Quantum Noise as an Entanglement Meter

Israel Klitch and Leonid Levitin

1 Kavli Institute for Theoretical Physics, University of California Santa Barbara, CA 93106
2 Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139

Entanglement entropy, which is a measure of quantum correlations between separate parts of a many-body system, has emerged recently as a fundametal quantity in broad areas of theoretical physics, from cosmology and field theory to condensed matter theory and quantum information. The universal appeal of the entanglement entropy concept is related, in part, to the fact that it is defined solely in terms of the many-body density matrix of the system, with no relation to any particular observables. However, for the same reason, it has not been clear how to access this quantity experimentally. Here we derive a universal relation between entanglement entropy and the fluctuations of current owing through a quantum point contact (QPC) which opens a way to perform a direct measurement of entanglement entropy. In particular, by utilizing space-time duality of 1d systems, we relate electric noise generated by opening and closing the QPC periodically in time with the semi-infinite prediction of conformal field theory.

Recent years have witnessed a burst of interest in the phenomena of quantum entanglement, and in particular, in entanglement entropy, a fundamental characteristic describing quantum many-body correlations between two parts of a quantum system. This quantity has emerged in field theory and cosmology [1,2] under the name of "geometric entropy," and subsequently was adopted by quantum information theory. The notion of entanglement entropy has provided a framework for analyzing quantum critical phenomena [3,4,5] and quantum quenches [6,7,8,9]. Recently it was used as a probe of complexity of topologically ordered states [10,11,12]. In addition, this quantity is of fundamental interest for quantum information theory as a measure of the resources available for quantum computation [13] as well as for numerical approaches to strongly correlated systems [14].

Can the entanglement entropy be measured? Here we identify a system where such a measurement is possible, thereby offering an affirmative answer to this question. In particular, we establish a relation between the entanglement entropy and quantum noise in a quantum point contact (QPC) [15], an electron beam-splitter with tunable transmission and reflection. In essence, the QPC serves as a door between electron reservoirs, which can be opened and closed on demand (see Fig. 1). We show that the fluctuations of electric current owing through the QPC can be used to quantify the entanglement generated by the connection, and thereby measure the entanglement entropy.

On some level, the very idea of measuring a quantity that encodes information about quantum many-body correlations of a large number of particles, which is what the entanglement entropy is, may seem totally bizarre. Yet, as we shall see, the situation with the entanglement entropy is different from, for example, the many-body density matrix that depends on coordinates of all particles in the system and is thus indeed very difficult to measure. In the free fermion QPC problem analyzed below, all multi-particle correlations in the Fermi sea that are relevant for entanglement are fully accounted for by temporal correlations of current owing through the QPC. As a result, perhaps somewhat surprisingly, noise measurement provides sufficient information needed to determine the entanglement entropy.

The situation considered here, which involves connecting and then disconnecting two parts of the system, is in a sense dual to the more conventional picture used in Refs. [3,4,5]. In the latter approach, the many-body ground state of a translationally invariant system is analyzed using a finite region in space. In our case, a window in time is used, $t_0 < t < t_1$, during which particles can delocalize among the reservoirs, making them entangled.

The relation between entanglement and noise is at the heart of recent proposals [15,16] to use current partitioning by scattering on a QPC for producing entangled particle pairs. Ref. [16] considered measuring the entan-
Entanglement entropy is conventionally defined as the von Neumann entropy $S(\rho) = \text{Tr}\rho \log_2 \rho$, where ρ is the reduced density matrix of a pure quantum state, made "in pure" by coning it to a certain space region 1, 2. In our case, the many-body state evolves as a pure state while the QPC is open (see Fig. 4), after which the reduced density matrix of the lead L is given by

$$L(t_f) = \text{Tr}_R(U(t_f; t_0) \rho U(t_f; t_0))$$

(4)

Here ρ is the initial density matrix of the system, U is the many-body evolution between t_0 and t_f, and Tr_R is a partial trace over degrees of freedom in the lead R.

Entropy production in the lead L as a result of QPC opening and closing is described by

$$S = S(L(t_f)) - S(L(t_0))$$

(5)

where the latter term accounts for the entropy in the initial state. Because at finite temperature both terms in Eq. (4) are proportional to the lead volume V, they can be large for macroscopic leads. The increment δS, however, remains well defined regardless of the lead volume V.

Below we focus on the zero temperature case when 0 is a pure state, described as a Fock state in the full system $L + R$, in which case the second term in Eq. (4) vanishes, giving $S = S(L(t_f))$. We associate with ρ a Fock state of the single-particle space $H \otimes \mathbb{C}^n$, where H is the Fermi energy. The evolved system is described by a rotated Fermi projection $n_H = U_n U^\dagger$, where U is the unitary evolution of the single-particle modes.

Our next step will be to express the entropy in terms of single-particle quantities. For a generic Gaussian state, Wick's theorem for operator products is satisfied in $L + R$, and therefore in particular it holds in L. Therefore the reduced density matrix is also Gaussian:

$$L = \frac{1}{Z} e^{H + a_1 a_2 \rho \cdots \rho}$$

(6)

for some ρ. We define a single-particle quantity $m_{ij} = \text{Tr}_L a_i^{\dagger} a_j$. For the evolved system, described by n_{H_f}, Wick's theorem gives $m_{ij} = \langle n_{H_f} \rangle_{ij}$. In what follows it will be convenient to extend m to $L + R$ by setting

$$M = P_L n_{H_f} P_L$$

(7)

with P_L a projection on the modes in L, so that $M = m$ in L and $M = 0$ in R.

Entropy can be expressed through m_{ij} for a generic Gaussian state [6]. Because of Fermi statistics, $m = (1 + e^{\text{Tr} H})^{-1}$, which gives $H = \log(m^{-1})$. Extending m to M in $L + R$, we write the entropy as

$$S(\rho) = \text{Tr} [M \log M + (1 - M) \log(1 - M)]$$

(8)

where now the trace is taken in the space of single-particle modes in L.
Transport in a QPC is described by the time-dependent transmission and reflection amplitudes \(A(t), B(t) \). In a Schrödinger representation, the scattering states are

\[
\begin{align*}
U & \mathbf{J}_{\mathbf{k}}(t) = B(t) \mathbf{A}(t) \mathbf{J}(t) \mathbf{J}_{\mathbf{k}}(t) = A(t) B(t) \mathbf{J}(t) \mathbf{J}_{\mathbf{k}}(t) ; \quad x < 0 < x(t);
\end{align*}
\]

and \(U \mathbf{J}_{\mathbf{k},L} = \mathbf{J}_{\mathbf{k},L} \) otherwise. Here \(x(t) = x + v_F t \), \(t_x = x = v_F t \) is the time of arrival at the scatterer, \(v_F \) is the Fermi velocity, and \(\mathbf{J}_{\mathbf{k},L} \) describes incoming \(x < 0 \) and outgoing \(x > 0 \) wavepacket states in the leads.

In FCS approach it is convenient to work in a time representation \([33] \), labeling states by time of arrival at the scatterer \(t_x \). In this representation the initial Fermi projection is given by \(\mathbf{J}(t) = \frac{1}{Z(t + t_x)} \), with \(I \), 2, 3 identify matri

\[n_m(t) = U(t) n(t) U(t)^* = B(t) A(t) B(t) A(t) \] (9)

These relations are essential for the derivation of our main result, they serve here illustration purpose only.

Our next step is to relate the quantity \(M \), Eq. (9), and the FCS generating function \(\mathbf{F} \) which can be expressed as a functional determinant \([13] \):

\[
(\mathbf{F}) = \text{det}(1 + n M) = \text{det}(1 + n U^* U) e^{i \mathbf{F}} \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (9)

This determinant must be properly regularized for infinitely deep Fermi sea \([28, 29]\). For our purposes we proceed to treat it as a m - matrix although a more rigorous treatment using C - algebra techniques is possible \([29]\). In the spirit of \([28, 29]\), we rewrite (9) as \([34]\):

\[
\text{det}(e^{i \mathbf{F}}) = \text{det}(1 + n U^* U) e^{i \mathbf{F}} \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (10)

Using the identities \(e^{i \mathbf{F}} = (1 + n U^* U) e^{i \mathbf{F}} \) we nd:

\[
(\mathbf{F}) = \text{det}(1 + n U^* U) e^{i \mathbf{F}} \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (10)

Next, we insert \(U^* U \) in the determinant to obtain:

\[
(\mathbf{F}) = \text{det}(1 + n U^* U) e^{i \mathbf{F}} \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (10)

Finally, noting that \(\text{det}(1 + A P L) = \text{det}(1 + P L A P L) \) for any m - matrix \(A \), we arrive at

\[
(\mathbf{F}) = \text{det}(1 + M + M e^{i \mathbf{F}}) e^{i (n P L h)} \quad \text{with} \quad M = n \text{ the quantity} \quad [\text{35}] \quad \text{which determines the entropy.} \]

Now, with the help of the relation \([13] \) we can express the spectral density of \(M \), Eq. (10), which lies between 0 and 1, through \(\text{det}(\mathbf{F}) \). Indeed, changing parameter to \(z = \left(1 - e^x \right) + \text{det}(z M) e^{i (n P L h)} \left(1 - e^x \right) \) gives that we can write the spectral density of \(M \) as

\[
(\mathbf{F}) = \frac{1}{2} \text{det}(\mathbf{F}) \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (10)

Now it is straightforward to evaluate \(S \) by substituting \([14]\) into \([15]\) with \((z) = \frac{1}{2} \log \frac{1}{2} \), and integrating by parts over \(z \). We obtain series \(S = \frac{1}{2} \log \frac{1}{2} \) j, where the coe cients \(m \), after changing variable to \(u = \frac{1}{2} \log \left(\frac{1}{2} \right) \), take the form

\[
(\mathbf{F}) = \frac{1}{2} \text{det}(\mathbf{F}) \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (10)

Finally, for \(m \), shifting the contour of integration as \(u \) to \(i \), yields \([35]\) our main results \([28] \) and \([36] \).

In order to compute FCS, it is convenient to return to the expression \([36] \) and apply the Riemann-Hilbert (RH) method introduced in \([28]\). In this approach, one must factor the time-dependent m - matrix \(R = 1 + C P + C P L \) in the on state. The solution of the RH problem is then given by the functions

\[
X(z) = \exp \left(\int_{a}^{b} \frac{1}{Z(t + t_x)} \right) \] (18)

To nd the determinant \([10] \) with these \(X \) we use the RH method \([28]\) to evaluate the derivative of log :

\[
(\mathbf{F}) = \frac{1}{2} \text{det}(\mathbf{F}) \quad \text{with} \quad \mathbf{F} = \frac{1}{Z(t + t_x)} \] (10)

Because in this case the only nonvanishing cumulant is \(C_2 \), we have \(S = \frac{1}{2} C_2 \), which gives \(S = \frac{1}{2} \log \frac{1}{2} \) for a single QPC switching, in agreement with the \(S = \frac{1}{2} \log L \)
FIG. 2: Entanglement entropy and current fluctuations. Noise power S_2 in a QPC driven by a pulse train, plotted as a function of the pulse width. Parameters used: driving frequency $= 500$ MHz, short-time cutoff $= 20$ ps. The noise as well as the entropy production are symmetric under $w \leftrightarrow T$. Note that at a narrow pulse width w the dependence reproduces the $\frac{1}{3} \log 2$ behavior of the entropy.

FIG. 3: The effect of imperfect transmission in QPC. Spectral measure scaled by $G = 2^{\frac{7}{2}}$, for a QPC driven by pulses with transmission D in the \textquoteleft on\textquoteright state (see Fig. 2). At $D < 1$ the entropy S_2 is reduced by a constant factor (inset) with w dependence unchanged.

The case of multiple switching provides realization of the situation studied in Ref. 3. These predictions can be tested by measuring noise in a QPC driven by a periodic train of pulses (see Fig. 2). For N identical pulses, the relation (19) at large N yields

$$C_2(N) = \frac{N}{2} \log \frac{\sin \omega w}{\omega w} = 1 - T$$

Thus in a periodically driven QPC there is a finite entropy production per cycle at a rate $dS/dt = \frac{1}{2} \log \frac{\sin \omega w}{\omega w}$. Fluctuations with C_2/\sqrt{N} correspond to electric noise with spectral power

$$S_2 = \frac{e^2}{2} \log \frac{\sin \omega w}{\omega w}$$

at frequencies below $\frac{1}{2}$. For a short pulse width w, the dependence becomes $S_2 = \frac{w^2}{2} \log \frac{\sin \omega w}{\omega w}$, identical to the entropy for a single pulse.

The result must be compared with thermal noise. At a driving frequency $= 500$ MHz, the effective temperature corresponding to (22) is $T = \frac{\hbar}{\kappa^*} \log \frac{\sin \omega w}{\omega w} \approx 25$ mK. In practice it may be possible to relax the constraint due to small T by detecting the noise at frequencies somewhat higher than $\frac{1}{T}$. The entropy is reduced by a constant factor (inset) with w dependence unchanged.

How sensitive are these results to imperfections in QPC transmission? It is straightforward to incorporate transmission $D = 0.1 < 1$ in the $\textquoteleft on\textquoteright$ state in the R.H. analysis because the matrices $R (t)$ in (3) still commute at different times. Instead of e^t, the eigenvalues of the R matrix are now $e^{(t_n)$ with $\sin \frac{\omega w}{\omega w} = 1 - D$, $\sin \frac{\omega w}{\omega w}$. Making this change, we obtain

$$z = e^{\frac{1}{2} - D}$$

with G given by (19) as above. Because this () is non-gaussian, with nonzero higher cumulants, the simplest way to find the entropy is to use its relation with the spectral density of M, Eqs. (14), (15). Using (23) along with the relations between z and w, we find

$$S(z) = \frac{G}{2} \log \frac{D}{z(1+z)} = 1 - \frac{1}{D}$$

As illustrated in Fig. 3, at $D < 1$ the function $p(z)$ vanishes in the interval $z < z_2$, $z_2 = \frac{1}{1-D}$. The entropy, found from (19) and (22), has the same logarithmic dependence on z as above, albeit with a D-dependent prefactor. Thus, the predicted dependence $S \log \sin w$ remains robust. The behavior of the rescaling factor $F = S(D)/S(1)$ (Fig. 2 inset) indicates that entropy reduction due to imperfect transmission in QPC can be attributed mostly to the change in the second cumulant, $C_2 = \frac{D}{2} - G$, with a relatively small correction due to higher cumulants.

From the quantum information perspective, it is important to isolate the part of the entropy accessible to local operations (i.e., respecting particle conservation in each lead) (20). The particle-number restricted entropy may be easily obtained from (). For the gaussian case considered above the change in the entropy due to this restriction is inessential (to be published).

In summary, we have shown that the entanglement entropy can be directly inferred from statistics of current fluctuations. We derived a general relation between the entanglement entropy and electron transport via the full counting statistics. Building on this universal relation, we propose noise measurement in a QPC as a way to test theoretical predictions for the many-body entanglement in a realistic setting. This provides a new method to investigate many-body entanglement, and in particular, its generation in non-equilibrium quantum systems.
The work of IK was supported in part by the National Science Foundation under Grant No. PHY 05-51164. L.L.'s work was partially supported by W.M. Keck foundation. We thank Carlo Beenakker and Gil Refael for comments on the manuscript and useful discussions.

[26] The Bernoulli numbers \(B_n \) are defined by the generating function \(\frac{1}{e^x - 1} = \sum_{n \geq 0} B_n \frac{x^n}{n!} \). Asymptotically, \(B_n \) stay bounded for large order cumulants.
[27] J. E. M. Latorrre and M. Cramer, Phys. Rev. A 72, 042112 (2005); we note that this article uses a spectral representation of entropy similar to our Eq. (13).
[30] Our derivation of Eq. (13) is similar to that used in A. G. Abanov and D. A. Ivanov, Phys. Rev. Lett. 100, 086602 (2008), where constraints on the spectrum of \(M \) inside the interval \(0 < z < 1 \) are also discussed.
[32] We use the integral \(\int_{-\infty}^{\infty} \frac{e^{-z}}{1 + e^{-\beta z}} \frac{dz}{\beta} = e^z \beta z^2 \), Eq. (3.525) in I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, (Academic Press, 1980).