Cosmological perturbation theory near de Sitter spacetime

B. Losk and W. G. Unruh

1 Department of Physics, P-412, Avadh Bhatia Physics Laboratory
University of Alberta, Edmonton, Alberta T6G 2E9 Canada
2 Department of Physics & Astronomy, University of British Columbia,
6224 Agricultural Road Vancouver, B.C. V6T 1Z1 Canada
3 Canadian Institute for Advanced Research, Cosmology and Gravitation Program

(Date: April 21, 2008)

We present a gauge invariant argument that a nonlocal measure of second order metric and matter perturbations dominates that of linear fluctuations in its effect on the gravitational field in spacetimes close to the de Sitter solution.

Introduction | It is well known in the mathematical physics community that linear cosmological perturbation theory about maximally symmetric, spatially closed, spacetime has peculiar features. Linear perturbations about such special backgrounds must obey certain non-local identities (often discussed under the rubric of linearization stability [6], [8]), which occur at second order in perturbation theory.

In this Letter we study a surprising consequence of these non-local identities for perturbations about a slowly-rolling (inflating) spacetime. We find that during 'slow-roll' inflation a certain non-local measure of second order metric and matter perturbations generically dominate in the amplitude compared to that of the linear order perturbations, if these identities hold. This provides robust support for the conclusions of one of our previous papers [3], where we found that during slow-roll second order fluctuations grow for a class of inflationary models. We conclude that is quite plausible that nonlinear, and probably nonperturbative, gravitational effects dominate near de Sitter spacetime (i.e. slow-roll) and therefore linear perturbation theory likely fails in those situations.

Background model | Consider a FRW spacetime in comoving coordinates (t;x) with scale factor a(t), with signature (-1,1,1,1), and with a perfect fluid with energy density and pressure p. The equations of motion for the scale factor a(t) are, according to the Einstein equations,

$$\frac{\dot{a}}{a} = \frac{1}{3} \left[(1 + 3w) \right];$$

$$H^2 = \frac{1}{3} \left(+ \right) \frac{K}{a^2};$$

where $K = 1, 0$ is the constant spatial curvature of the space, $H = \ln(a)$ is the Hubble parameter, is a cosmological constant, $w = \frac{p}{\rho}$, and $8G$ in units where $c = 1$.

There are in general six Killing vectors in FRW models, associated with either the $K = 0$ (at) $E(3)$ rotation group, the $K = 1$ (hyperbolic) $SO(3,1)$ or $K = 1$ (closed) $O(4)$ groups. These three groups are maximal subgroups of the de Sitter group $SO(4,1)$, which has ten parameters corresponding to the six FRW Killing vectors and four boost Killing vectors unique to de Sitter spacetime. The Lie derivative of the FRW metric along four vectors B^a which have the same functional form of de Sitter boost Killing vectors in closed FRW coordinates can be easily calculated, using (1) and (2), to be

$$\frac{1}{2H} \frac{\partial}{\partial a} \left(1 + w \right) = 0$$

as one approaches de Sitter spacetime. Note that the four vectors B^a are merely conformal isometries of the closed FRW spacetime.

Nonlocal constraints | Consider the field equations for scalar matter and metric fluctuations for the above closed FRW solution. Assume that the background matter sector (i.e. ρ in equations (1), (2)) is an initially coupled (potentially dominated) spatially homogeneous scalar field with potential $V(\phi)$, as a necessary requirement is that the fluctuations satisfy, order by order in perturbation theory, the initial value constraints on a constant time (spatially compact) hypersurface t.

$$H_\sigma H_\sigma (h_{ij}; i^3;) = 0$$

where equations (5) and (6) denote the usual Hamiltonian and momentum constraints respectively for the three metric h_{ij}, its conjugate δ_{ij}, and the scalar field and its conjugate momentum. These constraints must hold order by order.
order in perturbation theory for a consistent power series approximation to exist, if one does, for a full solution to Einstein's equations. Also since the constraints hold at each point in space, they must also hold when averaged with arbitrary functions over space.

Consider a projection (average) of these constraints along an arbitrary 4-vector \(e \) \(X \). Denoting this by \(P(X) \), we write

\[
P(X) = P(X) \quad X \gamma \gamma + X \gamma k H \quad d^3x = 0; \quad (7)
\]

where \(X^a = X^\gamma n^\gamma + X^\gamma h^\gamma \) is a four dimensional vector \(e \) \(X \) where \(n^\gamma \) is the normal to \(\gamma \). We wish to approximate \(P(X) \) order by order in perturbation theory.

Given a quantity \(q \) we will designate the \(r \)th order variation by \(\delta q \) and the second order by \(\delta^2 q \). Furthermore we will designate the background quantities by an overbar \(\bar{q} \). If we consider variations in \(h_{ij} \) and \(i^j \) (along with \(p^0 \)), we can calculate the corresponding classical variation in \(P(X) \). We demand that the background quantities obey the full Einstein equations. Using Hamilton's equations for the background to de ne the time derivatives \(i^j \), \(h_{ij} \), \(i\frac{d}{dt} \) on a spatially compact \(\gamma \), one can show that \([11] \)

\[
P(X) = \delta X^\gamma h_{ij} \quad L_X \quad i^j \quad h_{ij} \quad (8)
\]

\[
+ \delta X \quad (\delta X) \quad d^3x;
\]

where \(\delta X h_{ij} \) is the spatial restriction of \(\delta X g_{ab} \) to the (spatially compact) hypersurface \(\gamma \):

\[
\delta_X h_{ij} = \delta_X h_{ij} + X^0 = h_{ij} + 2N_0 \delta_X h_{ij}; \quad (9)
\]

where \(N_0 \) is the "shift vector" (here and in what follows all barred quantities will be background quantities). The calculations are simple if we take the background values of \(N_0 \) to be zero. This means that the last term represents all of the time's quadratic in the first order perturbations. This implies that in looking at the second order projection along a Killing vector\(s \), the time's linear in the second order perturbations is zero, and the non-trivial quadratic term must also be zero. This represents an additional constraint on the first order perturbations which must be set to zero if the second order equations are to be satisfied.

To give an idea how this is derived, consider the variation with respect to \(i \). One of the terms in the above is

\[
\delta X^0 \quad P(X) / \quad \frac{d}{dt} \quad h_{ij} \quad (10)
\]

because \(\delta \gamma = 0 \) in the background. Similarly,

\[
\delta X^0 = \frac{1}{h} \quad d^3x = \delta X^0 \quad d^3x \quad (11)
\]

Finally, using the metric equations of motion of the background spacetime, we can show that

\[
L_X \quad i^j = X^0 \quad i^j + \delta X \quad i^j
\]

\[
+ \frac{\delta X}{X^0} \quad (\delta X) \quad (h_{ij} D_k D_j) X^0; \quad (12)
\]

where \(D_j \) is the induced covariant derivative on \(\gamma \). Putting equations (9) through (12) into equation (8) we finally obtain the general expression for the linearized projection of the initial value constraints, \(P(X) \).

If we take the de Sitter limit, i.e. \(V_j ; - = 0 \), \(H_j \) \(H \), then \(\delta_X h_{ij} = 0 \) and \(L_X \quad i^j = 0 \) (and similarly for the matter equations) yields \(P(X) = 0 \). Thus, as is well known, the linearized projection of the constraint equations is identically zero along a Killing direction of the background spacetime provided the matter equations obey the equations of motion \([11] \).

The second order equations now have the form

\[
P(X) = \quad \delta X \quad h_{ij} \quad L_X \quad i^j \quad h_{ij}
\]

\[
+ \delta X \quad (\delta X) \quad d^3x + \delta X \quad (13)
\]

where the last term represents all of the time's quadratic in the second order perturbations. This implies that in looking at the second order projection along a Killing vector\(s \), the time's linear in the second order perturbations is zero, and the non-trivial quadratic term must also be zero. This represents an additional constraint on the second order perturbations which must be set to zero if the second order equations are to be satisfied.

However, as we discussed above, it is clear that near a de Sitter spacetime one does not have exact boost sym metries. If one projects the linearized constraint densities \(\delta H \) along vectors \(B^0 \) which have a de Sitter boost functional form in closed FRW coordinates, as described above, then using equations (3) it follows from equations (8)-(12) that

\[
\delta H \quad \delta P(B) \quad \delta H \quad 0; \quad (14)
\]

so that in the de Sitter limit, \(\delta H \quad 0 \) the Killing identity is recovered.

At second order in perturbation theory, we thus expect that \(\delta^2 P(B) \) has two terms: one additional second order term multiplied by \(\frac{d}{dt} \) and the quadratic piece. We compute \(\delta^2 P(B) \) in the present Hamiltonian framework framework.
In the special case that B^a is a Killing vector, i.e., the background is a closed vacuum de Sitter spacetime, it is clear that demanding the right hand side of (14) vanish implies a nontrivial and spatially nonlocal constraint on the linear initial values (h_{ij}, t^{ij}; ;). In this case the nonlocal constraint, an integral over a density, is gauge invariant and preserved from slice to slice [7].

Slow-roll limit | It is apparent from equation (14) that there is an overall prefactor of ρ multiplying the second order term Q compared to the equal product term involving the linear variations. Comparing the two groups of term, second order (\(-2 P_S (B) \)) and quadratic in first order (\(-2 P_Q (B) \)), we rewrite equation (15) by explicitly writing out the linear factor of ρ in $2 P_S$:

$$2 P (B) = \frac{\rho}{H} 2 P_S (B) [\partial^2 q_l]$$

where the entire set of second and linear order canonical variables is written as $\partial^2 q_l$ for the second order variations, $(\partial^2 q_l)$; q_l denote the quadratic combinations of the first order variations, and $2 P_S (B) = \rho 2 P_S (B)$. Thus whenever the slow-roll approximation for the background holds, i.e. $\rho \equiv 1$, we may approximately solve equation (16) for $2 P_S (B) [\partial^2 q_l]$ to nd

$$2 P_S (B) [\partial^2 q_l] = \frac{\rho}{H} 2 P_Q (B) [(\partial^2 q_l) ; q_l] :$$

Thus, this combination of second order terms equals a large number times some combination of the first order term. Assuming that the linear fluctuations are not too small, this implies that at least this combination of the second order fluctuation is larger than the first order perturbations. This is the main result of this paper: that a nonlocal combination of second order metric and matter fluctuations will generally dominate its effect on the projection of the gravitational constraints along B^a compared to the linear terms ρ. Note that if $q_l = H$ the linearized fluctuations will not have the correct amplitude for seeded CMB fluctuations.

Gauge invariance | Equation (17), the main result of this paper, was derived without assuming a specific gauge choice. We now show that one cannot choose a second and/or linear order gauge such as to eliminate the factor of $\frac{\rho}{H}$ in equation (17).

Although $P (B) = 0$ for any $B = 0$, it is easy to show that the background projection $P (B)$ actually vanishes identically for any value of B, i.e.

$$P (B) = 0 :$$

for the background (closed FRW) constraints holding. Thus $2 P (B)$ cannot depend on any purely second order in nite al coordinate transformation, just like any linear perturbation of a background constant is automatically gauge invariant to linear order.

The most general remaining gauge transformation of equation (17) will induce an equation that can be written as

$$F_S (2 \partial^2 q_l ; \partial^2 q_l) + F_Q (2 \partial^2 q_l ; \partial^2 q_l)$$

where a is a linearized (in nite al) coordinate transformation (so, e.g. $2 \partial^2 q_l + \partial^2 q_l$ and F_S, F_Q are the gauge terms coming from $2 P_S$ and $-P_Q$, respectively. If one chooses

$$a = n \equiv 2 \partial^2 q_l ;$$

such that n is the value required to eliminate the factor of $\frac{\rho}{H}$ then one can rewrite (19) (by decomposing F_S, F_Q into parts linear and quadratic in a) as

$$n (1) F_S (2 \partial^2 q_l ; \partial^2 q_l) + n (2) F_Q (2 \partial^2 q_l ; \partial^2 q_l)$$

which clearly reduces to

$$n (1) F_S (2 \partial^2 q_l ; \partial^2 q_l) + n (2) F_Q (2 \partial^2 q_l ; \partial^2 q_l)$$

given that $\rho n = 0$, which is precisely of the form of equation (19).

In summary, the form of equation (19) must persist given any first and second order gauge xing in the perturbation theory, including in particular the trivial choice $a = 0$. A rather way of saying this is that the gauge dependence on both sides of equation (17) acts in such a way as to always preserve the
form of equation (17). This is to be distinguished from the case, where the constraints (17) are exactly gauge invariant to second order.

Quantum anomalies | The quadratic terms in equations (17) formally need to be regularized if we regard them as products of interacting quantum fields (see e.g., [3], [4], [5]). Renormalization ambiguities could in principle quantify quantum anomalies with respect to the position of second order conditions such as (17), in addition to any other reasonable conditions such as the conservation of stress-energy.

To begin with, one can show that there will not in general be anomalies associated with the simultaneous in position of stress energy conservation and the equations of motion provided the background spacetime is strongly rolling. This is so because we can, in this very special case, specify the renormalization ambiguities (i.e., the nonuniqueness of a nonlinear monomial in the fields) to absorb the considerably simpler slow-roll curvature counterterms. Specifically, for the case of the scalar field it is known that the monomials

\[\frac{1}{2} + C_{ab} \]

(22)

\[ab + C_{ab} \]

(23)

where \(C \), \(C_{ab} \) are quantities constructed from the metric \(g_{ab} \), curvature, and derivatives of the curvature of the appropriate scaling dimension. For slow roll backgrounds, \(C_{ab} \) and \(C \) have simple functional forms.

Using this simple cation one may show, just as we did for the case of pure de Sitter spacetime in [1], that there are no additional anomalies associated with the position of the purely matter part of (17). This is so because all the anomaly terms are proportional to an integral over \(t \) of \(B_n^2 \) (which even for all \(n = 0 \) is spatially odd), which are identically zero. It turns out that if the remaining quadratic gravitational terms in (17) can be cast as quadratic scalar field terms with some technical qualifications related to eliminating the homogenous and dipole modes, where the scalar fields represent polarizations of the transverse traceless excitations \(h_{ij} \), \(\epsilon_{ij} \) and the scale scalar mode at linear order, then sum logic goes through as for the scalar field case. One would then conclude, reasonably, that there are no additional quantum anomalies associated with the position of relations (17). However, it should be strongly emphasized that in the absence of an explicit expression for the tensorial anomalies this is at best a plausible assumption (see [6]).

Conclusions | In a previous publication [2] we have observed second order effects become large in some slow-roll models, however the present argument is demonstrated to be invariant to second order and only essentially relies on the assumption that the constraints are satisfied order by order in perturbation theory and that de Sitter spacetime has boost Killing vectors. Although our constraint analysis cannot answer the dynamical question of when (i.e., after how many e-foldings) these higher order effects can be expected to make a difference in typical slow-roll inflation or other models, our claim is that the worry about higher order effects does not abnormally and rather generically enter with very similar assumptions—they are really there. We hope that by sidestepping the usual debate over whether or not higher order perturbative effects are just gauge effects or other artifacts of poorly controlled approximations, the present argument will serve as further motivation to probe higher order effects in cosmological perturbation theory near de Sitter spacetime.

Acknowledgments | W.G.U. would like to thank the Canadian Institute for Advanced Research and NSERC for support. B.L. acknowledges YITP Workshop YITP-M-07-10 (and YITP computer facilities) for hospitality and support, NSERC for support, and R. Brandenberger, E.M. Ottola, M. Sasaki, T. Tanaka, and R. Woodard for any useful conversations. We also thank two anonymous referees for valuable suggestions and criticism.

Electronic address: blosi@phys.uahe.edu, unrul@phys.ubc.ca