Final-state interactions in the decay $B^0 \to cK$

Zhi-Gang Wang

Department of Physics, North China Electric Power University, Baoding 071003, P.R.China

Abstract

In this article, we study the nonperturbative dynamics of QCD, final-state interactions and CP violation. The weak Hamiltonian. The nonperturbative hadronic matrix elements of the operators entering the effective weak Hamiltonian. The B factories (BaBar, Belle, etc) have measured the color-suppressed decays to a charmonia and a K (or K^*) meson with relatively large branching fractions [1], for example, $\text{Br}(B^0 \to cK) = (8.72 \pm 0.33) \times 10^{-4}$.

The branching fractions are $\text{Br}(B^0 \to cK) = (5.7 \pm 0.6 \pm 0.9) \times 10^{-4}$, $\text{Br}(B^0 \to (2S)K^0) < 3.9 \times 10^{-4}$, $\text{Br}(B^0 \to (2S)K^0) < 4.8 \times 10^{-5}$, $\text{Br}(B^0 \to cK) = (2.2 \pm 0.7) \times 10^{-4}$ at the 90% C.L. [2].

The decays $B^0 \to J = K; cK; cK$ have been calculated with the QCD-improved factorization approach [3,4], there are infrared divergence in vertex corrections and logarithmic divergence in spectator corrections beyond the leading twist approximation for the S-wave charmonia and in the leading twist approximation for the

1 E-mail: wangzgyt@126.com.cn.
P-wave charmonia, moreover, the predicted branching fractions are too small to accommodate the experimental data 5,6,7,8,9,10. The decay \(B^+ \to J^0 = K \) has also been studied with the QCD-improved factorization approach, the factorization breaks down even at the twist-2 level for transverse hard spectator interactions 11.

In Refs.12,13,14, the soft nonfactorizable contributions in the decays \(B^+ \to J^0 = K ; c \to K) \) are studied with the light-cone QCD sum rules, the predicted small branching fractions cannot accommodate the (relatively large) experimental data.

In Ref.15, the authors study the decays \(B^+ \to J^0 = K) \) with the perturbative QCD approach based on \(k_T \) factorization theorem, and the branching fractions \(Br(B^+ \to K) \) and \(Br(B^+ \to K^0) \) are too small to take into account the experimental data 2.

Final-state interactions play an important role in the hadronic \(B \)-decays, the color-suppressed neutral modes such as \(B^0 \to D^0 \to K \) are enhanced substantially by the long-distance rescattering effects 16. In Refs.17,18, the authors study the rescattering effects of the intermediate charmed mesons for the decays \(B^+ \to h_c K \) and observe the final-state interactions can lead to larger branching fractions to account the experimental data. The factorizable amplitude in the decay \(B^0 \to K \) is too small to accommodate the experimental data 2, so it is interesting to study the effects of the final-state interactions.

The article is arranged as: in Section 2, we study the final-state rescattering effects in the decay \(B^0 \to K \); in Section 3, the numerical result and discussion; and Section 4 is reserved for conclusion.

2 Final-state rescattering effects in the decay \(B^0 \to K \)

The effective weak Hamiltonian for the decay modes \(B \to K \) can be written as (for detailed discussion of the effective weak Hamiltonian, one can consult Ref.13)

\[
H_w = \frac{G_F}{2} \sum_{i=3}^{8} V_{cb} V_{cd} \left[C_1(\sqrt{\Delta}) O_1(\sqrt{\Delta}) + C_2(\sqrt{\Delta}) O_2(\sqrt{\Delta}) \right] V_{tb} V_{ts} \chi_i^{\frac{2}{3}} \frac{\chi_i^{\frac{2}{3}}}{\chi_i^{\frac{2}{3}}} ; (1)
\]
where \(V_{ij} \)'s are the CKM matrix elements, \(C_i \)'s are the Wilson coefficients calculated at the renormalization scale \(O(m_b) \) and the relevant operators \(O_i \) are given by

\[
O_1 = \langle s \ b \rangle_{\nu A} \langle c \ c \rangle_{\nu A}; \\
O_2 = \langle s \ b \rangle_{\nu A} \langle c \ c \rangle_{\nu A}; \\
O_{3(5)} = \langle s \ b \rangle_{\nu A} \langle q \ q \rangle_{\nu A (V+A)}; \\
O_{4(6)} = \langle s \ b \rangle_{\nu A} \langle q \ q \rangle_{\nu A (V+A)}; \\
O_{5(9)} = \frac{3}{2} \langle s \ b \rangle_{\nu A} \langle q \ q \rangle_{\nu A (V+A)}; \\
O_{6(10)} = \frac{3}{2} \langle s \ b \rangle_{\nu A} \langle q \ q \rangle_{\nu A (V+A)}; \\
\]

(2)

and \(i \) are color indexes. We can reorganize the color-mismatched quark dots into color singlet states by Fierz transformation (for example, \(O_2 = \frac{1}{2} O_1 + 2 \phi_1, \phi_1 = (\overline{s} b)_{\nu A} (\overline{c} c)_{\nu A} \), \(a \)'s are the Gell-Mann matrices), and obtain the factorizable amplitude,

\[
h_c(p_3) K(p_4) H_w B(P) i = \frac{G_F}{2} \sqrt{2} V_{cd} V_{us} (C_1 + \frac{C_2}{3}) V_{ub} V_{us} (C_3 C_5 + \frac{C_4 C_6}{3}) \\
h_c(p_3) F (1 \ s) \phi (p_4) F (1 \ s) b B(P) i = \frac{G_F}{2} \sqrt{2} V_{cd} V_{us} (C_1 + \frac{C_2}{3}) V_{ub} V_{us} (C_3 C_5 + \frac{C_4 C_6}{3}) \\
2P_q q M K A_0(p_3); \\
\]

(3)

where we have used the standard definitions for the weak form-factors (we write down all form-factors to be used in this article) \([20,21]\),

\[
h_D (p) F (1 \ s) b B (P) i = (p + P) F_1(q^2) \frac{M_b^2}{q^2} \frac{M_b^2}{q^2} F_0(q^2); \\
h_W (p) F (1 \ s) b B (P) i = i p \ p \ \frac{2V(q^2)}{M_b + M_V} \frac{2M_V q}{q^2} q A_0(q^2) \\
\frac{q}{q^2} q (M_b + M_V) A_1(q^2) + \\
(P + P) \ \frac{M_b^2}{q^2} \frac{M_V^2}{q^2} q \ \frac{A_2(q^2)}{M_b + M_V}; \\
\]

(4)

the \(q \) is the polarization vector of the vector meson and \(q = P \ p \). In this article, we use the value of the B ! K form factor \(A_0(q^2) \) from the light-cone QCD sum rules \([22]\),

\[
A_0(q^2) = \frac{1.364}{1 - q^2/M_b^2} + \frac{0.990}{1 - q^2/36.78}; \\
\]

(5)
The factorizable amplitude (see Eq. (3)) at the tree level is too small to accommodate the experimental data.

The decays $B^0 \rightarrow D D_s, DD_s, D_s D_s, D_s D_s, D_s D_s$ are color enhanced due to the large Wilson coefficient C_2.

\[h_{D_s}(q)D(p)D_s(B)(P)i = P - 2G_F V_{ub}V_{cs}(C_2 + \frac{C_1}{3})P f_{D_s}M_D A_0(q^2); \]

\[h_{D_s}(q)D(p)D_s(B)(P)i = P - 2G_F V_{ub}V_{cs}(C_2 + \frac{C_1}{3})P f_{D_s}M_D A_0(q^2); \]

we write down only the amplitudes appear in the final expressions. In the heavy quark limit, the weak form factors $A_0(q^2)$ and $F_1(q^2)$ can be related to the universal Isgur-Wise form factor \((!)[23]\).

\[F_1(q^2) = \frac{M_B^2 + M_D^2}{2M_B M_D} \frac{M_B^2 + M_D^2}{2M_B M_D} \frac{q^2}{q^2}; \]

\[A_0(q^2) = \frac{M_B^2 + M_D^2}{2M_B M_D} \frac{M_B^2 + M_D^2}{2M_B M_D} \frac{q^2}{q^2}; \]

where \((!)=\frac{2}{3}\), which is compatible with the experimental data for the semileptonic decays $B^0 \rightarrow D (D_J) [24]$.

The decay $B^0 \rightarrow \pi^0 K^-$ can also take place through the decay cascades $B^0 \rightarrow D D_s, D D_s, D_s D_s, D_s D_s, D_s D_s, D_s D_s$; K^-, the rescattering amplitudes of $D D_s, D D_s, D_s D_s, D_s D_s, D_s D_s$; $\pi^0 K^-$ may play an important role.

The final-state interactions can be described by the following effective lagrangians,

\[L_{D D} = \bar{q}_{cD} D c \bar{D} \hat{D} \hat{D} \frac{1}{2} + \bar{q}_{cD} \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} \]

\[L_{D D} = \bar{q}_{cD} \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} + \bar{q}_{cD} \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} \]

\[L_{D D} = \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} + \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} \]

\[L_{D D} = \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} + \bar{D} \hat{D} \bar{D} \hat{D} \frac{1}{2} \]

where the indexes $i; j$ stand for the flavors of the light quarks, $D^{(1)}=D^{(0)}, D^{(1)}$, $D_s^{(1)}, V$ is the 3×3 matrix for the nonet vector mesons,

\[\begin{pmatrix}
0 \\
\frac{1}{2} + \frac{1}{2} \\
\frac{1}{2} + \frac{1}{2}
\end{pmatrix}
\]

\[V = \begin{pmatrix}
K & 0 & C \\
0 & K & A \\
C & A & K
\end{pmatrix}
\]

The lagrangians $L_{D D V}, L_{D D V}$ and $L_{D D V}$ are taken from Ref. [16], and the $L_{DD D}$ and $L_{DD D}$ are constructed from the heavy quark theory in this article. In the heavy quark limit, the strong coupling constants $f_{D D V}, f_{D D V}, g_{D D V}$ and $g_{D D V}$ can be
related to the basic parameters and in the heavy quark effective Lagrangian (one can consult Ref. [25] for the heavy quark effective lagrangian and relevant parameters, we neglect them for simplicity),

$$f_{D D V} = f_{D D V} = \frac{g_v}{2};$$
$$g_{D D V} = g_{D D V} = \frac{g_v}{2};$$

(14)

where $g_v = 5.8$ from the vector meson dominance theory [26]. The strong coupling constants $g_{c D D}$ and $g_{c D D}$ are estimated with the universal Isgur-Wise form-factor at zero recoil (1) and the assumption of dominance of the intermediate c meson for the pseudoscalar heavy quark current $\overline{c} s C$,

$$g_{c D D} = \frac{2m_c}{f_c} \frac{M}{f_c};$$
$$g_{c D D} = \frac{g_{c D D}}{M_D}.$$

(15)

The rescattering effects can be taken into account by twelve Feynman diagrams, see Fig.1. We calculate the absorptive parts (or imaginary parts) of the rescattering
amplitudes \(\text{Abs}(i) \) by the Cutkosky rule, \(\text{Abs}(i) = \text{Abs}(i) \frac{Z}{V_{cb} V_{cs}} (C_2 + \frac{C_1}{3}) \),

\[
\begin{align*}
\text{Abs}(a) &= \frac{p_1}{8M_B} \frac{Z}{Z} \quad d \quad f_{D_s M_D} g_{\gamma D_D} g_{D D D} A_0(p_2^2) \frac{F^2(M_D; i t)}{t M^2_D} \\
\text{Abs}(b) &= \frac{p_1}{8M_B} \frac{Z}{Z} \quad d \quad f_{D_s M_D} g_{\gamma D_D} g_{D D V} F_1(p_2^2) \frac{F^2(M_{D_s}; i t)}{t M^2_{D_s}} \\
\text{Abs}(c) &= \frac{p_1}{4M_B} \frac{Z}{Z} \quad d \quad f_{D_s M_D} g_{\gamma D_D} g_{D D D} f_{D D V} A_0(p_2^2) \frac{F^2(M_D; i t)}{t M^2_D} \\
\text{Abs}(d) &= \frac{p_1}{4M_B} \frac{Z}{Z} \quad d \quad f_{D_s M_D} g_{\gamma D_D} g_{D D D} f_{D D V} F_1(p_2^2) \frac{F^2(M_{D_s}; i t)}{t M^2_{D_s}} \\
\text{Abs}(e) &= \frac{p_1}{8M_B} \frac{Z}{Z} \quad d \quad f_{D_s M_D} g_{\gamma D_D} g_{D D D} F_1(p_2^2) \frac{F^2(M_D; i t)}{t M^2_D} \\
\text{Abs}(f) &= \frac{p_1}{8M_B} \frac{Z}{Z} \quad d \quad f_{D_s M_D} g_{\gamma D_D} g_{D D D} A_0(p_2^2) \frac{F^2(M_{D_s}; i t)}{t M^2_{D_s}} \\
\text{Abs}(g) &= \text{Abs}(h) \quad (\text{in SU(3) limit}) \\
\text{Abs}(i) &= \text{Abs}(j) \quad (\text{in SU(3) limit}) \\
\text{Abs}(k) &= \text{Abs}(l) \quad (\text{in SU(3) limit}) \quad (16)
\end{align*}
\]

where \(p_1 \) is the 3-momentum of the on-shell intermediate mesons \(D_{i} D_{i} \) \(D_{s} D_{s} \) in the rest frame of the meson, for example, in the process \(B^0 \rightarrow D_{i} (p_1) \bar{D}_{s} (p_2) \) \(c(p_3) \bar{K} (p_4), t = q^2, q = p_1 - p_3, p_3 = p_4 \), \(p_2 \) \(p_i \) is the polarization vector of the vector meson \(i \). The \(c \) -channel effects of the \(t \)-channel exchanged mesons \(D_{i} D_{i} \) \(D_{s} D_{s} \) and \(D_{s} D_{s} \) are taken into account by introducing a monopole form-factor \(F(t) \),

\[
F(M_i; t) = \frac{M^2_i}{t} \quad (17)
\]

and the cut-off \(Q_{CD} \) are parameterized as

\[
Q_{CD} = M_{i} + Q_{CD} \quad (18)
\]
where \(g_s \) is a free parameter and \(\phi_{CD} = 0.225 \text{ GeV} \). In fact, the \(g_s F(M; t) \) are the momentum dependent strong coupling constants, we can vary the parameter to change the effective strong couplings, here we use the notation \(g_s \) to denote all the strong coupling constants.

The dispersive parts (or real parts) of the rescattering amplitudes can be obtained via the dispersion relation,

\[
D \mathrm{is}(i)(M_B^2) = -\frac{1}{\pi} \int_{s_{th}}^{\infty} \frac{Z_1 A \mathrm{bs}(s^0)}{s^0 - M_B^2} \mathrm{d}s^0;
\]

where the thresholds \(s_{th} \) are given by \(s_{th} = (M_D + M_{D_s})^2, (M_D + M_{D_s})^2, (M_D + M_{D_s})^2 \) for any specific diagram. There are large uncertainties due to the cut-off procedure, even one assumes that the integrals are dominated by the region close to the pole \(M_B^2 \) [17,18]. In this article, we assume the dominating contributions of the rescattering amplitudes come from the absorptive parts, which originate from the on-shell intermediate states in the decay cascades, the dispersive parts of the amplitudes are of minor importance and can be taken into account by introducing a phenomenological parameter \(\lambda \), \(D \mathrm{is}(i) = A \mathrm{bs}(i) \), 30%.

3 Numerical result and discussions

The CKM matrix elements are taken as \(V_{ub} = 0.07296 \pm 0.00024, V_{cb} = (41.5 \pm 0.6) \times 10^{-3} \) and \(V_{td} = 0.999101^{+0.00034}_{-0.00004} \) and \(V_{ts} = (40.6 \pm 2.7) \times 10^{-3} \) [1,27]. We take the next-to-leading order W boson coefficients calculated in the naive dimensional regularization scheme for \(= m_B(\mu_B) = 4\times10^6 \text{ GeV} \), and \(= 225 \text{ GeV} \), \(C_1 = 0.085, C_2 = 1.082, C_3 = 0.014, C_4 = 0.035, C_5 = 0.009 \), and \(C_6 = 0.041 \) [19], here we have neglected the W boson coefficients \(C_7, C_8, C_9, C_{10} \) in numerical calculation due to their small values. The masses of the mesons are taken as \(M_B = 5.279 \text{ GeV} \), \(M_K = 0.892 \text{ GeV} \), \(M_{D} = 1.87 \text{ GeV} \), \(M_{D_s} = 1.97 \text{ GeV} \), \(M_{D_s} = 2.11 \text{ GeV} \), and \(M_{D_s} = 2.986 \text{ GeV} \) [2].

The values of the decay constants \(f_D, f_{D_s}, f_D \) and \(f_{D_s} \) vary in a large range from different approaches, for example, the potential model, QCD sum rules and lattice QCD, etc [30,31,32]. For the \(f_D \), we take the experimental data from the CLEO Collaboration, \(f_D = 222.3 \pm 16.7^{+2.3}_{-3.8} \text{ GeV} \) [33,34]. The value \(f_{D_s} = 0.274 \pm 0.013 \text{ GeV} \) from the CLEO Collaboration shows the SU(3) breaking effect is rather large [35], \(f_{D_s} \) is 123, while most of theoretical calculations indicate \(f_{D_s} \) 111, we take the value \(f_{D_s} = f_D = 0.22 \pm 0.02 \text{ GeV} \), and \(f_{D_s} = f_{D_s} = 0.24 \pm 0.02 \text{ GeV} \).

The decay constant \(f_D \) can be estimated with the QCD sum rules [36] or phenomenological potential models, the values from those approaches are compatible with each other, we can take the value \(f_D = 0.35 \pm 0.02 \text{ GeV} \) [37,38,39].

The basic parameters in the heavy quark effective Lagrangian are estimated with the vector meson dominance theory [28,29], \(= 0.56 \text{ GeV} \) and
Figure 1: The Feynman diagrams for the final-state interactions.
The corresponding values of the strong coupling constants are

\[
\begin{align*}
 f_{D_DV} &= 2.30 \text{ GeV}^{-1} ; \\
 f_{D_DV} &= 4.51 ; \\
 g_{D_DV} &= 3.69 ; \\
 g_{D_DV} &= 3.69 ;
\end{align*}
\]

while the values from the light-cone QCD sum rules are much smaller \[40,41\]. In this article, the strong coupling constants \(g_{cD_D}\) and \(g_{cD_D}\) are estimated with the universal Isgur-Wise form-factor at zero recoil \(1\) and the assumption of dominance of the intermediate \(c\) meson for the pseudoscalar heavy quark current \(\bar{Q}c\). We take the results from the vector meson dominance theory for consistency. However, we may overestimate the final-state rescattering effects due to the larger strong coupling constants, and have to compensate them with suitable

The parameters \(\alpha = 0.3, = 1.4, 1.8\). The contributions from the rescattering effects are somewhat sensitive to the parameter \(\alpha\) in the form-factors, the \(\alpha\) is of the order of the mass of radial excitations of the charm mesons \[17,18\].

Finally we obtain the numerical results for the branching fractions,

\[
\begin{align*}
 \text{Br}(B^0 \to K) &= (3.25 \pm 0.99) \times 10^{-4} \ (\text{Tree amplitude}); \\
 \text{Br}(B^0 \to K) &= (3.90 \pm 0.31) \times 10^{-4} \ (\text{Tree+Abs amplitude}); \\
 \text{Br}(B^0 \to K) &= (4.83 \pm 0.94) \times 10^{-4} \ (\text{Tree+Abs+Dist amplitude}); \\
 \text{Br}(B^0 \to K) &= (5.7 \pm 0.6 \pm 0.9) \times 10^{-4} \ (\text{Experimental data});
\end{align*}
\]

4 Conclusion

In this article, we study the final-state rescattering effects in the decay \(B^0 \to K\), the numerical results indicate the corrections are comparable with the contribution from the naive factorizable amplitude, and the total amplitudes can accommodate the experimental data.

Acknowledgments

This work is supported by National Natural Science Foundation, Grant Number 10775051, and Program for New Century Excellent Talents in University, Grant Number NCET-07-0282.

References

