, they used freeze-out temperature $T_F = 150$ M eV and we expect they will not agree with data if the freeze-out temperature is lowered to $T_F = 130$ M eV.

4. Summary

To summarize, we have solved Israel-Stewart's second order theory to study evolution of minimally viscous QGP uid and subsequent particle production. In viscous dynamics, energy density or temperature of the uid evolve slowly than in ideal uid, for a fixed freeze-out temperature lifetime of the uid is increased. Particle production is enhanced in viscous dynamics, m are at large p_T. The elliptic ω on the other hand is reduced. Within certain approximation (non-zero initial shear stress tensor, kinetic theory approximation for relaxation time etc.), ADS/CFT
lower bound on viscosity appears to be consistent with a large number RHIC data in Au+Au collisions.

5. References

Figure 13. (color online) PHENIX data [20] on the centrality dependence of dN_{ch}/dy, $<p_T>$ and PHOBOS data [21] on p_T-integrated v_2 are compared with predictions from minimally viscous dynamics (the solid lines) and ideal dynamics (the dashed lines). Freeze-out temperature is $T_F = 100$ MeV for ideal and $T_F = 130$ MeV for viscous uid. Viscous hydrodynamics give nearly equivalent description of centrality dependence of dN_{ch}/dy as in ideal dynamics. For $N_{part} < 100$, centrality dependence of $<p_T>$ is better explained in viscous dynamics than in ideal hydrodynamics. PHOBOS data on integrated elliptic flow is also well explained.