Enhanced production of direct photons in Au + Au collisions at $p_{\text{SNN}} = 200$ G eV and in p + p collisions for the initial tem perture $p_{\text{SNN}} = 200$ G eV.
The production of e^+e^- pairs for $m_{ee} < 0.3 \text{ GeV}/c^2$ and $1 < p_T < 5 \text{ GeV}/c$ is measured in $p+p$ and $A_u + A_u$ collisions at $P_{\pi^0_u} = 200 \text{ GeV}$. Enhanced yield above hadronic sources is observed. Treated as photon internal conversions, the invariant yield of direct photons is deduced. In central $Au+Au$ collisions, the excess of direct photon yield over $p+p$ is exponential in transverse momentum, with inverse slope $T = 221 \pm 19_{\text{stat}} \pm 19_{\text{syst}} \text{ MeV}$. Hydrodynamic calculation with initial temperature ranging from $T_{ini} = 300\text{ (600) MeV for time of } 0.6(0.15) \text{ fm/c}$ after the collision are in qualitative agreement with the data. Lattice QCD predicts a phase transition to quark gluon plasma at 170 MeV.

PACS numbers: 13.85.Qk, 25.75.Cj, 12.38.Mh, 21.65.Qr

Experiments results from the Relativistic Heavy Ion Collider (RHIC) have established the formation of dense partonic matter in $Au + Au$ collisions at $P_{\pi^0_u} = 200 \text{ GeV}$. The large energy loss of light quarks and gluons [3] as well as that of heavy quarks [2] indicates that the matter is very dense. The strong leptonic signal from light quark and charm [2] hadrons indicates rapid thermalization. Such a hot, dense medium should emit thermal radiation [3]; the partonic phase is predicted to be the dominant source of direct photons with $1 < p_T < 3 \text{ GeV}/c$ in $Au + Au$ collisions at RHIC [3].

Observation of thermal photons will allow determination of the initial temperature of the matter. However, the measurement of direct photons for $1 < p_T < 3 \text{ GeV}/c$ is notoriously difficult due to a large background from hadronic decay photons. Direct photons contribute only 10% above the background photon yield [1]. In general, any source of high energy photons can also emit virtual photons, which convert to low mass e^+e^- pairs. For example, gluon Compton scattering $(q + g \rightarrow q + e^+e^-)$ has an associated process that produces low mass e^+e^- pairs through internal conversion $(q + g \rightarrow q + e^+e^-)$. Consequently, we search for low invariant mass e^+e^- pairs, which appear as low invariant mass e^+e^- pairs.

The relationship between photon production and the associated e^+e^- pair production can be written as [2,3]

$$\frac{d^2N_{ee}}{dm_{ee}} = \frac{S}{m_{ee}} \left(\frac{2}{3} \frac{1}{m_{ee}} \left(\frac{4m_e^2}{m_{ee}^2} + 1 + \frac{2m_e^2}{m_{ee}^2} \right) \right) \Delta n_{\pi^0}$$

where S is the structure constant, m_e and m_{ee} are the masses of the electron and the e^+e^- pair, respectively, and Δn_{π^0} is the process dependent factor that goes to 1 as $m_{ee} \rightarrow 0$ or $m_{ee} \rightarrow p_T$. Equation (1) also describes the relation between the photons from hadron decays (e.g., π^0; η, η') and the e^+e^- pairs from Dalitz decays (π^0, η, η'). For π^0 and η, the factor S is given by $S = \frac{f(m_e^2)}{2} (\frac{s}{m_e^2})^3$, where m_e is the meson mass and $F(m_e^2)$ is the form factor.

The factor S for a hadron decays $h \rightarrow e^+e^-$ is zero for $m_{ee} > m_h$. We exploit this cut-off to separate the direct photon signal from the hadronic background. Since 80% of the hadronic photons are from π^0 decays, the signal to background (S/B) ratio for the direct photon signal is proves by a factor of 0.2 for $m_{ee} > 135 \text{ MeV}/c^2$, thereby allowing a direct photon signal that is 10% of the background to be observed as a 50% excess of e^+e^- pairs.

In this Letter we present the analysis of e^+e^- pairs for $m_{ee} < 0.3 \text{ GeV}/c^2$ and for $1 < p_T < 5 \text{ GeV}/c$ in $Au + Au$ and $p+p$ collisions at $P_{\pi^0_u} = 200 \text{ GeV}$ recorded during 2004 and 2005, respectively. The PHENIX detector [11] measures electrons in the two central arms, each covering the pseudorapidity η in azimuthal angle. The $Au + Au$ analysis [6,12] uses 8×10^6 minimum bias (M. B.) events corresponding to $92 \pm 22_{\text{stat}} \pm 30_{\text{syst}} \%$ of the inelastic $Au + Au$ cross section. The beam-beam counters and zero degree calorimeters provide the M. B. trigger, as well as the centrality selection [13]. The $p+p$ analysis [14] uses 43 nb$^{-1}$ of data recorded using the M. B. trigger and 2.25 pb$^{-1}$ of single electron triggered data. Helium bags in both runs reduced the total conversion material, including the beam pipe, to 0.4% of a radiation length.

All electrons and positrons with $p_T > 0.2 \text{ GeV}/c$ are combined into pairs. Pairs from photon conversions in the detector material are removed by a cut on the orientation of the pair in the magnetic field [3]. The combinatorial background is computed by Monte Carlo events and subtracted [3,13]. The S/B ratio is 0.2 (at $m_{ee} = 0.3 \text{ GeV}$) to 1.5 at $m_{ee} = 0.1 \text{ GeV}/c^2$ for $p_T > 2 \text{ GeV}/c$ and 0.05 to 0.4 for $1 < p_T < 2 \text{ GeV}/c$. There are two sources of correlated background: two e^+e^- pairs from a meson decay and correlated hadrons decaying into two e^+e^- pairs, either within the same jet or in back-to-back jets.
The magnitude of the correlated background, about 10% of the signal in $p+p$, is detemined from the like-sign pair data and subtracted after correcting for acceptance differences between like and unlike-sign pairs. We correct for electron reconstruction efficiency, and in $p+p$ for trigger efficiency, detemined as a function of mass and pair p_T using a GEANT-based Monte Carlo simulation of the PHENIX detector.

Figure 2 shows the mass spectra of e^+e^- pairs in $p+p$ and Au + Au collisions for different ranges of pair p_T, comparing to a "cocktail" of hadron decays calculated using a Monte Carlo hadron decay generator based on meson production measured by PHENIX. Detector resolution is included in the cocktail calculation. The open charm contribution, calculated with PYTHIA, is also included but is negligible in this kinematic range. The cocktail is normalized to the data for $m_{ee} < 0.03$ GeV/c2; the absolute normalization agrees with the data within a 20% systematic uncertainty.

The knee" beginning at $m_{ee} \approx 0.1$ GeV/c2 corresponds to the 0 cut-off, leading to an 80% reduction of background above this point. The $p+p$ data are consistent with the background for $m_{ee} < M$ at lower p_T, but reveal a small excess over the background at higher p_T. A much greater excess is observed in Au + Au indicating enhanced production of virtual photons.

Internal conversion of direct photons is a possible source of the excess. Little contribution from other sources of e^+e^- pairs is expected in this mass region since e^+e^- can only contribute for $m_{ee} < 2M$. Although PHENIX has observed a strong enhancement of e^+e^- pairs for $0.15 < m_{ee} < 0.75$ GeV/c2 in Au + Au, it peaks at low p_T and decreases rapidly with increasing p_T with a different mass distribution than that observed at high p_T.

Figure 2 shows that the mass spectrum for $m_{ee} < 0.5$ GeV/c2 and $p_T > 1$ GeV/c is well described by the cocktail plus internal conversion photons. The at mass spectrum of the excess above the cocktail at this p_T shows no significant indication of low mass enhancement. Thus, we treat the excess entirely as internal conversion of photons and deduce the real direct photon yield from e^+e^- pairs using Eq. (d).

We assume that the form factor for direct photons is $F(m_{ee}^2) = 1$, as one would expect from a purely point-like process. For direct photons from parton fragmentation or from hadronic gas, $F(m_{ee}^2)$ may be greater than one. If we arbitrarily set the form factor in $f_{dir}(m_{ee}^2)$ to be the same as that in $f_{int}(m_{ee}^2)$, r would decrease by 10%.

For each p_T bin, $f(m_{ee})$ is to the data for $m_{low} < m_{ee} < 0.3$ GeV/c2 with $m_{low} = 0.08; 0.1; 0.2$ GeV/c2; r is the only parameter. Figure 2 shows $f_{dir}(m_{ee}^2)$ and $f_{int}(m_{ee}^2)$ together with a result for Au + Au data for $1.0 < p_T < 1.5$ GeV/c. For higher p_T, bins $2 - 4$, NDF is near 1.0; to centrality separated data also give good $2 - 4$ NDF.

Therefore, we focus on the uncertainties that can cause distortions in the mass distribution, namely (i) the particle composition in the hadronic background, (ii) the background (from mixed events and correlated pairs), (iii) the geometric acceptance due to detector active areas, and (iv) the efficiency corrections. These were studied by Monte Carlo simulation. The mass spectrum is
Figure 3: (color online) The fraction of the direct photon component as a function of p_T. The error bars and the error band represent the statistical and systematic uncertainties, respectively. The curves are from a NLO pQCD calculation (see text).

The direct photon fraction r in Fig. 3 is converted to the direct photon yield as $dN/dx(p_T) = r \cdot dN^{inc}(p_T)$. The inclusive photon yield $dN^{inc}(p_T)$ for each p_T bin is determined from the yield of e^+e^- pairs for $m_{ee}<0.03\text{ GeV}/c^2$ using Eq. (1). Here we use the fact that in this mass range the process dependent factor S is unity within a few percent for any photon source.

Figure 4 compares the direct photon spectra with previously measured direct photon data from [13, 20] and NLO pQCD calculations [18]. The systematic uncertainty of the inclusive photon (14% from the uncertainty in the e^+e^- pair acceptance correction [12]) is added in quadrature with the systematic uncertainties of these data. The $p+p$ data are shown as an invariant cross section using $d = \frac{dN}{dp_T^2}$.

In this analysis we have converted the yield of e^+e^- pairs to that of real direct photons using Eq. (1), assumed $S = 1$. This implies $\frac{dN_{ee}}{d^2m_{ee}} = \frac{2}{m_{ee}} \cdot \frac{dN_{ee}}{d^2p_T^2}$. Thus the yield of the excess e^+e^- pairs for $0<d < m_{ee}<0.03\text{ GeV}/c^2$ before the conversion can be obtained by multiplying the direct photon yield by a factor of $\frac{2}{m_{ee}} \cdot \frac{dN_{ee}}{d^2p_T^2}$. The pQCD calculation is consistent with the $p+p$ data within the theoretical uncertainties for $p_T > 2\text{ GeV}/c$. A similarly good agreement is observed for 0%.

The $p+p$ data can be well described by a modified power-law function $(A_{pp}(1+p_T^2))^{N}$ as shown by the dashed curve in Fig. 4. The $Au+Au$ data are above the $p+p$ curve.
scaled by T_{AA} for $p_T < 2.5$ GeV/c, indicating that the direct photon yield in the low p_T range increases faster than the binary NN collision scaled p+p cross section.

We take an exponential plus the T_{AA}-scaled p+p t function $(A e^{p_T/t} + T_{AA} A_{pp}(1+p_T^2/n)^n)$ to the Au+Au data. The only free parameters in the tangent A and the inverse slope T of the exponential term. The systematic uncertainties in T are estimated by changing the p+p t component and the Au+Au data points within the systematic uncertainties. The results of the ts are summarized in Table I, where A is converted to dN/dy for $p_T > 1$ GeV/c. For central collisions $T = 221$ GeV and T_{AA} corresponds to the Au+Au data within a factor of two $[10]$. These assumptions for a hot system with initial temperature ranging from $T_{AA} = 300$ MeV at their initialization time $0 = 0.6$ fm/c to $T_{AA} = 600$ MeV at $0 = 0.15$ fm/c $[12]$. As an example, the dotted (red) curve in Fig. 4 shows a thermal photon spectrum in central Au+Au collisions calculated with $T_{AA} = 370$ MeV $[12]$.

In conclusion, we have measured e^+e^- pairs with $m_{ee} < 300$ MeV/c2 and $1 < p_T < 5$ GeV/c in p+p and Au+Au collisions. The p+p data show a small excess over the hadronic background while the Au+Au data show a much larger excess. By treating the excess as internal conversion of direct photons, the direct photon yield is deduced. The yield consistent with a NLO pQCD calculation in p+p. In central Au+Au collisions the shape of the direct photon spectrum above the T_{AA}-scaled p+p spectrum is exponential in p_T, with an inverse slope $T = 221$ GeV and T_{AA} corresponds to the Au+Au data. The only free parameters in the tangent A and the inverse slope T of the exponential term. The systematic uncertainties in T are estimated by changing the p+p t component and the Au+Au data points within the systematic uncertainties. The results of the ts are summarized in Table I, where A is converted to dN/dy for $p_T > 1$ GeV/c. For central collisions $T = 221$ GeV and T_{AA} corresponds to the Au+Au data within a factor of two $[10]$. These assumptions for a hot system with initial temperature ranging from $T_{AA} = 300$ MeV at their initialization time $0 = 0.6$ fm/c to $T_{AA} = 600$ MeV at $0 = 0.15$ fm/c $[12]$. As an example, the dotted (red) curve in Fig. 4 shows a thermal photon spectrum in central Au+Au collisions calculated with $T_{AA} = 370$ MeV $[12]$.

In conclusion, we have measured e^+e^- pairs with $m_{ee} < 300$ MeV/c2 and $1 < p_T < 5$ GeV/c in p+p and Au+Au collisions. The p+p data show a small excess over the hadronic background while the Au+Au data show a much larger excess. By treating the excess as internal conversion of direct photons, the direct photon yield is deduced. The yield consistent with a NLO pQCD calculation in p+p. In central Au+Au collisions the shape of the direct photon spectrum above the T_{AA}-scaled p+p spectrum is exponential in p_T, with an inverse slope $T = 221$ GeV and T_{AA} corresponds to the Au+Au data. The only free parameters in the tangent A and the inverse slope T of the exponential term. The systematic uncertainties in T are estimated by changing the p+p t component and the Au+Au data points within the systematic uncertainties. The results of the ts are summarized in Table I, where A is converted to dN/dy for $p_T > 1$ GeV/c. For central collisions $T = 221$ GeV and T_{AA} corresponds to the Au+Au data within a factor of two $[10]$. These assumptions for a hot system with initial temperature ranging from $T_{AA} = 300$ MeV at their initialization time $0 = 0.6$ fm/c to $T_{AA} = 600$ MeV at $0 = 0.15$ fm/c $[12]$. As an example, the dotted (red) curve in Fig. 4 shows a thermal photon spectrum in central Au+Au collisions calculated with $T_{AA} = 370$ MeV $[12]$.