New Aspects of Heterotic\{F Theory\} Duality

Hirotaka Hayashi1, Adru Tatar2,
Yukinobu Toda3, Taizan Watari1,3 and Masahito Yamazaki1

1Department of Physics, University of Tokyo, Tokyo 113-0033, Japan
2Division of Theoretical Physics, Department of Mathematical Sciences, The University of Liverpool, Liverpool, L69 3BX, England, U.K.
3Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwano-ha 5-1-5, 277-8592, Japan

Abstract

In order to understand both up-type and down-type Yukawa couplings, F-theory is a better framework than the perturbative Type IIB string theory. The duality between the Heterotic and F-theory is a powerful tool in gaining more insights into F-theory description of low-energy chiral multiplets. Because chiral multiplets from bundles 2V and 2V as well as those from a bundle V are all involved in Yukawa couplings in Heterotic compactification, we need to translate descriptions of all those kinds of matter multiplets into F-theory language through the duality. We find that chiral matter multiplets in F-theory are global holomorphic sections of line bundles on what we call covering matter curves. The covering matter curves are formulated in Heterotic theory in association with normalization of spectral surface, while they are where M 2-branes wrapped on a vanishing two-cycle propagate in F-theory. Chirality forms are given purely in terms of primitive four-form flux. In order to complete the translation, the dictionary of the Heterotic(F theory duality has to be refined in some aspects. A precise map of spectral surface and complex structure moduli is obtained, and with the map, we find that divisors specifying the line bundles correspond precisely to codimension-3 singularities in F-theory.
Contents

1 Introduction

2 Spectral Cover Construction and Direct Images

3 Bundles Trivial in the Fiber Direction

4 Analysis of $R^1_z \overset{2}{V}$
 4.1 Resolving Double-Curve Singularity of C_{2V}
 4.2 Determining F_{-2V} in Terms of N_V

5 In-Depth Analysis of Associated Bundles
 5.1 Rank-2 Vector Bundles
 5.2 Rank-3 Vector Bundles
 5.3 Rank-4 Vector Bundles
 5.4 Rank-5 Vector Bundles
 5.5 Rank-6 Vector Bundles
 5.5.1 2V
 5.5.2 3V

6 From Heterotic String to F-theory
 6.1 Describing Vector Bundles via dP_8 Fibration
 6.1.1 Two Descriptions of a dP_8 Surface
 6.1.2 $SU(5)$ Bundle in Description A
 6.1.3 $SU(5)$ Bundle in Description B
 6.1.4 Enhancement of Singularity
 6.2 Chirality from Four-Form Fluxes
 6.2.1 From dP_8 to dP_9
 6.2.2 Four-Form Fluxes
 6.2.3 Line Bundles on Discriminant Locus of F-theory
 6.2.4 Chirality in $(V) = V$
 6.2.5 Chirality in $(V) = ^2V$
 6.2.6 Chirality in $(V) = ^3V$
 6.3 Codimension-3 Singularities in F-theory Geometry
 6.3.1 Geometry with a Locus of E_6 Singularity
1 Introduction

For a description of our real world, we need both up-type quark Yukawa couplings

\[W = 10^{ab} 10^{cd} H (5)^e \ \text{e}_{\text{axde}} \]

and down-type quark (and charged lepton) Yukawa couplings

\[W = 5^a 10^{ab} H (5)_b : \]

Here, we used a notation of effective theory with SU(5)_{GUT} symmetry and N = 1 supersymmetry. Perturbative super Yang-Mills interactions of open strings of Type IIA / IIB string theory may be able to give rise to the latter, but it is difficult to generated the up-type Yukawa couplings with SU(5)_{GUT} indices contracted by an epsilon tensor. Heterotic E_8 \ E_8^0

Theories without SU(5)_{GUT} unification do not have this problem. It should be remembered, however, that Supersymmetric Standard Models without unification would need an extra explanation for apparent gauge coupling unification, and Pati/Salam type theories need some mechanism to make sure that quark doublets and lepton doublets have totally different electroweak mixing, although they belong to the same irreducible representation of the Pati/Salam gauge group.
string theory, G_2-holonomy compactification of 11-dimensional supergravity and F-theory compactification, however, are capable of generating both types of Yukawa couplings [1].

There are some motivations to develop theoretical tools to extract physics out of G_2-holonomy compactification of 11-dimensional supergravity or Calabi-Yau four-fold compactification of F-theory.

Perturbative Heterotic $E_8 \times E_8^0$ string theory predicts all of the GUT scale, the Planck scale and the value of unified gauge coupling constant [2], but not all of them turn out right within the perturbative regime. The dilaton expectation value should be in the strongly-coupled regime to fit the data. Certainly the Heterotic M-theory [3] can cover strong-coupling region of the moduli space of the Heterotic $E_8 \times E_8^0$ string theory, but that is not the only possibility. F-theory, for example, also describes some parts of the strong coupling region of the moduli space of the Heterotic string theory [4].

As long as we insist that both the up-type and down-type Yukawa couplings be obtained, we do not gain much freedom by replacing the Heterotic $E_8 \times E_8^0$ string theory by G_2-holonomy compactification of eleven-dimensional supergravity or elliptic Calabi-Yau four-fold compactification of F-theory. In order to generate both types of Yukawa couplings, an underlying gauge symmetry of E_r ($r = 7, 8$) is necessary [1]. Thus, there may be not much room to expect qualitatively different physics of quarks and leptons in vacua obtained by 11-dimensional supergravity or F-theory. Even at the qualitative level, however, one obtains greater freedom in constructing other sectors of the real world. It will be much easier in F-theory than in the Heterotic theory to construct models of gauge mediated supersymmetry breaking, for example.

Flux compactification techniques [5] can be used to discuss observables in our visible sector in F-theory. In Heterotic string theory, it is really hard for now to discuss stabilization of vector bundle moduli. In Heterotic (F-theory duality, vector bundle moduli of Heterotic theory correspond to a part of complex structure moduli of F-theory [6,7], and flux compactification of F-theory will stabilize such moduli as well as the rest of the complex structure moduli.

These motivations provide enough reasons to study F-theory, although they are not particularly in favor of F-theory over G_2-holonomy compactification of eleven-dimensional supergravity. Reference [1] discussed qualitative patterns of Yukawa matrices expected in G_2-holonomy compactification with unbroken SU(5)$_{GUT}$ symmetry, and found that there is generically a problem in the texture of up-type Yukawa matrix. This situation adds a motivation to
develop a formulation to study Yukawa couplings in F-theory.

The most basic question in string phenomenology is who we are: what are quarks and leptons. These matter chiral multiplets in supersymmetric compactification are identified with independent elements of bundle-valued cohomology groups in the Heterotic, Type I and Type IIB string theory. The net chirality of matter multiplets in chiral representations is expressed in terms of topological numbers such as Euler characteristics of vector bundles or pairing of D-brane charges in K-theory. In Type IIA string compactification on a Calabi-Yau orientifold, we know that one chiral multiplet is localized at each D6 (D6 intersection \[8 \]), and this local picture is extended to compactification of 11-dimensional supergravity on a G2-holonomy manifold with A {E} singularity. We can provide satisfactory answers to the question above in all these theories. Surprisingly, though, such an effort to identify quarks and leptons in F-theory language went only halfway in 1990’s, and almost came to a halt (at least to our knowledge), until the recent results of [10,11].

The identification of quarks and leptons, or of chiral matter multiplets in general, has been such a challenging problem in F-theory, because an intrinsic formulation of F-theory has not been fully developed yet. The elementary degrees of freedom in F-theory can be described by \((p;q)\) strings or M2-branes of 11-dimensional supergravity. It may be possible, to identify chiral matter multiplets on 3+1 dimensions with some of their fluctuation modes. In practice, however, it is extremely difficult to disentangle complicated geometry of triple intersection of \((p;q)\) 7-branes, or to maintain distinction between left-handed and right-handed fermions in Calabi-Yau 4-fold compactification of 11-dimensional supergravity down to 2+1 dimensions. Instead, the duality between the Heterotic string and F-theory \([4,6,7,12,13,14,15]\) will be the most powerful tool in studying F-theory.

This article is along the line of this approach; the Heterotic string theory and the Heterotic-F-theory duality are used to study F-theory. The Heterotic string theory compactified on an elliptically fibered Calabi-Yau 3-fold \(z : Z \) ! \(B_2 \) is dual to F-theory compactified on an elliptically fibered Calabi-Yau 4-fold \(x : X \) ! \(B_3 \) whose base 3-fold \(B_3 \) is a \(P^1 \) bration over \(B_2 \). The various matter multiplets in low-energy effective theory are identified with \(H^1(Z; (V)) \) in Heterotic string description, where \((V) \) is a vector bundle \(V \) in representation \(C \). Cohomology groups on a fibered space can be calculated first on the fiber geometry, and later on the base geometry; except for certain cases (which will be covered in section \[8 \]),

\[
H^1(Z; (V))' = H^0(B_2;R^1z(V));
\]

and the direct images \(R^1z(V) \) have their support only on curves in \(B_2 \). In the Heterotic(4.
F duality, these support curves correspond to 7-brane intersections, and the sheaves on the
curves should be those on the 7-brane intersection curves. Chiral matter multiplets are
identified with global holomorphic sections of such sheaves (except for certain cases). Thus,
by using the Heterotic(F duality, we can obtain the sheaves whose sections are identified
with quarks and leptons. Direct images $R^1 \mathbb{Z} (V)$ are, therefore, the information we would
like to obtain from the Heterotic string theory.

Direct images of bundles in the fundamental representation $(V) = V$ were obtained in
1990’s [16,17]. Those of bundles in the anti-symmetric representation $(V) = \wedge^2 V$ have not
been clearly described as sheaves so far in the last decade, apart from some developments in
[18,19] in the context of Heterotic theory compactification. Calculation of the direct image in ages of
$\wedge^2 V$, therefore, is one of the central themes in this article. This task is carried out in
sections 4 and 5. This is by no means a minor problem. Both 5 and $H(5)$ multiplets arise
from $\wedge^2 V$ of an SU(5) bundle V, and $H(5)$ from $\wedge^2 V$, where V is the dual bundle of V.
Without understanding the geometry associated with $R^1 \mathbb{Z} \wedge^2 V$ and $R^1 \mathbb{Z} \wedge^2 V$, there is
no way to understand the Yukawa couplings of quarks and leptons in F-theory.

We introduce a new notion covering matter curve, (roughly speaking) in order to deal
with singularities that appear along matter curves. The direct image $R^1 \mathbb{Z} \wedge^2 V$ is represented
as a pushforward of a locally free rank-1 sheaf $\mathcal{F} \wedge^2 V$ on the covering matter curve for all the
cases we have study in section 3, i.e. for rank $V = 3; 4; 5; 6$. (We should also note here that a
minor assumption is made on structure of $R^1 \mathbb{Z} \wedge^2 V$ around a particular type of singularity
for the rank $V = 4$ case.) Divisors determining the locally free rank-1 sheaves are determined
in terms of data defining spectral surfaces.

In section 3, the description of the sheaves $R^1 \mathbb{Z} (V)$ are translated into language of F-
theory. The dictionary between the Heterotic and F-theory quantities was almost established
in 1990’s, but it has to be refined in some aspects. Improvements include

- a precise map [40,251] between the moduli of spectral surface in Heterotic theory
description and complex structure moduli in F-theory.
- a refinement of the correspondence between the discrete twisting data of vector bundles
in Heterotic theory description and four-form fluxes in F-theory description. We are
basically following the line of the idea laid out in [14,10].

Using the precise map between the two moduli space, we find that most of the components
of the divisors determining the sheaves $F (V)$ (and all that we identified) correspond to

\footnote{Essentially the same object was already introduced in [15].}
2 Spectral C over C Construction and Direct Images

Heterotic string theory compacted on an elliptic Calabi-Yau 3-fold is dual to F-theory compacted on K3-bered elliptic Calabi-Yau 4-fold. Once massless chiral multiplets are described in Heterotic string theory, the description can be passed on to F-theory, using the duality. In this section, we will review a powerful way to describe them that is known since late 1990’s, mainly for the purpose of setting up notations used in this article.

Elliptic Fiberation

Heterotic string theory has an F-theory dual description, if it is compacted on an elliptically bered manifold. We consider an elliptic bered Calabi-Yau 3-fold

\[z: \mathbb{Z} ! B_2 \]

over a base 2-fold, so that \(N = 1 \) supersymmetry is left in low-energy effective theory below the Kaluza-Klein scale. An elliptic fiberation \(Z \) over \(B_2 \) is given by a Weierstrass equation,

\[y^2 = x^3 + f_0 x + g_0. \]

(5)

Here, \(f_0 \) and \(g_0 \) are sections of line bundles \(L_H^4 \) and \(L_H^6 \) on \(B_2 \), respectively, and \(L_H^0 \) (\(K_{B_2} \)) for \(Z \) to be a Calabi-Yau 3-fold. The coordinates \((x; y)\) transform as sections of \(L_H^2 \) and \(L_H^3 \), respectively. The zero section \(: B_2 ! Z \) maps \(B_2 \) to the locus of in nity points, \((x; y) = (1; 1)\).

Spectral C over C Construction

Compactification of the Heterotic \(E_8 \times E_8^0 \) string theory involves a pair of vector bundles \((V_0; V_1)\) on a Calabi(Yau 3-fold \(Z \). Spectral C over C construction \([20, 12, 21]\) describes vector bundles on an elliptic bered Calabi-Yau 3-fold \(Z \). Let us consider a rank-\(N \) vector bundle \(V \) on \(Z \). Spectral surface \(C_V \) is a smooth hypersurface of \(Z \) that is a degree \(N \)
cover over B_2, where ∂ is a divisor on B_2. When a line bundle N_V on C_V is given, a rank-N vector bundle V is given by the Fourier-Mukai transform

$$V = p_2 (p_1 (N_V) \ P_{B_2});$$

where p_1, p_2 are maps associated with a fiber product.

$$
\begin{array}{ccc}
C_V & \xrightarrow{p_1} & B_2 \\
\downarrow c & & \downarrow z \\
C_V & \xleftarrow{p_2} & Z
\end{array}
$$

$q = c \ p = z \ p$, and P_{B_2} is the Poincare line bundle $\mathcal{O}_{C_V \overline{B_2}} (1_2 + q \ K_{B_2})$ with $1 = Z; 2 = Z$ and is a diagonal divisor of $Z Z$ restricted on $C_V \overline{B_2} Z$. The data $(C_V;N_V)$, i.e. the spectral surface and a line bundle on it, determines a vector bundle V.

The characteristic classes of vector bundles constructed that way are expressed in terms of spectral data $(C_V;N_V)$. The first Chern class of the vector bundle V is given by

$$c_1 (V) = \frac{1}{2} r$$

where $r = \kappa_{C=B_2} = K_{C} K_{B_2}$ is the ramification divisor on C_V of $C : C_V \overline{B_2}$, and $c_1 (V)$ is a pullback of a 2-form on the base 2-fold B_2. With the notation

$$z = q (N_V) \frac{1}{2} r;$$

we have

$$c_1 (V) = \kappa_{C : C_V}.$$}

We will sometimes use $c_1 (V)$ in the sense of $c_1 :$. The second Chern character is

$$\text{ch}_2 (V) = + z !;$$

where $!$ is some 4-form on B_2.

We do not restrict our attention to cases with vanishing first Chern class $c_1 (V)$. By considering vector bundles V whose structure group is $U(N)$, rather than $SU(N)$, we will be able
to perform a consistency check in calculating $R^1_{Z} (\wedge^2 V)$ by examining $c_1(V)$ dependence. We maintain our discussion to be valid for $U(N)$ bundles also because there are some phenomenological motivations to think of Heterotic string compacti cation with a bundle whose structure group is within $U(N_1) \ U(N_2) \ SU(5) [1]$.

We now present a few technical remarks about the nature of vector bundles given by spectral cover construction. Such bundles cannot be completely generic $U(N)$ bundles. For example, the first Chern class $c_1(V) = c_1(\text{det} \ V)$ is always given by a pullback of a 2-form on B_2 to Z (see [10]). In other words, the first Chern class of $\text{det} \ V$ is trivial in the fiber direction. This is not a serious limitation when we are analyzing Heterotic com pacti cation in an attempt to understand F-theory better. In Heterotic string com pacti cation, vector bundles have to be stable, and the stability condition (Donaldson-Uhlenbeck-Yau equation) is

$$Z \ c_1(V) \wedge J \wedge J = 0 \quad (12)$$

at tree level, where J is the Kahler form of Z. When the T^2- fiber is small, description in the Heterotic theory becomes less reliable, but a dual F-theory description becomes better. This is the situation we are interested in. In such a limit, the size of T^2-fiber becomes much smaller than that of the base, and the dominant contribution of (12) is from two J's in the two directions along B_2, and $c_1(V)$ in the fiber direction. Thus, the sole dominant contribution has to vanish, and hence stable vector bundles should not have non-vanishing $c_1(V)$ along the fiber direction. Spectral cover construction, therefore, is not for our purpose in this article, although it cannot describe a bundle with a non-vanishing first Chern class along the T^2-fiber direction.

For $U(N)$ bundles given by spectral cover construction, $\text{det} \ V$ are actually trivial along the elliptic fiber direction, not just degree zero. The spectral surface $C_V \bot Z$ is (on a local patch of B_2) defined by the zero locus of an equation

$$s = a_0 + a_2 x + a_3 y + a_4 x^2 + a_5 x y + \# a x^{N=2} or x^{(N=3)x^2 y} = 0; \quad (13)$$

where a_i are sections of $O(1) L_H^{(-1)}$, $O(rK_{B_2} +)$ on B_2. The last term is $x^{N=2} or x^{(N=3)x^2 y}$ depending on whether N is even or odd. On a given fiber $E_b = z^{i=1} (b)$, s determines an elliptic function, with N zero points $f_{i} = 1$; (for $U(N)$ bundles) and a rank-N pole at e_0, zero section on E_b. Since the group-law sum of the zero points of an elliptic function is the same as that of the poles,

$$\sum_{i=1}^{N} p_i = e_0; \quad (14)$$

As long as $R^1_{B_2} c_1 \wedge J = 0$ is satisfied on B_2, vector bundles with non-vanishing $c_1(V)$ can be stable.
Table 1: If an SU(N) vector bundle V is turned on within an E_8 gauge group, E_8 symmetry is broken down to H, and chiral matter multiplets come out from various irreducible components of E_8-adjacent posed under $SU(N)$ H. Irreducible components $(V;\text{repr})$ are denoted by repr: in this table. \((\text{vct.-like})\) in this table indicates that a given \((V;\text{repr})\) is the same as \((V;\text{repr})\) and self Hermitian conjugate in E_8 adjoint representation. The symmetry H may be further broken down by turning on a bundle E on the base manifold B. The structure group of E can be chosen, for example, in the $U(1)$ direction in $H = SO(10)$ so that the symmetry is broken down to $SU(5)_{GUT}$, or in the $U(1)_Y$ direction in $H = SU(5)_{GUT}$ in order to break the $SU(5)_{GUT}$ unified symmetry to $SU(3)_C$ and $SU(2)_L$ possibly with $U(1)_Y$ as well. Matter multiplets from Z are characterized as cohomology groups on 4-cycles (7-branes) in F-theory, while those from V, V^2 and V^3 are as cohomology on 2-cycles (intersection of 7-branes) in F-theory.

where stands for the summation according to the group law of an elliptic curve.

Direct Images and Matter Curves

If an SU(N) vector bundle V is turned on within one of E_8 gauge group of the Heterotic E_8 E_8 string theory, symmetry group is reduced to $H E_8$ that commutes with the SU(N) in the effective theory below the Kaluza-Klein scale. The chiral multiplets in low-energy effective theory are identified with $H^1(Z; (V))$. The correspondence between the representations (V) of V and those of the unbroken symmetry group H is summarized in Table 1.

For a Calabi-Yau 3-fold Z that is an elliptic fibration over a 2-fold B_2, cohomology groups $H^1(Z; (V))$ can be calculated by Leray spectral sequence. One calculates the cohomology in the fiber direction $R^i_z (V) (i = 0, 1)$, and then the cohomology in the base directions. If $R^i_z (V)$ vanishes everywhere on B_2, which is often the case, then

$$H^1(Z; (V)) = H^0(B_2; R^1_z (V)).$$

(15)

If one is interested only in the net chirality, i.e. the difference between the number of chiral
multiplets and anti-chiral multiplets in a given representation,

\[(V) = h^1(Z; (V)) \cdot h^1(Z; (V));
\]
\[= h^1(Z; (V)) \cdot h^2(Z; (V));
\]
then one has

\[(V) = (Z; (V));
\]
\[\begin{align*}
(B_2; R^0_z (V)) + (B_2; R^1_z (V)); \\
(B_2; R^1_z (V)) \quad \text{(if } R^0_z (V) = 0) ;
\end{align*}
\]

Suppose that the vector bundle V is given by spectral cover construction from $(C_V; N_V)$. Let us consider a Fourier-Mukai transform of (V):

\[R^1 \text{p}_1 \text{p}_2 (V) \quad P_B^{-1} \quad 0 (q \text{K}_{B_2}) ;
\]

which is a sheaf on Z, and p_1 and p_2 here are maps in

\[\begin{array}{c}
\text{Z} \\
\uparrow p_1 \\
\downarrow Z \\
\text{B}_2 \\
\downarrow p_2 \\
\text{Z} \\
\end{array}
\]

and $q = z \quad p = z \quad p$. This sheaf is supported only on a codimension-1 subvariety $C_{(V)}$. Unless $C_{(V)}$ contains the zero section as an irreducible component, (V) does not contain a trivial bundle when it is restricted on a fiber E_b of a generic point $b_2 B_2$. Thus, $R^1_z (V)$ vanishes on a generic point on B_2; it survives only along a curve

\[C_{(V)} = C_{(V)} ;
\]

in B_2 (see also the appendix A). Curves $C_{(V)}$ for various representations (V) are called matter curves, because cohomology groups are localized.

The localization of cohomology groups (or matter multiplets that appear in low-energy effective theory) on matter curves is not just an artifact of mathematical calculation. It also has physics meaning. For small elliptic fiber, where F-theory description becomes better,
zero modes of Dirac equation in a given representation (V) have Gaussian profile around a locus where Wilson lines in the elliptic fiber directions vanish, just like the case explained for the T-3 bration in [3]. Localized massless matter multiplets in Heterotic theory description correspond to those on 7-brane intersection curves in Type IIB / F-theory description.

Suppose that the sheaf \(i_{\mathcal{V}} \) on \(Z \) is given by a pushforward of a sheaf \(N_{\mathcal{V}} \) on \(C_{\mathcal{V}} \):

\[
R^1 p_! p_2^* (V) = \mathcal{P}_{B^1} \mathcal{O}(qK_{B^2}) = i_{\mathcal{V}} N_{\mathcal{V}}
\]

where \(i_{\mathcal{V}} : C_{\mathcal{V}} \rightarrow Z \). Then, the direct images \(R^1 Z \) of \(V \) are given by pushforwards of sheaves on matter curves [16,17,18]:

\[
R^1 Z (V) = i_{\mathcal{V}} F_{\mathcal{V}}
\]

\[
F_{\mathcal{V}} = j_{\mathcal{V}} N_{\mathcal{V}} \mathcal{O}(i_{\mathcal{V}} K_{B^2})
\]

here, \(i_{\mathcal{V}} : C_{\mathcal{V}} \rightarrow B_2 \), and \(j_{\mathcal{V}} : C_{\mathcal{V}} \rightarrow C_{\mathcal{V}} \). Chiral multiplets in low-energy effective theory are characterized as global holomorphic sections of the sheaves \(F_{\mathcal{V}} \) on the matter curves:

\[
\text{H}^1(Z; V) \rightarrow \text{H}^0(B_2; R^1 Z \rightarrow (V)) \rightarrow \text{H}^0(C_{\mathcal{V}}; F_{\mathcal{V}})
\]

The net chirality [17] is now expressed by Euler characteristic on the matter curve:

\[
(\mathcal{V}) = (B_2; R^1 Z \rightarrow (V)) = (C_{\mathcal{V}}; F_{\mathcal{V}})
\]

Matter from Bundles in the Fundamental Representation

In the above discussion we have assumed that the sheaf \(i_{\mathcal{V}} \) on \(Z \) is given by a pushforward of a sheaf on \(C_{\mathcal{V}} \). This is actually a highly non-trivial statement. Even if a sheaf \(E \) on an algebraic variety \(X \) is supported on a closed subvariety \(i_Y : Y \rightarrow X \), it is not true in general that \(E \) is a pushforward of a sheaf \(F \) on \(Y \); \(E = i_Y F \). It is true that \(E = i_Y F \) for some \(F \) on \(Y \) as a sheaf of Abelian group, but not necessarily as a sheaf of \(O_X \)-module. Thus, the discussion after [22] is not necessarily applied immediately for bundles in any representation.

For bundles \(V \) in the fundamental representation, however, their Fourier-Mukai transforms are pushforward of the original line bundles \(N_{\mathcal{V}} \) (see section [4] and appendix [A]). Thus, the discussion all the way down to [26] is applicable. The matter curves \(C_{\mathcal{V}} = C_{\mathcal{V}} \) belong to a topological class

\[
\alpha = 2 N K_{B^2} + j
\]

because \(C_{\mathcal{V}} \equiv N + z \) and \(j = 1(B_1) = K_{B^2} [12] \).
$R^1_{z} \ V$ is given by a pushforward of a sheaf on α_y

$$F_\nu = j_y \nu \quad I_y \ O (K_{B_2}) = 0 \quad I_y \ K_{B_2} + \frac{1}{2} j_y r + j_y$$ \hspace{1cm} (28)

as a sheaf of O_{B_2}-module. Since the canonical divisor $K_C \ V$ is also the divisor $C_\nu j_\nu$ in a Calabi-Yau 3-fold,

$$i_\nu K_{B_2} + \frac{1}{2} j_\nu r = i_\nu K_{B_2} + \frac{1}{2} j_\nu (K_\nu = C K_{B_2}) = \frac{1}{2} (i_\nu K_{B_2} + C_\nu j_\nu)$$
$$= \frac{1}{2} i_\nu K_{B_2} + N_{\alpha_y B_2} = \frac{1}{2} K_\nu ;$$ \hspace{1cm} (29)

where adjunction formula was used for $i_\nu : \alpha_y \to B_2$ \cite{16}. Thus, the sheaf can be rewritten as

$$F_\nu = 0 \quad \frac{1}{2} K_\nu + j_\nu ;$$ \hspace{1cm} (30)

$$F_\nu = 0 \quad \frac{1}{2} K_\nu \quad j_\nu ;$$ \hspace{1cm} (31)

here we determined F_ν by replacing by \cite{17}. It is easy to see that these sheaves satisfy

$$F_\nu = 0 (K_\alpha) F_\nu^1 :$$ \hspace{1cm} (32)

Massless chiral multiplets from the bundles ν and ν are now given by independent global holomorphic sections of F_ν and F_ν, respectively. If one is interested only in the difference between the numbers of those chiral multiplets, the net chirality is obtained by Riemann-Roch theorem \cite{16,17}:

$$(V) = (\alpha_y ; F_\nu) ;$$
$$= [1 \ g(\alpha_y)] + \deg K_{B_2} + \frac{1}{2} j_\nu r + \ j_\nu ;$$
$$= [1 \ g(\alpha_y)] + \frac{1}{2} \deg K_\nu + \ j_\nu ;$$
$$= \ j_\nu = \alpha_y ;$$

It is reasonable that the final result is proportional to ν, because we know that $(V) = (V)$, and $\nu \nabla V$ corresponds to ∇ and $P_B \nabla P_B^{-1}$ \cite{17}.

12
3 Bundles Trivial in the Fiber Direction

In this section we briefly discuss the cohomology groups $H^i(Z; zE)$, where Z is an elliptic branched $z: Z \to B_2$, and we consider a bundle given by a pullback of a bundle E on B_2. Bundles given by z are trivial in the fiber direction, and hence $R^0_z (Z; zE)$ on B_2 does not vanish, and $R^1_z (Z; zE)$ is not supported on a curve in B_2, either. Thus, the cohomology groups of the bundles zE are not described in the same way as those of such bundles as V, 2V and 3V. We need to express $H^i(Z; zE)$ ($i = 1, 2$) in terms of cohomology groups of $R^p_z (Z; zE)$ ($p = 0, 1$), so that those expressions are interpreted in F-theory.

This issue has been discussed in the footnote 13 of [14]. (See also [10].) Here, we add a minor comment to the description given there.

First, note that

$$R^0_z (Z; zE) \to E; \quad (37)$$
$$R^1_z (Z; zE) \to E \otimes H^1(E) \to O(K_{B_2}); \quad (38)$$
where the Calabi-Yau condition of $z: Z \to B_2$ is used in the last equality. Thus,

$$H^0(Z; zE) \to H^0(B_2; E); \quad (39)$$
$$H^0(Z; zE) \to H^3(Z; zE) \to H^2(B_2; E) \otimes (K_{B_2}) \to [H^0(B_2; E)]; \quad (40)$$

Since these cohomology groups correspond to massless gauginos at low energy, one can assume that those groups are trivial when one is concerned with matter multiplets. Using the spectral sequence, one can see that the two other cohomology groups $H^r(Z; zE)$ ($r = 1, 2$) satisfy

$$0 \to H^1(B_2; E) \to H^1(Z; zE) \to H^0(B_2; E) \otimes (K_{B_2}) \to H^2(B_2; E); \quad (41)$$
$$H^0(B_2; E) \otimes (K_{B_2}) \to H^2(B_2; E) \to H^2(Z; zE) \to H^1(B_2; E) \otimes (K_{B_2}) \to 0; \quad (42)$$

In the spectral sequence calculation of cohomology groups, $E_2^{p,q} = H^p(B_2; R^q_z zE)$, and $d_2 : E_2^{p,q} \to E_2^{p+2,q-1}$ for $(p, q) = (0, 1)$ determines the map

$$d_2 : H^0(B_2; E) \otimes (K_{B_2}) \to H^2(B_2; E) \to H^0(B_2; E) \otimes (K_{B_2}) \quad (43)$$

used in (41, 42).

It thus follows that

$$h^1(Z; zE) = h^1(B_2; E) + \ker d_2; \quad (44)$$
$$h^2(Z; zE) = h^1(B_2; E) \otimes (K_{B_2}) + \coker d_2; \quad (45)$$
$$= h^1(B_2; E) + \coker d_2; \quad (46)$$
where \(d_2 \) is the one in (43). If \(d_2 \) is trivial (including cases where either \(h^0(B_2; E \ O(K_B)) = 0 \) or \(h^0(B_2; E \ O(K_B)) = 0 \)), the results in [14] follow:

\[
\begin{align*}
 h^1(Z; z E) &= h^1(B_2; E) + h^0(B_2; E \ O(K_B)) \\
 h^1(Z; z E) &= h^2(Z; z E) = h^1(B_2; E \ O(K_B)) + h^2(B_2; E) \\
 &= h^1(B_2; E) + h^0(B_2; E \ O(K_B)).
\end{align*}
\]

(47)
(48)
(49)

For a general \(d_2 \), [44, 46] are the right expressions for the number of massless matter multiplets from \(Z E \). This means that some degrees of freedom in \(H^0(B_2; E \ O(K_B)) \) and \(H^0(B_2; E \ O(K_B)) \) are paired up and do not remain in the low-energy spectrum. One might phrase this phenomenon as those degrees of freedom having \(\text{mass} \). It should be noted that all the degrees of freedom in \(H^1(B_2; E) \) and \(H^1(B_2; E) \) do not have such \(\text{mass} \).

We do not study the detail of the map \(d_2 \) based on explicit examples. Such \(\text{mass} \)'s may be understood as a kind of obstruction in geometry. We leave these interesting questions as open problems for the future.

The structure group of a bundle \(E \) can be chosen so that the unbroken symmetry \(H \) in Table 3 is reduced to whatever one likes, say \(SU(5)_\text{GUT} \) or \(SU(3) \) \(SU(2) \). The irreducible decompositions of \(ad^* H^* \) under the structure group of \(E \) and the true unbroken symmetry may contain a pair of vector-like representations, \((E); \text{repr:} \) \((E); \text{repr:} \). For such a pair, the net chirality is calculated by

\[
(E) = h^1(Z; z E) \ h^1(Z; z E); \\
= (Z; z (E)); \\
= Z(B_2; (E)) + (B_2; (E) \ O(K_B)); \\
= c_1(TB_2) \ c_1(E); \\
B_2
\]

(50)
(51)
(52)
(53)

Rank of the map \(d_2 \) in (43) does not matter here.

The chirality formula [53] can also be obtained from the discussion reviewed in the previous section [1]. The bundle \(Z \ (E) \) is regarded as a Fourier-Mukai transform of \(C \ (E); N \ (E) = (; (E)) \). Thus, the matter curve is formally given by \(C \ (E) \) which belongs to a class of \(K_B \). Since the ramification divisor of \(C : C ! B_2 \) is trivial, one finds (i) from the argument in [29] that \(K_B \) is half the canonical divisor of the "matter curve" \(C \ (E) \ K_B \) in \(B_2 \), and (ii) that \(N \ (E) \ O(r=2) = (E) \). Therefore,

\[
(E) = Z \ c_1(E) = c_1(TB_2) \ c_1(E); \\
K_B \ B_2
\]

(54)
4 Analysis of $R_{2V}^1 Z^2 V$

Not all the chiral multiplets in low-energy effective theory are identified with cohomology groups of bundle V (or V^*) in the fundamental (anti-fundamental) representation, as we see in Table 1. In order to obtain description of all kinds of matter multiplets in F-theory, we also need to determine the sheaves R_{2V}^1 (or V) for bundles associated with $V = \wedge^2 V$ and $\wedge^3 V$. As we have emphasized in Introduction, the Higgs multiplets and $5 = (D; L)$ in the SU(5)$_{6; UT}$ representation originate from the bundle $\wedge^2 V$, and the Higgs multiplet in the SO(10)-10 = vec: representation from $\wedge^2 V$. Thus, it is important to determine $R_{2V}^1 Z^2 V$ in order to understand Yukawa couplings of quarks and leptons in F-theory language.

For the bundles V (or V^*), the generic element of a topological class of spectral surface $N + z$ is smooth and the transverse coordinate of C_V in Z can be chosen at any points on C_V. This property can be used to show that the Fourier-Mukai transform of V is given by a pushforward of a sheaf on C_V as a sheaf of O_Z module (see the appendix A). Furthermore, the rank of fiber of the Fourier-Mukai transform never jumps on C_V and the sheaf is the locally-free rank-1 sheaf N_V itself.

For the bundles $\wedge^2 V$ (or $\wedge^2 V^*$), on the other hand, $C_{\wedge^2 V}$ is not necessarily smooth, even if C_V is. Here, we denote by $C_{\wedge^2 V}$ the support of Fourier-Mukai transform of V. Suppose that C_V for a point b 2 B_2 consists of N points $p_i g_{i=1}^N$. Then, $C_{\wedge^2 V}$ is given by $p_i p_j g_{i<j}N$. At a generic point b 2 B_2, the $N (N-1)=2$ points $p_i p_j (i<j)$ in elliptic fiber E_b are different, and $C_{\wedge^2 V}$ is a smooth degree $N (N-1)=2$ cover. For these points, the arguments of the appendix A can be used to show that there a locally free rank-1 sheaf $N_{\wedge^2 V}$ exists on $C_{\wedge^2 V}$ (locally around smooth points in $C_{\wedge^2 V}$), and the Fourier-Mukai transform of $\wedge^2 V$ is represented as the pushforward of $N_{\wedge^2 V}$ as a sheaf of O_Z module. But, on a codimension-1 locus of $C_{\wedge^2 V}$, $C_{\wedge^2 V}$ may become singular, and a little more attention must be paid.

We will describe a rough sketch of how to determine $R_{2V}^1 Z^2 V$ in this section, beginning with how to deal with such singularities. Details of $R_{2V}^1 Z^2 V$ are deferred to the next section. Since some crucial aspects of $R_{2V}^1 Z^2 V$ depend very much on the rank of V, we will provide detailed description of $R_{2V}^1 Z^2 V$ for the rank of V between 2 and 6 in the next section. Once we see how to deal with $R_{2V}^1 Z^2 V$, it is rather straightforward to understand what has to be imposed on the divisor Δ. See [22].

Some conditions have to be imposed on the divisor Δ. See [22].
to deal with $R^1 Z \wedge^3 V$. We will only discuss $R^1 Z \wedge^3 V$ in section 5.2.

4.1 Resolving Double-Curve Singularity of $C^{\wedge^2 V}$

$C^{\wedge^2 V}$ is described locally as $N (N - 1) = 2$ surfaces that $p_i \neq p_j$ ($i < j$) scan. $C^{\wedge^2 V}$ has a double-curve singularity if $p_i \neq p_j$ ($i < j$) and $p_k \neq p_l$ ($k < l, f_i j g k = F k l g$) become equal. It is not obvious how to choose a coordinate in Z that is normal to $C^{\wedge^2 V}$ along the double-curve locus, and the argument in the appendix is not readily applicable.

In a local neighborhood of the double curve, $C^{\wedge^2 V}$ consists of two irreducible components, $C_{(ij)}$ and $C_{(kl)}$, and their intersection is the double-curve singularity. $C_{(ij)}$ and $C_{(kl)}$ are surfaces scanned in Z by p_i, p_j, and p_k, p_l. $(V) = \wedge^2 V$ can be regarded locally as direct sum of $O(C_{(ij)})$, $O(C_{(kl)})$, and others. Its Fourier-Mukai transform in (19) is given by a sum of the above two summands. The Fourier-Mukai transform of the two summands $O(C_{(ij)})$ and $O(C_{(kl)})$ is expressed locally as:

$$R^1 p_1 O(C_{(ij)}) \otimes P_B^{-1} O(q K_{B_2}) = i^*_{c_{(ij)}O(C_{(ij)})};$$

$$R^1 p_1 O(C_{(kl)}) \otimes P_B^{-1} O(q K_{B_2}) = i^*_{c_{(kl)}O(C_{(kl)})};$$

Here, $i^*_{C^{\wedge^2 V}} : C^{\wedge^2 V} \to Z$ (which is different from previously defined $i^*_{C^{\wedge^2 V}} : C^{\wedge^2 V} \to Z$), and

$$c_{ij} : C_{(ij)} \to C^{\wedge^2 V}; \quad i^*_{c_{(ij)}} = i^*_{C^{\wedge^2 V}} c_{ij};$$

$$c_{kl} : C_{(kl)} \to C^{\wedge^2 V}; \quad i^*_{c_{(kl)}} = i^*_{C^{\wedge^2 V}} c_{kl};$$

Therefore, the Fourier-Mukai transform of $\wedge^2 V$ is

$$R^1 p_1 p_2 (\wedge^2 V) \otimes P_B^{-1} O(q K_{B_2}) \cdot i^*_{C^{\wedge^2 V}} c_{ij} O(C_{(ij)}) c_{kl} O(C_{(kl)});$$

locally along a double-curve singularity. Thus, it is given by a pushforward of a sheaf $N^{\wedge^2 V}$ on $C^{\wedge^2 V}$ as a sheaf of O_Z-module. The sheaf $N^{\wedge^2 V}$ is the object inside the parenthesis on the right hand side.

The sheaf $N^{\wedge^2 V}$ is not locally free along the double-curve singularity. The rank of her jumps up there. But we already know that the sheaf $N^{\wedge^2 V}$ is given by a pushforward of locally-free rank-1 sheaf via

$$C^{\wedge^2 V} : \mathcal{C}^{\wedge^2 V} = C_{(ij)} \otimes C_{(kl)} \to C_{(ij)}[C_{(kl)}] = C^{\wedge^2 V}.$$

The map $C^{\wedge^2 V}$ is determined by c_{ij} and c_{kl}. Note that $\mathcal{C}^{\wedge^2 V} = C_{(ij)} \otimes C_{(kl)}$ is the resolution of double-curve singularity in $C^{\wedge^2 V}$. Therefore, the discussion so far means that there exists
a locally free rank-1 sheaf $N_{2\nu}$ on the resolved $C_{2\nu}$ such that

$$N_{2\nu} = \mathbb{O}_{C_{2\nu}}$$

(61)

We have seen that the sheaf $N_{2\nu}$ exists on $C_{2\nu}$ and (22) is satisfied as a sheaf of $O_{2\nu}$ module. Thus, the discussion around equations (22) is applied for the bundles $(V) = ^2V$ and 2V as well. In particular, the sheaf on the matter curve $C_{2\nu}$ is given by

$$F_{2\nu} = j_{2\nu} \mathbb{O}_{2\nu}$$

(62)

We introduce the notion of covering matter curve, which turns out to be very important in characterizing matter multiplets in F-theory. The covering matter curve $c_{2\nu}$ is defined as the set-theoretic inverse image of the matter curve $C_{2\nu}$ in $\overline{C}_{2\nu}$. That is, $\overline{C}_{2\nu} = \frac{1}{c_{2\nu}}(C_{2\nu})$. Since the matter curve $C_{2\nu}$ is also regarded as a divisor $j_{2\nu}$ in $C_{2\nu}$, the covering matter curve is also regarded as a divisor $c_{2\nu}(\cdot)$ on $\overline{C}_{2\nu}$. Using a locally rank-1 sheaf $N_{2\nu}$ on $\overline{C}_{2\nu}$, a locally free rank-1 sheaf $F_{2\nu}$ can be defined on the covering matter curve:

$$F_{2\nu} = \mathbb{O}_{2\nu} B_{\nu};$$

(63)

where $\mathbb{O}_{2\nu} B_{\nu} : C_{2\nu} \to \overline{C}_{2\nu}$, $c_{2\nu} = c_{2\nu} j_{2\nu}$, and $\mathbb{O}_{2\nu} B_{\nu} : c_{2\nu} \to C_{2\nu}$.

The sheaf $F_{2\nu}$ on the matter curve $C_{2\nu}$ is given by

$$F_{2\nu} = c_{2\nu} F_{2\nu};$$

(64)

Although we have dealt with double-curve singularities on $C_{2\nu}$, there can still be other types of singularities on $C_{2\nu}$. For example, there may be codimension-2 singularities on $C_{2\nu}$. Thus, the argument in section 4.3 is not regarded as a complete proof of the existence of $N_{2\nu}$ or the existence of $N_{2\nu}$ and its locally-free rank-1 nature. For practical purposes, however, we only need to know $R_{2\nu}^1$ 2V along the matter curves. Codimension-1 singularities such as double curve on $C_{2\nu}$ may be encountered somewhere along the matter curve $c_{2\nu}$ [10], but codimension-2 singularities of $C_{2\nu}$ are seldom exactly on the matter curve. Thus, an analysis of codimension-2 singularities of $C_{2\nu}$ is not required for the generic case. We will see, however, that codimension-2 singularities inevitably show up on the matter curve $c_{2\nu}$ when rank $V = 4; 6$. We will deal with such exceptional cases separately in sections 5.8 and 5.9.
4.2 Determining $N_{\times 2V}$ in Terms of N_V

Even after we find that a sheaf $N_{\times 2V}$ exists and (22) is satisfied as a sheaf of O_Z module, we still face a theoretical challenge. How is $N_{\times 2V}$ (or $N_{\times 2V}$) expressed in terms of the original spectral data ($C_V; N_V$)? Pioneering work was done in [18, 19]. Our presentation in the following is basically along their idea but we introduce a little modification for a couple of reasons. First, we will obtain sheaves $N_{\times 2V}$ and $F_{\times 2V}$ on the covering matter curve $c_{\times 2V}$, instead of $F_{\times 2V}$ on the matter curve $c_{\times 2V}$. By doing so, much clearer description of the direct image $R^1_c O_{\times 2V}$ is obtained. The other reason for modification is that we are not assuming that $N_{\times 2V}$ is invariant under that flips the sign of the coordinate y. D is a curve on C_V; we will explain it later.

Since (22) for $(V) = \times 2V$ is the definition of $N_{\times 2V}$, it follows that

$$N_{\times 2V} = i_{c_{\times 2V}} R^1 p_1 \otimes (\times 2V) \otimes P_{B_2} O (q K_{B_2}) :$$

(65)

What we really need is its restriction on $c_{\times 2V}$, and hence

$$F_{\times 2V} = N_{\times 2V} j_{c_{\times 2V}} \otimes (\times 2V) \otimes P_{B_2}$$

$$= (i_{c_{\times 2V}} j_{c_{\times 2V}}) R^1 p_1 \otimes (\times 2V) \otimes P_{B_2} O (q K_{B_2})$$

$$= (i_{c_{\times 2V}} j_{c_{\times 2V}}) R^1 p_1 \otimes (\times 2V)$$

$$= R^1 p_1 \times 2V$$

(66)

Here, $Y := C_{\times 2V} B_2 Z = Z^1(c_{\times 2V})$. In the third equality, we used the property that P_{B_2} is trivial when it is restricted to a zero section [12], and in the last equality the base change theorem associated with the commutative diagram

$$\begin{array}{ccc}
Y = C_{\times 2V} & B_2 Z & Z = B_2 Z \\
p_1 \downarrow & \downarrow & \downarrow p_1 \\
C_{\times 2V} c_{\times 2V} \otimes C_{\times 2V} & \otimes c_{\times 2V} & \otimes Z
\end{array}$$

(67)

This is the standard procedure used in [16, 17, 18].

\[^5 \text{One of the authors (TW) thanks Ron Donagi for explaining the idea of [18] (March, 2006).} \]
The rank-N bundle V_j is given by a Fourier-Mukai transform of $N_V j$:

$$ (C_V Y)_{c_{2V}} Y \quad \xymatrix{ C_V \ar[r]^p_1 \ar@/_/[r]_p_2 \ar[r]_{c_{3V}} \ar[r]_{c_{2V}} & Y \quad ; \quad V_j = p_2 (P_{B_2} p_1 (N_V j V)) : (68) \}
$$

The spectral curve $C_V Y$ is a degree-N cover over c_V.

Let $C_V j_b$ be a collection of N points $f_p \in j_{1; \ldots; i}$; for a point $b \in c_{2V} c_{-2V}$, some pairs of the N points, e.g., p_k and p_i, satisfy $p_k \neq p_i = e_0$. Such points in $C_V Y$ form a curve D, and others form a curve D^0.

$$ C_V Y = D + D^0 : (69) $$

By the definition of D, the following diagram commutes in [19]:

$$ D \xymatrix{ \ar[r]^{\sim_D} & \ar[r]^{C_{-2V}} & c_{-2V} \ar[r]^{D} & \ar[r]^{C_{2V}} & \}

and \sim_D is a degree-2 cover, and D is a restriction of C on D. If $b \in c_{2V} c_{-2V}$ is on the double-curve singularity of C_{-2V}, then there are four points $p_{i,j,k,l}$, satisfying $p_i \neq p_j \neq p_k \neq p_l = e_0$. In the covering matter curve, the inverse image of b, that is, $1/2 (b)$, consists of two points. Two points $p_{i,j} \in D$ are mapped by \sim_D to one of the two points in $1/2 (b)$, and $p_{k,l} \in D$ to the other. Although all the four points are mapped to $b \in c_{2V} c_{-2V}$ by D, \sim_D remains strictly a degree-2 cover everywhere on c_{2V}.

The Fourier-Mukai transform of $N_V j$ on a degree-2 cover spectral curve $\sim_D : D c_{-2V}$ gives a rank-2 bundle W_2:

$$ D \xymatrix{ \ar[r]^{\sim_D} & \ar[r]^{c_{-2V}} & \ar[r]^{p_1} \ar[r]^{p_2} \ar[r]_{c_{2V}} & Y \quad ; \quad W_2 = p_2 (P_{B_2} p_1 (N_V j Y)) : (71) \}

\text{In [19], D corresponds to our $C_V Y$, and D^0 to our D. The covering matter curve c_{-2V} introduced in this article is essentially the same as D_0° in [19]. See footnote [19] for more about the relation between D_0° in [19] and c_{-2V} here.}

19
where $Y = c_{-2V} c_{-2V} Y$. The pushforward of this rank-2 bundle W_2 through projection
$Y : Y = c_{-2V} c_{-2V} Y$. It defines a subsheaf of $V_{\mathfrak{h}}$.

For a point $b \in c_{-2V}$ that is not on the double-curve locus, $H^1(E_{b}; \mathcal{W}^2 V_{\mathfrak{h}})$
comes from $H^1(E_{b}; \mathcal{W}^2 (V_{\mathfrak{h}} W_2)_{\mathfrak{h}}) = H^1(E_{b}; \mathcal{W}^2 W_2_{\mathfrak{h}})$. For a point $b \in c_{-2V}$ on the double-
curve singularity of C_{-2V}, however, there are two independent contributions corresponding
to $H^1(E_{b}; \mathcal{W}^2 W_2_{\mathfrak{h}})$ for two points $2_{\mathfrak{h}} \in \mathfrak{h}$ (b). We introduced the covering matter curve C_{-2V} in order to resolve these two contributions. The locally free rank-1 sheaf $\mathcal{F}_{-2V} \mathfrak{h}_{-2V}$ (and \mathcal{F}_{-2V}, consequently) is obtained by assigning them to the corresponding two points b on c_{-2V}.

Therefore,

$$\mathcal{F}_{-2V} = N_{-2V} \mathfrak{h}_{-2V} \mathfrak{h}_{-2V} O(K_{B_2});$$

$$= R^1 p_{1Y} \mathcal{W}^2 W_2:$$

(72)

The line bundle $\mathcal{W}^2 W_2$ is trivial in the fiber direction of p_{1Y}. Thus, it is regarded as a
Fourier-Mukai transform of $(C_{-2W_2} ; N_{-2W_2}) = (c_{-2V} \mathfrak{h}_{-2V})$. It then follows that

$$\mathcal{W}^2 W_2 = p_{1Y} (N_{-2W_2});$$

(73)

Thus,

$$\mathcal{F}_{-2V} = N_{-2W_2} \mathfrak{h}_{-2V} L^1 = N_{-2W_2} \mathfrak{h}_{-2V} O(K_{B_2});$$

(74)

Now it is useful to remember that the first Chern class of the line bundle $\mathcal{W}^2 W_2$ is

$$c_1(\mathcal{W}^2 W_2) = c_1(W_2) = p_{1Y} \mathfrak{h}_{-2V} c_1(N_{\mathfrak{h}}) \frac{1}{2} R;$$

(75)

$$= p_{1Y} \mathfrak{h}_{-2V} \frac{1}{2} (\mathfrak{h}_{-2V} R);$$

(76)

just like in (3). Here, $R = K_{D} \sim K_{c_{-2V}}$ is the ramification divisor on D associated with
the projection $\sim_D : D \rightarrow c_{-2V}$. Thus, by dropping p_{1Y} from (73) and (76),

$$\mathcal{F}_{-2V} = N_{-2W_2} \mathfrak{h}_{-2V} O(K_{B_2}) = 0 \mathfrak{h}_{-2V} K_{B_2} + \mathfrak{h}_{-2V} \mathfrak{h}_{-2V} \frac{1}{2} (\mathfrak{h}_{-2V} R);$$

(77)

\footnote{Equations (3.56) and (3.57) in [18] would be consistent with (7), if the sign of the $R=2$ term in the
equations were opposite.}
5 In-D epth A nalysi s of A ssoc iated B undles

In this section, we will study direct images $R^1 \mathbb{Z} \otimes^2 V$ for rank $V = 2; 3; 4; 5; 6$, and $R^1 \mathbb{Z} \otimes^3 V$ for rank $V = 6$. Apart from $\otimes^2 V$ for a rank-2 bundle V, all those associated bundles are non-trivial in the fiber direction, and those direct images have their supports on matter curves. The description of sheaves on the matter curves obtained in this section in Heterotic description are translated into F-theory language in later sections.

Before we commit ourselves to individual cases, we quote some results from [18] that are useful in this section regardless of the rank of V. First, the spectral surface $C \otimes^2 V$ belongs to a class

$$C \otimes^2 V \ 2 \frac{N(N-1)}{2} + (N-2) \mathbb{Z} :$$

(78)

The coefficient $N(N-1)/2$ of the first term is the rank of $\otimes^2 V$, and $(N-2)$ for the second term twice the Dynkin index of the rank-2 anti-symmetric tensor representation of $SU(N)$. When the matter curve is given by $C \otimes^2 V$, (there is an exception; see section 5.3)

$$C \otimes^2 V \ 2 \frac{N(N-1)}{2}K_B + (N-2)B_2 :$$

(79)

A curve D in section 4 belongs to a topological class

$$D \ 2j \ [N(N-1)K_B + 2(N-2)] + \mathbb{Z} [3k_2 +] :$$

(80)

See [18] for why this is the case.

5.1 R ank-2 V ect or B undles

The $\otimes^2 V$ bundle for a rank-2 bundle V is exceptional in this section, because $\otimes^2 V = \det V$ is trivial in the fiber direction for V given by spectral cover construction. If the structure group of V is $SU(2)$, we have nothing non-trivial to say because $\otimes^2 V = 0$. If the structure group is $U(2)$, then $\otimes^2 V = \otimes 2 E$ for some line bundle E on the base manifold B_2. Thus, this case is a special case of what we discussed in section 3.

$U(2)$ bundles have appeared in phenomenological applications. In [1], for example, a rank-5 bundle $U_3 \otimes U_2$ was considered for $SU(5)_{GUT}$ unified theories, where U_3 is a rank-3 bundle with the structure group $U(3)$, and U_2 a rank-2 bundle with $U(2)$. By considering a vector bundle in such a semi-stable limit, and some controlled deformation from this limit, one can bring dimension-4 and dimension-5 proton decay problems under control [1,23,24].
The up-type Higgs multiplet was identified with $H^2(Z; U_2)$ and its F-theory dual. Thus, it is not without phenomenological motivation to provide an F-theory description of 2V of a U(2) bundle V.

Since 2V is trivial in the fiber direction, anything written in section 3 apply here, with

$$E = 0 (c_2);$$ \hspace{1cm} (81)

where c_2 is in E_8 for the bundle U_2. This line bundle E has a structure group $U(1)$ in the commutant of SU(2) in E_8, which is E_7. In the case an SU(5) bundle $U_3 = U_2$ is considered in Heterotic theory compactification, for example, then the line bundle

$$^2U_2 = \text{det} U_2 = (\text{det} U_3) = z E$$ \hspace{1cm} (82)

has its $U(1)$ structure group in the commutant of SU(3) SU(2) in E_8, which is now SU(6) SU(5)$_{GUT}$. The structure group is now the $U(1)$ direction in SU(6) that also commutes with SU(5)$_{GUT}$.

5.2 Rank-3 Vector Bundles

Next, let us consider a rank-3 vector bundle V with the data (C_V, N_V). Note that 2V, V (det V). Since det V line bundle is trivial in the fiber direction, the spectral surface of 2V is the same as that of V. If the spectral surface of V is given by a zero locus of

$$s = a_0 + a_2 x + a_3 y;$$ \hspace{1cm} (83)

then the spectral surface $C_V = C_{^2V}$ is given by the zero locus of

$$s = a_0 + a_2 x - a_3 y;$$ \hspace{1cm} (84)

ipping the sign of terms containing one y from (83). Thus, $C_{^2V}$ belongs to the class (78) with $N = 3$.

The matter curve for 2V is given by $a_3 = 0$. This is because (84) determines three points in each elliptic fiber, and one of the three points approaches the zero section as $a_3 \rightarrow 0$. This is also because the two points determined by (83) share the same value of x, $a_0 = a_2$, if $a_3 = 0$; two points on an elliptic curve $p_j = (x; y)$ and $p_k = (x; z)$ are inverse elements of each other in terms of group law on the elliptic curve, that is, $p_j \cdot p_k = e_0$. The matter curve $C_{^2V}$, specified by $a_3 = 0$, belongs to a class (79) for $N = 3$.
Since \(^2V = V \), \(\det V \), and \(\det V = z \, O (c) \), it is straightforward to obtain the sheaf \(^2V \) on the matter curve \(c^2V = cV \). Applying \(O (c) \) to \(F_Y \) and \(F_V \),

\[
F^2V = 0 \ iK_{B_2} + \frac{1}{2}j r \ j + i c ; \quad (85)
\]

\[
F^2V = 0 \ iK_{B_2} + \frac{1}{2}j r + j \ i c ; \quad (86)
\]

where \(i : c^2V = cY \) \# \(B_2 \), and \(j : c^2V = cY \) \# \(C_Y \). It is thus unnecessary to use the idea presented in section 4 in determining the \(F^2V \) for rank-3 bundles \(V \). In the rest of section 5.2, however, we use the idea to reproduce this result, so that we get accustomed to using the idea in practice.

In the \(\text{ber} \ E_Y \) of an arbitrary point \(b \) \# \(cY \) \# \(B_2 \), \(C_Y \) \# \(j \), consists of three points, one in the zero section \(p_i = e_0 = E \) and two others satisfying \(p_j = p_k = e_0 \). Thus, the irreducible decomposition \((69) \) becomes

\[
C_Y = D + \varphi : \quad (87)
\]

The curve \(D \) is already a degree-2 cover on \(cY \) \# \(c^2V \), and we do not need to introduce a covering curve \(c^2V \) for rank-3 bundles \(V \).

Among various components of divisors specifying the rank-1 sheaf \(F^2V \) in \((77) \), \(p \) and \(D (r \ j \ R) = 2 \) can be treated separately. Because of the irreducible decomposition we have seen above,

\[
D = i c \ j ; \quad (88)
\]

and hence the \(e \)-dependent part of \((85) \) is reproduced.

The remaining task is to examine \(D (r \ j \ R) = 2 \). Because the spectral surface \(C_Y \) is ramified over whenever \(D \) \# \(C_Y \) is on \(c^2V \), we begin with classifying the intersection points of the two divisors \(r \) and \(D \) in \(C_Y \). For rank-3 bundles \(V \), there are two types of \(r (D \) intersection points on \(C_Y \):

(a) \(p_j = p_k = e_0 \), where \(p_i = e_0 \), too,

(b) \(p_j = p_k = e_0^0 \), where \(e_0^0 \) denotes one of three points of order two in an elliptic curve \(E_Y \) (i.e., \(e_0^0 = e_0^0 = e_0 \)).

Figure 1 shows the behavior of the spectral surface \(C_Y \) around a \(D \) (r intersection point of type (a)). From the figure, one can read off that

\[
\deg r_j = D \quad r = 2; \quad \deg R = 1 \quad (89)
\]
Figure 1: (i) is a local picture of spectral surface C_V around a point where D and r intersect as (a) in the classification in the text. Among the three local coordinates $(u;v)$ (x is used as axes label in the figures instead of x), $(u;v)$ are for the base 2-fold B_2, and r is for the elliptic fiber. $(u;v) = (0;0)$ corresponds to a type (a) point in $c_{-2V} = c_V$, and $r = 0$ to the zero section. (ii) and (iii) cut out u 0 and u 0 parts of (i), so that curves $c_V = c_{-2V}$ (thick green), D (thin blue) and r (thin red) are clearly visible. See the appendix B.2 for more details.

at each type (a) D (r intersection point. Explicit calculation of $\deg r_j$ at type (a) intersection points is found in the appendix B.2. On the other hand, at a type (b) D (r intersection, one can see that

$$\deg r_j = 1; \quad \deg R = 1$$

Therefore, $\deg (r_j, R) = 1$ remains valid at each type (a) D (r intersection points, while $\deg (r_j, R) = 0$ at type (b) D (r intersections. Thus, by denoting collection of the image of all the type (a) D (r intersection points by D as $b^{(a)}$, we find that

$$\frac{1}{2} D (r_j, R) = \frac{1}{2} b^{(a)}$$

One can see that (a) and (b) exhaust all the r (D intersection points. First, type (a) intersection points mapped by D to $c_V = c_{-2V}$ are characterized by $a_3 = 0$ and $a_2 = 0$. Thus, there are

$$\deg b^{(a)} = (3K_{B_2} + \quad) \quad (2K_2 + \quad)$$

of them. Type (b) intersection points are characterized by the intersection of the curve D and a locus of order-2 points, $0 \quad 0$ (denoted by z in [18]) is topologically $3 \quad 3K_{B_2}$ [25]. Using the topological form of D in [30] for $N = 3$, we find that there are

$$D = \frac{1}{3} (6K_{B_2} + 2 \quad) + z \quad (3K_2 + \quad) \quad (3 \quad 3K_{B_2}) = 3 \quad (3K_{B_2})$$
type (b) \(r(D) \) intersection points. Now remembering that \(\deg r_j^b = 2 \) at each type (a) intersection point and \(= 1 \) at type (b) intersection points, it is easy to see that the intersection number

\[
D \cdot r = \left[(6K + 2) + z (3K_2 +) \right] [3 + z (K_{B_2})]; \tag{94}
\]

\[
= (3K_{B_2} +) \quad (2 (2K +) + 3) \tag{95}
\]

is accounted for by the type (a) and type (b) intersection points. We used \(r K_{c_V} = c K_{B_2} \) for \(N = 3 \).

Once we show that

\[
j r = r_j^b = b^{(a)}; \tag{96}
\]

then (87), (88) and (91) reproduce (85). To see this relation between \(r_j^b \) and \(b^{(a)} \), it is sufficient to count the number of \(c_V \) \(r \) intersection points in \(c_V \). This is because \(\deg j r = 1 \) at each type (a) intersection point (as one can see intuitively from Figure 1, or from explicit calculation in the appendix B.2). The intersection number \(c_V \ r \) in \(G \) is given by

\[
\deg j r = c_V \ r = (N + (K_{B_2})) = (N + 1)K_{B_2} +) = (N K_{B_2} +) (N + 1)K_{B_2} +) \tag{97}
\]

for \(N = 3 \), and hence is the same as (92). We have finally seen that (77) reproduces (85) properly.

Once the sheaf (and in particular, line bundle) for \(^\circ V \) is obtained, its net chirality follows immediately. Using the Riemann-Roch theorem on the matter curve \(c_{\cdot 2V} = c_V \),

\[
(^\circ V) = 1 \ g(c_V) + \deg F_{\cdot 2V}; \tag{98}
\]

\[
= 1 \ g(c_V) + \deg F_V + \deg i \ c \quad \tag{99}
\]

\[
= (V) + (c) (3K +) \tag{100}
\]

This calculation confirms, using only the sheaves on the matter curves, that a consistency relation (375) between \((V) \) and \((^\circ V) \) is satisfied.

5.3 Rank-4 Vector Bundles

Let us now study \(R^1_{V} \cdot ^\circ V \) for rank-4 bundles \(V \). The spectral surface of a rank-4 bundle \(V \) is a zero locus of

\[
s = a_0(u;v) + a_2(u;v)x + a_3(u;v)y + a_4(u;v)x^2; \tag{101}
\]
where \((u;v)\) are local coordinates on the base manifold \(B_2\), and \((x;y)\) describe the elliptic fiber. The matter curve \(c_V\) for the fundamental representation \(V\) is given by \(a_4 = 0\), since one of the solutions becomes \((x;y) = (1;1) = e_0\). The matter curve for \(^{2}V\), \(c_{2V}\) is determined by the condition that \(s\) in \((101)\) factorizes as

\[
s = (Ax + B)(P x + Q):
\]

Thus, \(c_{2V}\) denotes the locus \(a_3 = 0\). If \(s\) factorizes\(^6\) for a point \(b \in B_2\), a condition \(Ax + B = 0\) determines two points in \(E_b\). They are in a relation \(p_1 = (x;y)\) and \(p_2 = (x'; y')\), with \(x = B = A\). Thus, \(p_1, p_2 = e_0\), and hence \(b \in c_{2V}\).

Along the matter curve \(c_{2V}\), there is another pair of points in \(C_V \setminus \{b\}, p_k = (x;y)\) and \(p_{l} = (x'; y')\) with \(x = Q = P\) satisfying \(p_k = p_{l} = e_0\). Thus, all the four points in each fiber of \(C_V \setminus \{b\}\) for \(b \in c_{2V}\) belong to the component \(D\) of \(C_V\). Thus, the irreducible decomposition \(69\) becomes

\[
C_V \quad Y = D
\]

for rank-4 bundles \(V \cdots D : D = c_{2V}\) is now a degree-4 cover.

The spectral surface \(C_{2V}\) forms a double curve along the locus where it intersects with the zero section. One branch corresponds to \(p_1, p_2\), and the other to \(p_k, p_{l}\). Once \(Z\) is blown-up along \(c_{2V}\) and the double curve singularity of \(C_{2V}\) is resolved, each one of generic points of \(c_{2V}\) is doubled, one for \(p_1, p_2\) and the other for \(p_k, p_{l}\), and such points form the covering matter curve \(c_{2V}\). A degree-2 cover \(\sim_D : D = c_{2V}\) is defined naturally, but \(c_{2V} : c_{2V} \sim D = c_{2V}\) is also a degree-2 cover everywhere on \(c_{2V}\). This is how \(c_{2V} \sim_D = D\) becomes as a degree-4 cover.

At some special points on the matter curve \(c_{2V}\), \((Ax + B) = 0\) and \((Px + Q) = 0\) determines the same pair of points in the fiber. This happens when

\[
R^{(4)} = a_2^2 \quad 4a_4a_0 = (AQ - BP)^2 = 0
\]

on \(c_{2V}\). One can further see (in the appendix B.2) that \(p_1, p_2\) and \(p_k, p_{l}\) are interchanged as a result of monodromy around a zero point of \(R^{(4)}\) on a complex curve \(c_{2V}\). Thus, the covering matter curve \(c_{2V}\) is ramified on \(c_{2V}\) over zero locus of \(R^{(4)}\). We see in the appendix B.2 that \(C_{2V}\) develops a codimension-2 singularity at a zero point of \(R^{(4)}\). This codimension-2

\(^6\)The factorization of \(s\) means that the structure group of the bundle\(\{\)one that is read out from the spectral surface\(\}\) is reduced from \(SU(4)\) to \(SU(2)\). Hence, the commutant of this structure group is enhanced from \(SO(10)\) to \(SO(12)\). This enhanced symmetry determines the form of enhanced singularity along the matter curve \(c_{2V}\).

\(^5\)The topological class of \(c_{2V} \sim 2 J\mathbb{K}_{B_2} + j\) is different from a naive expectation \(2\) for \(N = 2\) by a factor of two, because of this doubling was not taken into account there.
Figure 2: Coordinates \((u;v)\) describe base manifold \(B_2\), and the fiber direction, \(w\) with a zero section corresponding to \(w = 0\). The left panel shows a local picture of \(C_Y\) for a rank-4 vector bundle around type (a) points on \(C_{-2Y}\). Local coordinates \((u;v)\) on the base is chosen so that \(a_3 = u\) and \(a_4 = v\). \(c_Y\) (thick yellow) and \(c_{-2Y}\) (thick blue) in the zero section are given by \(a_4 = 0\) and \(a_3 = 0\), respectively. Curves \(D\) and \(r\) on \(C_Y\) are also shown by thin blue and thin red curves, respectively. Two right panels show local pictures of \(C_{-2Y}\) around type (c) points viewed from opposite directions. Local coordinates are chosen so that \(a_3 = u\) (a direction transverse to \(c_{-2Y}\)), and \(a_2^2 - 4a_0a_4 = v\) on the base manifold. The matter curve \(c_{-2Y}\) (thick blue) is a double curve in \(C_{-2Y}\), and a more complicated singularity called a pinch point is developed at a type (c) point.
singularity cannot be avoided generically on the matter curve C_{-2V}. We introduce a divisor

$$b^{(c)} := \text{div} R^{(4)}$$

(105)
on the matter curve. There are

$$\text{deg } b^{(c)} = (3K_B^2 +) (4K_B^2 + 2)$$

(106)
such codimension-2 singularities of C_{-2V}, which are also the branch points of the degree-2 cover $c_{-2V} : C_{-2V} ! C_{-2V}$.

A part from these isolated points on c_{-2V}, the idea presented in section 4 can be used to determine the sheaf $\mathcal{F}^{C_{-2V}}$ on c_{-2V}.~$\sim_D : D ! c_{-2V}$ determines a divisor \sim_D on the covering matter curve c_{-2V}. The curve D is ramified over c_{-2V} at two types of points,

(a) $p_i = p_j = e_0$,
(b) $p_i = p_j = e^0$.

Thus, there is a potential contribution $\sim_D (r_j, R) = 2$ to the divisor determining $\mathcal{F}^{C_{-2V}}$. It turns out, however, that $\text{deg } (r_j, R) = 0$ at each one of type (a) or type (b) points. As we will see shortly, the $r(D)$ intersection points of type (a) and type (b) account for all the $r(D)$ intersection that are not in the image of the zero locus of $R^{(4)}$. Thus, there is no contribution to the divisor from $\sim_D (r_j, R) = 2$ on c_{-2V} away from the zero locus of $R^{(4)}$, and

$$\mathcal{F}^{C_{-2V}} = 0_{c_{-2V}} (\sim_D)$$

(107)

The remaining $r(D)$ intersection points on C_V come from type (c) intersection points

(c) $p_i = p_k = : p_i$ and $p_j = p_i = : p$.

These points are in the image of the zero locus of $R^{(4)}$. The numbers of all those types of $r(D)$ intersection points are given by

$$\# (a) = D = (4K_B^2 +) (3K_B^2 +)$$

(108)

$$\# (b) = D^0 = D (3K_B^2)$$

(109)

$$\# (c) = 2 \text{deg } b^{(c)} = 2 c_{-2V} (4K_B^2 + 2)$$

(110)

All these $r(D)$ intersection points contribute to the intersection number $D \cdot r$ with unit multiplicity. We can now see that $D \cdot r$ is accounted for by these intersection points:

$$D \cdot r = D (4 + 6K_B)$$

(111)

$$= D + D (3 \bar{K}_B) + D (2K_B +)$$

(112)

$$= \# (a) + \# (b) + \# (c)$$

(113)
Let us now study the structure of $R^1\to Z\to^2V$ in a local neighborhood of a zero point of $R^{(4)}$. We assume that $R^1\to Z\to^2V$ is written as $\text{l}_{z, V}$ for some sheaf F on c_{-Z}, Then,

$$F = \text{l}_{z, V} R^1_z \to^2 V$$

$$= R^1_y (\to^2 V \to y);$$

where we used the base change formula in the second isomorphism.

Let $b_2 c_{-Z}$ be a zero locus of $R^{(4)}$. Locally (in the analytic topology) around b, the curve D is decomposed into a disjoint union of D_1 and D_2. We consider the following diagram,

Here $Y = c_{-Z} c_{-Z} Y$ (as we have already introduced in section 4), and $D'_y = c_{-Z} c_{-Z} D$. We have the decompositions,

$$D'_y = D'_+ D';$$

where $D' = c_{-Z} c_{-Z} D$ and $D'^{(i)}$ for $i = 1; 2$ are irreducible components of D'. Note that each $D'^{(1)}$ is a section of r, and $D'^{(1)}$ and $D'^{(2)}$ intersect at one point transversally, say $p_2 D'^{(1)} \cap D'^{(2)}$. Moreover we may assume $c_{-Z} D'_+ D'^{(2)}$ and $D'^{(1)} D'_+ c_{-Z} D$ are zero sections of r. See Figure 3. Since c_{-Z} is a Galois cover with Galois group $G = Z = 2$, we have

$$R^1_y (\to^2 V \to y) = c_{-Z} c_{-Z} R^1_y (\to^2 V \to y)^G;$$

10 It is not obvious whether $R^1\to Z\to^2 V$ is represented as $\text{l}_{z, V}$ F as a sheaf of $O_{B_{-Z}}$ module, although the support of $R^1\to Z\to^2 V$ is c_{-Z}. See the appendix A for more. To show that this is the case, we need to see that the sheaf of c_{-Z} acts trivially on $R^1\to Z\to^2 V$. We have seen in the appendix A and section 4 that this is true for generic points on the matter curve c_{-Z}. Double-curve singularity on c_{-Z} does not pose a problem. However, we have not shown this in a neighborhood containing a zero locus of $R^{(4)}$. As we see in the appendix B, c_{-Z} approaches the zero section as either (w, w) or $(w, + w)$. Since the normal coordinate of c_{-Z} is $u / (w, + w)$ around the zero locus of $R^{(4)}$, it sounds quite reasonable that the normal coordinate acts trivially on the generator of $R^1\to Z\to^2 V$, just like the normal coordinate does in the case discussed in the appendix A. But, we have not completed a proof, and we just leave this as an assumption.
By the base change formula, we have

$$c_{2^Y} R^1_Y (\wedge^2 V \hat{j}_Y) = R^1_Y (\wedge^2 Y (V \hat{j}_Y));$$ \hspace{1cm} (117)$$

and

$$\gamma V \hat{j}_Y = p_2 (p_1 N_v \hat{j}_Y, P_{c, 2^Y})$$ \hspace{1cm} (118)$$

$$= p_2 (p_1 N_v \hat{j}_Y, P_{c, 2^Y}) p_2 (p_1 N_v \hat{j}_Y, P_{c, 2^Y});$$ \hspace{1cm} (119)$$

Here $p_{c, 2^Y}, N_v \hat{j}_Y$ for y are pullbacks of $p_b, N_v \hat{j}_Y$ via $D' ! D$ respectively. Let us set $W = p_2 (p_1 N_v \hat{j}_Y, P_{c, 2^Y}).$ We have

$$c_{2^Y} R^1_Y (\wedge^2 V \hat{j}_Y) = R^1_Y (W + W);$$ \hspace{1cm} (120)$$

It is useful in calculating $R^1_Y (W + W)$ to note that

$$0 ! O_{D'} ! O_{D'}^{(1)} ! O_{D'}^{(2)} ! O_p ! 0$$ \hspace{1cm} (121)$$

are exact. Applying $N_v \hat{j}_Y$ and Fourier-Mukai transforms, we obtain the exact sequences,

$$0 ! W ! W^{(1)} ! W^{(2)} ! W^{(0)} ! 0;$$ \hspace{1cm} (122)$$

Figure 3: A schematic picture showing relations between various curves and points that are used in the text.
Here W^t for $t = 0; 1; 2$ are Fourier-Mukai transforms,

$$W^t = p_2 (p_1 N \frac{1}{b} + P_{c.2v});$$

where $D^{(0)} = p$. Note that W^t for $t = 1; 2$ is a line bundle on Y and $W^{(0)}$ is a line bundle on the fiber $Y_b = \frac{1}{c} c_{2v} (b)$.

Applying $W^{(1)}$ to the above sequence yields the exact sequence,

$$0 \rightarrow W^0 + W^{(1)} \rightarrow (W^0 + W^{(1)}) \rightarrow (W^0 + W^{(2)}) \rightarrow W^0 \rightarrow 0;$$

where $W^0 + W^{(1)}$ is a trivial line bundle on Y_b, and $W^0 + W^{(2)}$ is also a line bundle that is trivial in the elliptic fiber direction. Thus, by applying $R^1 Y$, we have the long exact sequence,

$$0 \rightarrow R^0 Y (W^0 + W^{(1)}) \rightarrow O_{c.2v} B + \sim_D \rightarrow O_b \rightarrow 0;$$

and we used

$$R^0 Y (W^0 + W^{(1)}) = \sim_D (N V \frac{1}{b}) \sim_D (N V \frac{1}{b}) = O_{c.2v} (B + \sim_D);$$

$$R^1 Y (W^0 + W^{(1)}) = O_{c.2v} (B + \sim_D) \rightarrow L_{H} = O_{c.2v} (B + 0 + 2 V K_{B_2});$$

the ramification divisor r on C_V intersects with D at p, and $\sim_D = \sim_{D} p = : D = c_{2v}$ maps p to $2 c_{2v}$. This is why we have a divisor B in $[26]$. We thus conclude that

$$R^0 Y (W^0 + W^{(1)}) = O_{c.2v} (\sim_D);$$

$$R^1 Y (W^0 + W^{(1)}) = O_{c.2v} (B + \sim_D + 2 V K_{B_2});$$

By the same argument, we also have the same results for $R^i Y (W^0 + W^{(2)})$ ($i = 0; 1$).

Finally we have the exact sequence,

$$0 \rightarrow W^0 + W \rightarrow (W^0 + W^{(1)}) \rightarrow (W^0 + W^{(2)}) \rightarrow W^0 \rightarrow 0;$$

Note that $W^0 + W^0$ is a rank two degree-zero sheaf on an elliptic curve Y_b given in [26]. Thus, we have the associated long exact sequence,

$$O_{c.2v}(\sim_D) \rightarrow O_{c.2v}(\sim_D) \rightarrow O_b \rightarrow R^1 Y (W^0 + W) \rightarrow$$

$$\rightarrow 2O_{c.2v}(B + \sim_D + 2 V K_{B_2}) \rightarrow O_b \rightarrow 0;$$
Therefore, we obtain

\[R^1 \gamma (W + W) = \text{Ker} O (B + \sim_D + \frac{1}{2} VK B_2) \ O (B + \sim_D + \frac{1}{2} VK B_2) ! O_B ; \]

\[\text{for} n \text{ } \text{in} O \]

\[f_{\gamma} = (f ; g ; g 2 O (B + \sim_D + \frac{1}{2} VK B_2)) ; \quad f_{\gamma}^\sharp = g_{\gamma}^\sharp \quad (132) \]

Under the above isomorphism, we can easily see that the action of G on \(c \cdot 2V \ \text{on} R^1 \gamma (W + W) \text{is given by} (f (u) ; g (u)) \Gamma (g (u) ; f (u)) \), where u is the local coordinate of \(c \cdot 2V \) around B. Hence we have

\[F^\cdot 2V = c \cdot 2V R^1 \gamma (W + W) \quad (133) \]

\[= c \cdot 2V O c \cdot 2V (B + \sim_D + \frac{1}{2} VK B_2) ; \quad (134) \]

Therefore, after making the assumption discussed in footnote 10, we find that \(F^\cdot 2V \) on \(c \cdot 2V \) is given by a pushforward of a locally free rank-1 sheaf.

\[\mathcal{F}^\cdot 2V = O \cdot \frac{1}{2} VK B_2 + B^{(c)} + \sim_D \quad (135) \]

on \(c \cdot 2V \) via \(c \cdot 2V \) everywhere on \(c \cdot 2V \). Here, \(B^{(c)} \) denotes a divisor \(c \cdot 2V \), collecting all the points that we have denoted as B up to now.

The chiral multiplets from the \(^2V \) bundle are now identified with

\[H^1 (Z ; ^2V) ^' \quad H^0 (c \cdot 2V ; \mathcal{F}^\cdot 2V) ^' \quad H^0 (c \cdot 2V ; \mathcal{F}^\cdot 2V) ; \quad (136) \]

\[F^\cdot 2V = c \cdot 2V \quad \mathcal{F}^\cdot 2V \quad \text{is a locally-free rank-2 sheaf (rank-2 vector bundle) on} \quad c \cdot 2V . \]

The genus of the covering matter curve is given by

\[g(c \cdot 2V) = 1 + 2 (g(c \cdot 2V) + 1) + \frac{1}{2} \deg b^{(c)} ; \quad (137) \]

since \(c \cdot 2V : c \cdot 2V \) is a degree-2 cover with (1=2) \(deg b^{(c)} \) branch cuts. Thus, it is also expressed as

\[g(c \cdot 2V) = 1 + (3K B_2 +) (4K_b +) + \frac{1}{2} (3K B_2 +) (4K_{b_2} + 2) ; \quad (138) \]

\[^{11} \text{This result follows immediately from [74], had we made a stronger assumption that there exists a locally free rank-1 sheaf} \quad N^\cdot 2V \quad \text{on} \quad \mathcal{F}^\cdot 2V \quad \text{such that} \quad N^\cdot 2V = c \cdot 2V \quad \text{N}^\cdot 2V \quad \text{is used in [22] and [22] is satisfied as a sheaf of} \quad O_{2-m} \text{module. We opted to adopt a weaker assumption in this article, and provided a derivation after [113], instead.} \]
and it follows that
\[\deg K_{c,2} = 2 (3K_B +) (6K_2 + 2) : \] (139)

On the other hand, one can also calculate the following independently:
\[\deg \ell_{2v} K_B + B^{(c)} = 2(3K_B +) K_2 + 3K_B + (4K_2 + 2) ; \]
\[= (3K_B +) (6K_2 + 2) = \frac{1}{2} \deg K_{c,2} : \] (140)

Because of this non-trivial relation between the genus of the covering curve and the degree of the divisor above, we obtain through Riemann-Roch theorem\footnote{The same result is obtained by applying the Riemann-Roch theorem to \((c,2) ; F_{c,2} \). One needs to use}
\[(\sim^2 V) = (c,2) ; \ell^2_{c,2} = (1 - g(c,2)) + \deg \ell_{2v} K_B + B^{(c)} + \sim_D \]
\[= (3K_B +) D : \] (143)

This chirality formula in terms of (covering) matter curve was rather anticipated from the beginning. We know that \((\sim^2 V) = (\sim^2 V)\), and the difference between \(V\) and \(\sim V\) comes from changing the sign of \(\ell\). For an SU(4) bundle \(\sim^2 V\), \(\sim V\), and the net chirality should vanish. We can confirm this in the formula above, because \(c = 0\) for an SU(4) bundle \(V\). For a U(4) bundle \(\sim V\), its chirality formula \((143)\) agrees with \((375)\) in the appendix that is obtained without calculating direct images. All these consistency checks give us confidence that the locally free rank-1 sheaf \((135)\) provides the right description for the matter multiplets from \(\sim^2 V\).

5.4 Rank-5 Vector Bundles

Spectral surface \(C_V\) of rank-5 bundle \(V\) is given by
\[s = a_0(u;v) + a_2(u;v)x + a_3(u;v)y + a_4(u;v)x^2 + a_5(u;v)xy = 0; \] (144)
(u; v) are local coordinates of a base 2-fold B_2, and a_r ($r = 0; 2; 3; 4; 5$) are sections of $O(rK_{B_2} + \cdot)$. The matter curve of the fundamental representation $\varphi = C_V$ is given by the zero locus of a_5, and hence belong to a topological class $jK_{B_2} + j$. The matter curve of 2V is determined by requiring that the defining equation of the spectral surface factorizes locally as

$$s = (A + B)(Py + Qx + R);$$

(145)

Among the five points $p_i; p_j; p_k; p_l; p_m$ satisfying (145) in a given elliptic fiber, two points p_{ij} satisfying $(A + B) = 0$ satisfy $p_i = p_j = e_0$, as we discussed before in section 5.3. One can see that this factorization condition is equivalent to

$$P^{(5)} = a_0a_5^2 + a_2a_5a_3 + a_4a_3^2 = 0$$

(146)

which was derived in [12]. Since the left-hand side is a section of $O(10K_{B_2} + 3)$, $c_{^2V}$ belongs to a class $j10K_{B_2} + 3 j$, which corresponds to the $N = 5$ case of [78].

The two matter curves c_V and $c_{^2V}$ intersect in B_2 in general. There are two different types of intersection:

(a) $a_5 = 0$ and $a_4 = 0$, and hence $P^{(5)} = 0$,
(b) $a_5 = 0$ and $a_3 = 0$, and hence $P^{(5)} = 0$.

The two curves intersect with multiplicity 1 at any type (a) intersection points, and with multiplicity 2 at any type (d) intersection points. This is a complete classification of the intersection points of the two matter curves, because

$$# \ (a) + 2 \ # \ (d) = (5K_{B_2} + \cdot) (4K_{E_8} + \cdot) + 2 (5K_{B_2} + \cdot) (3K_{E_8} + \cdot);$$

$$= (5K_{B_2} + \cdot) (10K_{E_8} + 3) = \varphi \ c_V$$

(147)

accounts for all the contributions to the intersection number. At the type (a) intersection points, we points in C_V become $p_i = p_j = e_0$ and three general points. At the type (d) intersection points, they become $p_i = e_0, p_i = e_0$ and $p_k = e_0$.

The explicit form of $P^{(5)}$ reveals that $c_{^2V}$ forms a double point at each type (d) intersection point. This is where a double curve locus $p_i = p_j = p_k$ of $C_{^2V}$ intersects with the zero section. The projection $D : D ^{\cdot} C_{^2V}$ is a degree-2 cover at generic points on D. The structure group of the spectral surface* is reduced from SU (5) to SU (2) SU (3), and the commutant within E_8 enhanced from SU (5)$_{SU (2)}$ to SU (6). As we have already noted in section 5.3, it is this structure group of the spectral surface* that determines the enhanced singularity along the matter curve in F-theory dual description.

13 *The structure group of the spectral surface* is reduced from SU (5) to SU (2) SU (3), and the commutant within E_8 enhanced from SU (5)$_{SU (2)}$ to SU (6). As we have already noted in section 5.3, it is this structure group of the spectral surface* that determines the enhanced singularity along the matter curve in F-theory dual description.
Figure 4: The left panel (i) shows how the two matter curves c_V (thick yellow) and c_{-2V} (thick blue) intersect in the zero section for cases with rank-5 bundles V. The right panel (ii) shows geometry of a curve D (thin blue) and c_{-2V} (thick blue) associated with a type (c1) point. Only a degree-2 part of degree-5 spectral cover surface C_V is shown here. C_V is a ramified cover over B_2 along a ramification divisor r (thin red), but D is not a ramified cover over c_{-2V}.

c_{-2V}, but the four points $p_{i,j,k,l}$ map to a type (d) point on c_{-2V}. The covering matter curve c_{-2V} is obtained by blowing up the double points of the matter curve c_{-2V}, and the map $\sim_D : D ! c_{-2V}$ becomes a degree-2 cover. The idea of section 4 is applied, and a locally free rank-1 sheaf $F_{c_{-2V}}$ on the covering matter curve c_{-2V} is obtained. The sheaf $F_{c_{-2V}}$ on the matter curve c_{-2V} is locally free and has rank 1 in a neighborhood of a generic point, but it is not locally free around the type (d) intersection points as the rank of the Jacobians is 1 to 2.

We would like to better understand the locally free rank-1 sheaf $F_{c_{-2V}}$, by studying $D (r, j, R)$ in more detail. As we have discussed in section 5.2, C_V is ramified over whenever D is over c_{-2V}. Thus, $\text{supp}(rj, R) \supset \text{supp} p_j$ on D, and we begin with a class of the $D \cap$ intersection points on C_V. This must include all the intersection points:

(a) $p = p_j = e_0 (p_i; p_j, 2 D); \quad \# (a) = D$
(b) $p = p_j = e^0 (p_i; p_j, 2 D); \quad \# (b) = D^0$,
(c) others.

The type (a) and type (b) intersection points exhaust all the cases where $\deg R \neq 0$. The
type (a) D {r intersection points are also the type (a) \(c_{2V}\) intersection points. As we have seen before for rank-4 bundles, \(\deg r, d = \deg R = 1\) at both type (a) and type (b) D {r intersection points, and no contribution to \(\sim_0\) \((rj, R)=2\) arises from these points.

The images of the remaining D {r intersection points, called type (c) points, via \(\sim_0\) define a divisor \(B^{(c)}\) on \(c_{2V}\). Since \(\deg R = 0\) at the type (c) D {r intersection points, \(\sim_0\) \((rj, R)=2\) becomes \(B^{(c)}=2\). From the definition of the type (c) points, the number of such points is given by

\[
\deg B^{(c)} = D \quad r \quad D \quad D^0 = D \quad (N - 4) + 2K_{B_2} + \).
\]

with \(N = 5\).

This paragraph was modified in version 4: The type (c) D {r intersection points are characterized as follows. In the right panel of Figure 4, the two curves D and r intersect on the spectral surface \(C_V\), but D \(\setminus c_{2V}\) is not a ramified cover. We count the number of such D {r intersection points in the following, and show that the number agrees with (148). Let us denote the point at this type of D {r intersection as \(p_i\), and the other point on D as \(p_j\); \(p_i = p_k = e_0\) by definition. On an elliptic fiber \(E_b\) that has such \(p_i\) and \(p_j\) in it, the defining equation of the spectral surface \(144\) has \(p_i\) as a zero of order two. Assuming that \(a_5 \neq 0\), the points \(p_i\) and \(p_j\) correspond to \((x; y)\) with \(x = a_3 = a_5\) and \(y^2 = x^3 + f_0x + g_0\). Either \(p_i\) or \(p_j\) being a zero of order two of \(144\) means that

\[
\frac{dy}{dx} = (a_2 + 2a_4 x + a_5 y) + \frac{dy}{dx} (a_3 + a_5 x)
\]

vanishes at either \(p_i\) or \(p_j\). The second term always vanishes for \(x = a_3 = a_5\). Thus, the condition becomes \((a_2 + 2a_4 x)^2 a_5^2 y^2 = 0\). Writing \(x\) and \(y\) in terms of \(a_0, b, a_4, f_0, g_0\), we obtain that this condition is equivalent to

\[
R^{(5)} := a_2 + \frac{2a_4 a_3}{a_5} + \frac{a_3^2}{a_5} + \frac{a_0}{a_5} g_0 = 0;
\]

\(R^{(5)}\) restricted upon \(c_{2V}\) defines a divisor \(4K_{B_2} + 2\), and

\[
\deg R^{(5)} = (4K_{B_2} + 2) \quad c_{2V} = D \quad (2K_{B_2} + \).
\]

\(^{14}\) Note added in version 4: It is now understood clearly [52] why the type (a) and type (b) points do not contribute to the divisor of the line bundle \(77\). Ramification behavior of \(C_{c_{2V}}\) is the key. See footnote 47 of [52].

36
It should be noted, however, that \(R^{(5)} \) in (150) was derived under an assumption that \(a_5 \neq 0 \). Points on \(a_5 = 0 \) should not contribute to the type (c) points, and one needs to examine whether \(R^{(5)} \) naively applied to the \(a_5 = 0 \) locus gives rise to fake contributions or not. This is carried out by taking a local coordinate on \(c \cdot 2 \) at around type (d) and type (a) points, respectively, and by examining whether \(R^{(5)} \) has a pole or zero at these codimension-3 singularity points. After a bit of detailed analysis, we see that \(R^{(5)} \) has a fake contribution of 1 at every type (a) points. Thus, the true number of type (c) points characterized by (149) and \(a_5 \neq 0 \) is

\[
\deg R^{(5)} + \# (a) = D (2k_2 + \ldots) + D ;
\]

which exhausts all the type (c) points expected in (148). Thus, all the type (c) points are on the \(a_5 = 0 \) part of \(P = 0 \) matter curve \(c \cdot 2 \), and are characterized by (150).

To conclude, the locally free rank-1 sheaf \(R^{(5)} \) on \(c \cdot 2 \) is given by

\[
R^{(5)} = 0 + \# (a) = D (2k_2 + \ldots) + D ;
\]

where \(\# (a) = 0 \), just like in section 5.3. Table 2 shows a couple of examples of geometric data of the matter curves for different choices of the divisor.

The \(a_5 = 0 \) locus on the matter curve \(c \cdot 2 \) (\(P = 0 \)) is classified into two groups: type (a) and type (d). The type (a) points are, by definition, different from type (c) points, and we have seen that they do not contribute to \(D \) (\(r j, \bar{r} \)). Over the type (d) points, the spectral surface \(C \) consists of layers of \(\mu \) without ramification, and there is no contribution to \(D \) (\(r j, \bar{r} \)).

At around a type (d) point, \(a_5 = a_3 \) can be chosen as a local coordinate on each of the two branches of \(c \cdot 2 \). Along the curve \(c \cdot 2 \), close to the type (d) point, \(a_3 = a_5 \) can be treated as a finite constant value \(x \). Thus, \(R^{(5)} \) is a rank-1 sheaf, neither has a pole or zero at type (d) points.

At around a type (a) point, \(a_3 = a_3 \) can be chosen as a local coordinate on \(c \cdot 2 \). Because of the defining equation \(P = a_4 a_5^2 + a_3 a_3 a_6 + a_3 a_2^2 = 0 \) of the curve \(c \cdot 2 \), \(a_3 = a_5 \) can be treated as a finite constant value \(a_3 = a_3 \) on the curve \(c \cdot 2 \), close to the type (a) point. Thus, \(R^{(5)} \) has a pole of order 1 (that is, a fake contribution of 1) at every type (a) point, when it is applied naively to the type (a) points.

Since \(a_5 = 0 \) and \(P = 0 \) are assumed, the definition of \(R^{(5)} \) can be modified by multiplying/dividing by \(a_5 \) or adding/subtracting by \(P \). It is an option to take

\[
R^{(5)} = a_5 R^{(5)} = a_5 \left(a_4 a_5^2 + 4a_4 a_6 + (a_3 f_0 a_3 a_5^2 + g_0 a_5^3) \right) ;
\]

\(R^{(5)} \) has a 1 fake contribution from every type (d) point of \(c \cdot 2 \). We are benched from (2.71) of [53], in making an improvement in version 4 here. Since the authors of [53] assigned a scaling dimension \(r \) to \(a_3 \) (\(r = 5; 4; 3; 0 \)), the first three terms have all scaling dimension 9, whereas the last two terms have higher dimensions. This is why the last two terms are missing in (2.71) of [53], whereas they are retained here.
Table 2: Examples: We choose F_1 (Hirzebruch surface) as the base manifold B_2; D_b and D_f are two independent divisors satisfying $D_b = 1, D_f = 1$ and $D_f D_b = 0$. We also use $D_{b^+} = D_{b + D_f}$ in the table above. Three examples are chosen for a divisor on B_2, so that the matter curve c_{2V} 2 $jK_{B_2} + j$ is effective, and j is base-point free, conditions derived in [22]. In all the three examples in this table, the matter curve c_{2V} is isomorphic to P^1 and generically smooth. On the other hand, the matter curve c_{2V} has # (d) > 0 double points, and is not smooth in any one of the examples. Three matter curves c_{2V} and their normalizations, c_{2V}, have very large genus.

The covering matter curve is determined through

$$2g(c_{2V}) = \deg K_{c_{2V}} ;$$

$$= \deg K_{c_{2V}} 2 \# (d) ;$$

$$= c_{2V} (11K_{B_2} + 3) (2(5K_{B_2} +) (3K_{B_2} +));$$

$$= 80K_{B_2}^2 + 47K_{B_2}^2 + 7^2 :$$

We used the fact in the second equality that the Euler number (genus) of a curve increases by +2 (resp. 1) whenever a double point is blown up [27,28]. On the other hand, one can calculate the following:

$$\deg c_{2V} K_{B_2} + \frac{1}{2} b^{(c)} = c_{2V} K_{B_2} + \frac{1}{2} D (+ 2K_{B_2} +);$$

$$= 40K_{B_2}^2 + 47K_{B_2}^2 + \frac{7}{2} - \frac{1}{2} = \frac{1}{2} \deg K_{c_{2V}} :$$

Thus, by applying Riemann-Roch theorem, the net chirality is given by

$$(-^2V) = (c_{2V} ; F_{2V}) = [1 \ g(c_{2V})] + \deg c_{2V} K_{B_2} + \frac{1}{2} b^{(c)} + \sim_D ;$$

$$Z \sim_D = D :$$

It is reasonable, as we discussed right after [143], that the result is proportional to Z. See also a discussion after [172].
5.5 Rank-6 Vector Bundles

The spectral surface C_V of a rank-6 bundle V is the zero locus of

$$s = a_0 + a_2 x + a_3 y + a_4 x^2 + a_5 xy + a_6 x^3;$$

$$s = a_0 + a_2 x + a_3 y + a_4 x^2 + a_5 xy + a_6 y^2;$$ \hspace{1cm} (158)

The coefficients $a_{0,2}$ and $a_{6,2}$ are related through

$$a_0 = a_0 + a_6 g_0; \quad a_2 = a_2 + a_6 f_0;$$ \hspace{1cm} (159)

The matter curve of the fundamental representation V, c_V, is given by $a_6 = 0$.

5.5.1 2V

$R^1_z \ \ ^2V$ can be studied for a rank-6 bundle, just like in the case for a rank-5 bundle. The matter curve $c_{^2V}$ is determined by requiring that the defining equation of the spectral surface \[158\] factorizes locally as

$$s = (A x + B)(P x^2 + Q y + R x + S);$$ \hspace{1cm} (160)

This condition is equivalent to

$$P^{(6)} := a_0 a_5^3 a_2 a_3 + a_4 a_5 a_3^2 a_6 a_3^3 = 0;$$ \hspace{1cm} (161)

\[158\] The structure group of the spectral surface is reduced from SU(6) to SU(2) \ SU(4). The commutant symmetry group in E_8 is enhanced from SU(2) \ SU(3) to SU(2) \ SU(4); note that $E_8 \ SU(2) \ E_7$, and $E_7 \ SU(4) \ SU(2) \ SU(4)$, as one can see by removing one node from the extended Dynkin diagram of E_7 (see Figure5 (i)).
and this is the defining equation of the matter curve c_{-2V}. $P^{(6)}$ is a section of $0 \left(15K_{B_2} + 4 \right)$, and the curve c_{-2V} belongs to a class $jL5K_{B_2} + 4$; this corresponds to the $N = 6$ case of (79).

There are two different types of c_V (c_{-2V}) intersection points, because $P^{(6)}j_6=0$ factorizes.

(a) $a_5 = 0$ and $a_5 = 0$,
(b) $a_5 = 0$ and $a_5a_2^2 = a_2a_5a_3 + a_4a_3^2 = P^{(5)} = 0$.

We call them type (a) and type (d) intersection points, respectively. The two curves intersect transversely at both types of intersection points. These two types exhaust all kinds of the intersection:

$$
\# (a) + \# (d) = (6K_{B_2} +) (5K_2 +) + (6K_{B_2} +) (10K_2 + 3);
$$

$$
= (6K_{B_2} +) (15K_{B_2} + 4) = c_V \cdot c_V^*: \quad (162)
$$

The matter curve c_{-2V} itself is smooth at these intersection points.

The matter curve c_{-2V} has a triple point, wherever

(e) $a_5 = a_3 = 0$.

The defining equation $P^{(6)}$ in (161) have three different solutions for $a_3 : a_5$ as a function of local values of a_0, a_2, a_5 in a local neighborhood of this type of point, and the three solutions correspond to three branches of C_{-2V} intersecting with the zero section. One corresponds to $p_1, p_j = e_0$, another to $p_k, p_i = e_0$, and the last one to $p_m, p_h = e_0$. Wherever the first two branches of the matter curve intersect in B_2, the last one also passes through the intersection point, because of the traceless condition (14) of rank-6 bundles. This is why c_{-2V}, for a rank-6 bundle has triple points.

In a local neighborhood of a triple point, C_{-2V} consists of three irreducible components, one for $C_{(ij)}$, one for $C_{(kl)}$, and the other for $C_{(m,n)}$. Intersection of any two of the three irreducible components are double-curve singularity of C_{-2V}, and the triple points are where three double-curve singularities collide. As this type of codimension-2 singularity inevitably appears on the zero section in the case of rank-6 bundles, we need to modify the argument that we presented in section 4.1.

Only a straightforward generalization is required, however. We choose

$$c_{-2V} = C_{(ij)} C_{(kl)} C_{(m,n)} \quad (163)$$

locally around any triple points. c_{-2V} is defined around this codimension-2 singularity by

$$c_{(ij)} C_{(kl)} C_{(m,n)} C_{(ij)} C_{(kl)} C_{(m,n)} C_{(ij)} C_{(kl)} C_{(m,n)} C_{(m,n)} = C_{-2V}^*: \quad (164)$$
Figure 6: The left panel (i) is a schematic picture of various matter curves in the zero section for cases with rank-6 bundles. It shows how the curves intersect one another, and what kind of singularities they have. The right panel (ii) describes a geometry associated with the type (f) points, which arise in the analysis 3V bundles of rank-6 bundles V. Two irreducible components T_+ and T_- of a curve T in C_V intersect when T intersects the ramification divisor r without being ramified over $c_{\cdot 2V}$. This is where the type (f) points are found.

By repeating almost the same argument as in section 4.1, one can see that i) $N^\cdot 2V = c_{\cdot 2V}$ $N^\cdot 2V$ exists, ii) \mathbb{Z} is satisfied as a sheaf of O_Z module, and iii) $N^\cdot 2V$ on $c_{\cdot 2V}$ is a locally free rank-1 sheaf. Thus, $[\mathbb{Z}]$ can be used for this case as well. The covering matter curve $c_{\cdot 2V}$ is defined as $c_{\cdot 2V} = ^1c_{\cdot 2V}$ (as before) and each triple point is resolved into three points in $c_{\cdot 2V}$, one in $C_{(kl)}$, one in $C_{(ij)}$ and the other in $C_{(mn)}$.

The classiﬁcation of the $D \{r\}$ intersection goes exactly the same as in the case of a rank-5 bundle V. There are type (a), (b) and (c) $D \{r\}$ intersection points, and only the type (c)

19 In all the cases that we considered in this article, $c_{\cdot V}$ corresponds to a normalization of $C_{\cdot V}$. "Normalization" is a jargon in algebraic geometry which means a normal variety that is associated with an original algebraic variety. The covering matter curve $c_{\cdot V}$ is defined as the inverse image of the matter curve $c_{\cdot V}$ in $c_{\cdot V}$: $c_{\cdot V} | C_{\cdot V}$. Reference [13] introduced a curve $D^{\cdot 0}$ as a normalization of the matter curve $c_{\cdot V}$. The two curves $c_{\cdot V}$ and $D^{\cdot 0}$ are the same for most of the cases, because the covering matter curve $c_{\cdot V}$ is obtained by resolving double points in the rank-5 case, and by resolving triple points in the rank-6 case. In the rank-5 case, $V = ^\cdot V$ and in the rank-6 case for $V = ^\cdot V$, however, these two definitions are not the same. The matter curves $c_{\cdot V}$ for the rank-4 case and $c_{\cdot V}$ for the rank-6 case are smooth, and do not need normalization. The other definition of $D^{\cdot 0}$ in [13] can also be read out from the notation itself, a quotient of $D^{\cdot 0}$ by $c_{\cdot V}$. In all the cases we considered in this article, the covering matter curve for $V = ^\cdot V$ agrees with $D^{\cdot 0}$ in this definition.
points contribute to \(\sim_0 (x_j \quad R)=2 \) in (77).\(^{20}\)

\[
\mathbb{P}^{a \times_2 V} = O_{c \times_2 V} q_2 V K_{B_2} + \frac{1}{2} \mathbb{B}^{(c)} + \sim_D j \quad ;
\]

(165)

the same as in (151). \(\deg \mathbb{B}^{(c)} \) is given by (148), now with \(N=6 \).

\(^{20}\) A footnote added in version 4: The type (c) points are characterized as follows. A pair of points \(p_i \) and \(p_j \) on \(C_V \) are on \(D \), if and only if their coordinates on the elliptic tube are \((x_i, y_i) \) and \((x_j, y_j) \), with \(x = a_3 = a_5 = B = A \), and \(y^2 = x^3 + f_0 x + g_0 \). \(D \) is ramified over \(c \times_2 V \) if

\[
\frac{ds}{dx} = (a_2 + 2a_4 x + 3a_6 x^2 + a_8 y) + \frac{dy}{dx} (a_3 + a_5 x) = 0;
\]

The second term \((a_3 + a_5 x) \) vanishes, and this condition is equivalent to

\[
R^{(6)} = a_2 + 2a_4 + 3a_6 + a_8 \quad ;
\]

It should be noted that \(a_5 \neq 0 \) is assumed. Although \(c \times_2 V \) is not expected to leave contributions at \(a_5 = 0 \), \(R^{(6)} \) has non-zero fake contributions at type (a) points (where \(a_5 = 0 \)), when it is applied naively to the \(a_5 = 0 \) locus. \(R^{(5)} \) has a pole of order 2 at every type (a) point, and the number of true type (c) points on the \(a_5 \neq 0 \) locus of \(c \times_2 V \) is

\[
\deg R^{(6)} + 2 \# (a) = c \times_2 V (4K_{B_2} + 2) + 2D \quad ;
\]

which is exactly the expected number of the type (c) points in (148).
The covering matter curve c_{2V} has

$$2g(c_{2V}) = \deg K_{c_{2V}};$$

$$= \deg K_{c_{2V}} 6 \# (e);$$

$$= (15K_{B_2} + 4) (16K_{B_2} + 4) 6(5K_{B_2} +) (3K_{B_2} +);$$

$$= 150K_{B_2}^2 + 76K_{B_2} + 10^2;$$

$$\tag{166}$$

$$= (15K_{B_2} + 4) K_{B_2} + \frac{1}{2}D (2 + 2K_{B_2} +);$$

$$\tag{167}$$

$$= 75K_{B_2}^2 + 38K_{B_2} + 5^2 = \frac{1}{2}K_{c_{2V}};$$

$$\tag{168}$$

In the second equality, we have used the fact that the genus of a curve reduces by 3 when a triple point is blown up; see [27, 28]. On the other hand,

$$\deg f_{c_{2V}} K_{B_2} + \frac{1}{2}B^{(e)} = (15K_{B_2} + 4) K_{B_2} + \frac{1}{2}D (2 + 2K_{B_2} +);$$

$$\tag{169}$$

$$= 75K_{B_2}^2 + 38K_{B_2} + 5^2 = \frac{1}{2}K_{c_{2V}};$$

$$\tag{170}$$

Thus, using the Riemann-Roch theorem, the net chirality from the bundle 2V is given by

$$\left(^2V \right) = \left(c_{2V};^{E_{c_{2V}}} \right) = \sim_{D} = D;$$

$$\tag{171}$$

After studying the direct images $R^1 Z ^2V$ one by one for V of various ranks, we find the net chirality from these bundles is given by the same expression, $(^2V) = D$. It will be clear that the rank-4 [143], rank-5 [157] and rank-6 [171] cases have this form of expression. In the rank-3 case, $(^2V) = \sum_{c_{2V}} j + c = D$, too. Thus, it is tempting to guess that

$$\left(^2V \right) = D$$

for any $U(N)$ bundles given by spectral cover construction.

In order to show that this is really the case for general N, we need a better way to obtain $\deg K_{c_{2V}}$. The relation between $\deg K_{c_{2V}}$ and $\deg K_{c_{2V}}$ was different for all the different rank V we have considered. To avoid this rank V dependence, the following observation in [19] is useful: $\sim_{D} : D ! c_{2V}$ is a degree-2 cover for any rank $V = N$, and

$$\deg K_{c_{2V}} = \frac{1}{2} (\deg K_{D} \deg R);$$

$$\tag{173}$$

$$= \frac{1}{2} (D (2Q \left(+ 0 \right)) \deg R);$$

$$\tag{174}$$

Using a relation $R = (+ 0)^{j}$ [18], this expression can be also rewritten as

$$\deg K_{c_{2V}} = D \ C \ \deg R;$$

$$\tag{175}$$
On the other hand,
\[\deg t^{2v} K_{B^2} + \frac{1}{2} \sim_D (r.j. R) = \frac{1}{2} (D (K_{B^2} + r) \deg R) = \frac{1}{2} (D \frac{\partial}{\partial \theta} \deg R): \]
(176)

Thus, we always have
\[\deg t^{2v} K_{B^2} + \frac{1}{2} \sim_D (r.j. R) = \frac{1}{2} \deg K_{c.2v}: \]
(177)

Now, the chirality formula (172) follows from (174) and the Riemann-Roch theorem for general rank \(V = N \).

The net chirality in the matter multiplets from bundle \(V \) is given by (36), and that in the matter multiplets from bundle \(^2V \) by (172). Although both are determined by one and the same \(r \), it is not obvious what kind of relations the net chiralities in the two sectors satisfy. We know, if we calculate \((Z;V) \) and \((Z;^2V) \) by applying the Hirzebruch-Riemann-Roch theorem on a Calabi-Yau 3-fold, that a relation (375) should hold between them. Thus, we will show how the relation (375) follows also from the chirality formulae (36) and (172).

First, note that can be decomposed into
\[= 0 + z^1; \quad 0 = (N + N K_{B^2}) \]
(178)
for some \(r \) and a 2-form \(z \) on \(B^2 \). Since \(c_1 = 0 \) and \(c_2 = N ! \), only the 0 part is allowed for \(SU(N) \) bundles [12]. For \(SU(N) \) bundles,
\[(V) = c_V, \quad 0 = (N K_{B^2} +) \]
(179)
from (36), and
\[(^2V) = D \quad 0 \]
\[= [(N (N 1)K_{B^2} + 2(N 2)) + (3K_{B^2} +)] (N \quad N K_{B^2}); \]
\[= (N (N 1)K_{B^2} + 2(N 2)) + N (3K_{B^2} +)); \]
\[= (N K_{B^2} +) (N 4) \]
(180)
(181)
from (172). Thus, the expression (172) yields a result consistent with the relation \((^2V) = (N 4) (V) \) in (375) for the case with \(c_3(V) = 0 \). It is also easy to show (through a similar calculation) that
\[D \quad z^1 = (N 4) c_V + (3K_{B^2} +) (N !); \]
(182)
Therefore, the chirality formula (172) for \(SU(N) \) bundles always yields a result consistent with (375).
5.5.2 3V

In the Heterotic string compactification with an SU(6) bundle V in E_8, another species of chiral multiplets arise from the cohomology group $H^1(Z; ^3V)$. Thus, the direct image $R^1_{E_8} \otimes ^3V$ is studied here, so that its F-theory description is obtained.

The matter curve $C_{^3V}$ is characterized by a condition that the defining equation of the spectral surface [158] factorizes locally as

$$s = (Ay + Bx + C)(Py + Qx + R): \quad (183)$$

Three points p_1, p_j, p_k satisfying $(Ay + Bx + C) = 0$ satisfy $p_1, p_j, p_k = e_0$. After some calculations, one finds that this factorization condition is equivalent to

$$Q^{(6)} := a_6(a_2^2 + 4a_4a_0) + (a_0a_2^2 - a_2a_3 + a_4a_2^2) = 0: \quad (184)$$

$Q^{(6)}$ is a section of $(10K_{E_8} + 3)$, and $c_{^3V}$ belongs to a class $J_6K_{E_8} + 3$. This curve passes through the type (d) c_V ($c_{^3V}$) intersection points, and it intersects with c_V only at such points. This is because $Q^{(6)}|_{p_1^0} = P^{(5)}$. See Figure 6.

The prescription of [18] in determining the topological class of $C_{^3V}$ is that

$$C_{^3V} \sim (\dim : (V)) + 2T_{^3V}: \quad (185)$$

where $T_{^3V}$ is the Dynkin index of representation. Because

$$\dim : ^3V = \frac{N(N-1)(N-2)}{3!}; \quad T_{^3V} = \frac{(N-2)(N-3)}{4} \quad (186)$$

for 3V of a rank-N bundle V, the naive expectation is that $c_{^3V} \sim C_{^3V} \sim (20K_{E_8} + 6)$. This is twice as much as the result that we have obtained. This is because $c_{^3V}$ is actually a double curve in $C_{^3V}$, just like $c_{^3V}$ is in $C_{^3V}$ of a rank-4 bundle V. The three points p_1, p_j, p_k satisfying $(Py + Qx + R) = 0$ also satisfy $p_1, p_j, p_k = e_0$ simultaneously.

An idea was presented in section 4 how to study $R^1_{E_8} \otimes ^2V$. The same idea can be applied to $R^1_{E_8} \otimes ^3V$ only with quite a natural generalization. The treatment in section 4 allows us to obtain a locally free rank-1 sheaf $F_{^3V}$ on a covering matter curve $C_{^3V}$, if the two conditions are satisfied: i) the Fourier-Mukai transform of 3V on Z is represented as a pushforward (as

21 The structure group of the spectral surface reduces from SU(6) to SU(3), SU(3), and the commutant enhanced from SU(3) SU(2) to SU(3) SU(3); note that E_8 SU(3) E_6, and E_8 SU(3) SU(3) SU(3), as one can see by removing one node from the extended Dynkin diagram of E_8.
in (22)) as a sheaf of O_Z-module, and ii) N on C_{-3V} is given by a pushforward of a locally free rank-1 sheaf \mathcal{E}_{-3V} on C_{-3V}, a resolution of C_{-3V}. In the situation we have, the matter curve c_{-3V} itself is a double curve in C_{-3V}, but this double-curve singularity is resolved by blowing up Z with a center along the double-curve singularity, just like in the appendix B.3 where \sim^2V bundle for a rank-4 bundle V was discussed. We now have a covering curve c_{-2V}, which is a degree-2 cover of c_{-2V}. Furthermore, since $[A:B:C] = [P:Q:T]$ can be realized only on a cod.2 mes.2 locus in curve c_{-3V}, the degree-2 cover does not ramify for a generic choice of moduli parameters $a_0, b_\beta, \rho_i, \rho$. The covering matter curve is a disjoint union of two copies of c_{-3V}:

$$c_{-3V} = c_{-3V} + c_{-3V} \quad \text{(187)}$$

We have no reason to expect that singularities appear on these curves. Therefore, no extra complication arises other than the original double-curve singularity, and we have shown in section 3 how to deal with double-curve singularity; thus, the idea in section 3 is now applicable to the analysis of $R^1_{\sim^2V}$ for a rank-6 bundle V.

Instead of a curve D in $Y = z_{-3V}$, a curve T in $Y = z_{-3V}$ is introduced. A triplet of points $f \rho_0, p_0^\rho, p_0^\rho$ in $C_{V + \frac{1}{2}} c_{-3V}$ satisfying $p_0^\rho = e_0$ sweeps a curve in Y, and that is the definition of T. $T = z_{-3V}$ is not necessarily a degree-3 cover, but a projection to the covering curve \sim_T is a degree-3 cover. T is a resolution of T as we will explain later. For the case of a rank-6 bundle V, the three solutions of $(A \rho + B x + C_\beta) = 0$ (resp. of $(P \rho + Q x + R) = 0$) from T_+ part (resp. T_- part) of $T = T_+ [T_-, T_T]$ is mapped to c_{-3V} separately.

A locally free rank-1 sheaf \mathcal{E}_{-3V} on C_{-3V} is given by

$$\mathcal{E}_{-3V} = O + c_{-3V}K_{B_2} + \sim_T \frac{1}{2} (r_+ + R_{(\tau)}) + j \quad \text{(188)}$$

a straightforward generalization of the discussion that has led to (77). A divisor $R_{(\tau)}$ is a ramification divisor of \sim_T is c_{-3V}, and hence $R_{(\tau)} = K_T \sim_T^j K_{c_{-3V}}$.

For the rank-6 case, the covering matter curve is a disjoint union of two curves, c_{-3V}, and each curve has a locally free rank-1 sheaf

$$\mathcal{E}_{-3V} = O + c_{-3V}K_{B_2} + \sim_T \frac{1}{2} (r_+ + R_{(\tau)}) + j \quad \text{(189)}$$

where $\sim_T = \sim_T^j$ maps T to c_{-3V}, $R_{(\tau)}$ their ramification divisors, and r_+ a restriction on T of a pullback of r_j to T. c_{-3V} denotes pullback via either one of $c_{-3V} = (i_{-3V} c_{-3V})^j_{-3V}$.

\[46\]
The remaining task is to understand the divisor \sim_T (resp. $R(\tau_1)$) better. Let us begin with examining $R(\tau)$. We first count the number of points where the projection \sim_T is ramified. From the definition of the ramification divisor, we have

$$\deg R(\tau) = \deg K_T - 6 - \deg K_{c_3 V};$$

(190)

the second term needs a factor 6 because \sim_T is a degree-3 cover of $c_3 V$, and the latter consists of two copies of $c_3 V$. The second term is easy to calculate:

$$\deg K_{c_3 V} = \deg K_{c_3 V} = (10K_B^2 + 3) (11K_2^2 + 3);$$

(191)

Next, let us calculate $\deg K_T$. Since the curve T collects all the points in $C_W Y$ (for a rank-6 bundle V), T is topologically

$$T \subset C_W Y \sim (10K_B^2 + 3) = (6 +) (10K_2^2 + 3);$$

(192)

Applying the adjunction formula to the curve T in $C_W Y$ (or in Y), we have

$$\deg K_T = (10K_B^2 + 3) (6 +) (6 + 140W) = (10K_B^2 + 3) 6(16K_2^2 + 5);$$

(193)

The curve T has two irreducible components, T_+ and T_-, and the two components intersect at some points. T is obtained by resolving the double points formed by T_+ and T_-. As we will see later,

$$T_+ T = (10K_B^2 + 3) (9K_2^2 + 3);$$

(194)

The genus (resp. $\deg K$) of a curve decreases by 1 (resp. 2) when a double point is blown up. Thus,

$$\deg K_T = \deg K_T - 2T_+ T = (10K_B^2 + 3) (78K_2^2 + 24);$$

(195)

Combining all the information we have obtained, one finds that

$$\deg R(\tau) = (10K_B^2 + 3) (12K_2^2 + 6);$$

(196)

deg $R(\tau)$ above contains both $\deg R(\tau_1)$ and $\deg R(\tau)$:

$$\deg R(\tau) = \deg R(\tau_1) + \deg R(\tau);$$

$$= (10K_B^2 + 3) (6K_2^2 + 6) + (10K_B^2 + 3) (6K_2^2 + 6);$$

(197)

where $+$ = . Although we are not presenting details, these intersection numbers can be understood as the number of points in $c_3 V$ where $(Ay + Bx + C) = 0$ (resp. 47}
\((P \cdot y + Q \cdot x + R) = 0\) has a double root in their ber, and hence \(T_+\) (resp. \(T_\cdot\)) ramifies. Since \(a_0\) is a global section of \(O\), \(C\) and \(R\) are sections (only along \(c_{-3V}\)) of \(O\) (resp. \(O\)), respectively. Divisors are defined on \(c_{-3V}\), and + + = \(j_{-3V}\).

When ever curves \(T\) in \(C_V\) ramify over \(c_{-3V}\), the spectral surface \(C_V\) does the same over the zero section. Thus, such ramification points also contribute to \(\text{deg } r_j\). The entire contribution to \(\text{deg } r_j\) is given by

\[
\text{deg } r_j = T_r = (6 +) (10K_2 + 3) (6 + K_2); \\
= (10K_{B_2} + 3) (30K_2 + 12); \quad (198)
\]

Assuming that \(T\) (r intersection takes place with multiplicity 1 at all the ramification points of \(T\), we find that

\[
\text{deg } r_j \quad \text{deg } R_{(T)} = (10K_{B_2} + 3) (18K_2 + 6) \quad (199)
\]

remains. This should be the contributions to \(\text{deg } r_j\) that are not from the ramification points of \(T\).

When \(T_+\) intersects with the ramification divisor \(r\) on \(C_V\) at a point where \(\sim_+ : T_+ \sim_{-3V}\) is not ramified, \(T\) also runs through the same point; see Figure 4. Such points contribute to \(\text{deg } r_j = \text{deg } r_j\), but not to \(\text{deg } R_{(T)}\). Let us find out where in \(c_{-3V}\) we should expect this to happen, and how many such points there are. At such a point, \((A \cdot y + B \cdot x + C) = 0\) and \((P \cdot y + Q \cdot x + R) = 0\) share a same root, \((x ; y)\). Thus,

\[
C = A \quad B \quad y \\
R = P \quad Q \quad x ; \quad \text{and hence } y = \frac{1}{A \cdot Q \quad B \cdot P \quad P \quad A \quad R} \quad (200)
\]

Since \((x ; y)\) expressed in terms of \(A \cdot B ; C \cdot P ; Q \cdot R\), should satisfy the Weierstrass equation of the elliptic curve, we have an equation constraining \(A \quad R\). Writing the equation explicitly,

\[
S^{(6)} = (A \cdot Q \quad B \cdot P \quad B \cdot R \quad C \cdot Q \quad R)^2 + (C \cdot P \quad A \cdot R \quad A \cdot Q \quad B \cdot P \quad B \cdot R)^2 (C \cdot P \quad A \cdot R \quad A \cdot Q \quad B \cdot P)^3 = 0; \quad (201)
\]

\(S^{(6)}\) is a section of \(O\) \((9K_{B_2} + 3) j_{-3V}\) \(\). Let us denote the divisor of the zero locus of \(S^{(6)}\) as \(b^{(f)}\). Therefore,

\[
\text{deg } b^{(f)} = (10K_{B_2} + 3) (9K_2 + 3) \quad (202)
\]

For each zero locus of \(S^{(6)}\), \(T_+, T\) and \(r\) intersect in \(C_V\) (as in Figure 4), and all these type \((f)\) intersection points give rise to the contributions \((194)\) and \((199)\). All the contributions to
\[\cong_T \left(\tau, j_T \right) = B^{(f)}; \]

(203)

where \(B^{(f)} := (\mathbb{P}_{3V}, k_{3V})^1(b^{(f)}). \)

Therefore, we are now ready to write down the line bundles on the covering matter curves:

\[F_{-3V} = 0 \quad { }^4c_{3V} \quad K_{B_2} + \frac{1}{2} B^{(f)} + \cong_T j : \]

(204)

\(F_{-3V} \) on the matter curve \(c_{-3V} \) is given by a pushforward of the two line bundles \(F_{-3V} \), and hence becomes a direct product of two line bundles. Massless chiral multiplets are identified with

\[H^1(Z; {^3V}) = H^0(c_{-3V}; F_{-3V}) \quad H^0(c_{-3V}; F_{-3V}): \]

(205)

It is now straightforward to see that

\[\deg i K_{B_2} + \frac{1}{2} B^{(f)} = (10K_{B_2} + 3) + \frac{1}{2} (2K_{B_2} + (9K_{B_2} + 3)) = \frac{1}{2} \deg K_{c_{-3V}} : \]

(206)

Therefore,

\[{^3V} = Z (c_{3V} + i F_{-3V}) \quad \cong_T j = \cong_T j : \]

(207)

For physics application that we mentioned in section 2 (in Table 1), \({^3V} \) bundle of a rank-6 bundle is purely of SU(6) bundle \(V \); even when a structure group of \(V \) is chosen to be \(U(6) \quad SO(12) \), the bundle \({^3V} \) is neutral under the \(U(1) \) symmetry in the structure group. Thus, \(c = 0 \) should be use for the calculation of chirality here, and hence \({^3V} = 0 \). This should be the case, since coming out of the bundle \({^3V} \) are chiral multiplets in the doublet representation of an unbroken SU(2) gauge group, and there is no well-defined chirality associated with this representation (or gauge group). This serves as a consistency check, giving a confidence in the description of the bundles we have provided.

6 From Heterotic String to F-theory

The Heterotic string theory compacted on an elliptic fibered manifold \(Z \) has a dual description in F-theory. The matter curves \(c_{(V)} \), the support of \(R^1 \quad Z \quad (V) \) in the Heterotic
theory description, correspond to intersection curves of 7-branes in F-theory. Sheaves on the
to the theory are also believed to be shared by the
dual F-theory description.

In the previous section, a detailed description of $F_{(V)}$ was obtained in terms of spectral
surface C_V and . The geometric data, C_V and , were introduced to describe vector bundles
on Z, and hence the description of $F_{(V)}$ in the previous section is still phrased in terms of
data of Heterotic string compactification. We will take necessary steps in this section to
translate the description of $F_{(V)}$ into F-theory language.

A dictionary for the translation already exists since 1990's. The holomorphic sections a_r
$(r = 0; 2; 3; \ldots; N)$ become a part of complex structure moduli of an elliptic Calabi-Yau 4-
fold for the dual F-theory compactification $[4,6,12,14,15]$, and corresponds to four-form
flux G in F-theory $[15]$. We end, however, that the dictionary has to be refined in order to
complete the translation, and that is what we do in sections 6.1 and 6.2. After the dictionary
is completed, we will see in section 6.3 that some components of the divisors describing $F_{(V)}$
correspond to codimension-3 singularities in F-theory geometry X.

6.1 Describing Vector Bundles via dP_8 Fibration

Reference $[12]$ explains how a del Pezzo surface dP_8 describes at bundles on an elliptic curve,
and $[15,10]$ refined the correspondence between the moduli space of complex structure of
dP_8 and data determining spectral surface of $SU(N)$ bundles, but details are left to readers.
In the first subsection of section 6, we begin filling the details that were not spelled out
explicitly in the literature, so that ordinary physicists (like majority of the authors of this
article) can understand.

We denote a del Pezzo surface dP_8 as S. Its second cohomology group is generated by L_0
and L_I ($I = 1; 2; \ldots; 8$), with their intersection form given by

\[L_0 \cdot L_0 = 1; \quad L_0 \cdot L_I = 0; \quad L_I \cdot L_J = \delta_{IJ} \quad (\text{for } 1 \leq I, J \leq 8). \] \hfill (208)

The anti-canonical divisor of S is given by

\[x := K_S = 3L_0 \quad \text{with} \quad L_I : \] \hfill (209)

General elements E of the class x is a curve of genus 1.
The subsets of $H^2(S;\mathbb{Z})$, I_8 and R_8, are denned as follows:

$$I_8 := 12 H^2(S;\mathbb{Z}) | l = 1; \ l \ x = 1; \ (210)$$

$$R_8 := C 2 H^2(S;\mathbb{Z}) | C = 2; \ C \ x = 0 \ (211)$$

Elements of I_8 and R_8 are in one to one correspondence through $l = C + x$. R_8 is the subspace of $H^2(S;\mathbb{Z})$ orthogonal to x in the intersection form, and it is known that the intersection form restricted on $H^2(S;\mathbb{Z})^2$ is given by the Cartan matrix of E_8 Lie algebra multiplied by $\mathbf{2}$. Elements of R_8 (and hence those of I_8) are in one to one correspondence with roots of E_8 Lie algebra.

$$C_I = L_I L_{I+1} \ (\text{for} \ I = 1; \ldots 7) \ \text{and} \ 8 \in L_0 \ (L_1 + L_2 + L_3) \ (212)$$

can be chosen as the generators of R_8 (and of the root lattice)22. When a complex structure of S is given (with an elliptic curve E and j), an bundle on E is given by $E^1(213)$

$$O(\text{div} C \ j) \cdot O(p \ e_0) \ (213)$$

for a root of e_0; here, C is an element of R_8 that corresponds to p is a point on E given by $l = E$, and e is the unique base point of j.

Spectral surface describes a bundle on an elliptic fibration $Z : Z ! B_2$ by specifying a set of points g_{2R_8} for each E_b ($b \in B_2$). The same role can be played by a dP_8 fibration $U : U ! B_2$. Z is identified with a subset of U, so that $U = Z$. Elliptic fiber $E_b = z^{-1}(b)$ is a subset of a dP_8 surface $S_b = \frac{z^{-1}(b)}{2}$, and complex structure of S_b determines a bundle on E_b. through $\mathbf{213}$.

6.1.1 Two Descriptions of a dP_8 Surface

A dP_8 surface S can be described in two different ways, each of which has its own advantage.

A : S is given by blowing up 8 points $p_{1,2}; 3 | p^2; S : P^2$,

B : S is a subvariety of $W P^3_{1,2,3,3}$ given by an equation of homogeneous degree 6.

The description A is useful in capturing the 240 $(1,1)$-lines of I_8, while it is easier to identify the elliptic curve E in the description B.

The two descriptions are related as follows. In the description A, L_0 is a line of P^2, and $L_1 (I = 1; \ldots 8)$ are exceptional curves, $\frac{1}{8} (p_l)$ (set theoretic inverse image). There

22 Root lattices of $E_r (r = 6; 7; 8)$ are generated by $C I (I = 1; \ldots (r-1))$ and C.

51
are two independent global holomorphic sections in $H^0(S;O(x))$; there are $2C_2^8 = 2$ degrees of freedom in a cubic form on P^2 that have all p_i's as zeros of order one. Let us take their generators as F_0 and F_1. Similarly, there are $2C_2^8 = 4$ degrees of freedom in $H^0(S;O(2x))$, and we choose a generator G so that $H^0(S;O(2x))$ is generated by G, F_0^2, F_0F_1 and F_1^2. Through a similar argument, one also finds that another generator $|$ which we denote as $H |$ is necessary for $H^0(S;O(3x))$. A map : S ! $W P^3_{1,2,\beta}$ is given by

$$: S \rightarrow W [Z^0:Z:X:Y] = [F_0(s):F_1(s):G(s):H(s)] = W P^3_{1,2,\beta}; \quad \text{(214)}$$

where $[Z^0:Z:X:Y]$ are homogeneous coordinates of $W P^3_{1,2,\beta}$. (S) does not occupy the entire weighted projective space $W P^3_{1,2,\beta}$. Because

$$\dim_{\mathbb{C}} H^0(S;O(6x)) = 20C_2^8 \quad 6 \frac{7}{2} = 22; \quad \text{(215)}$$

there must be an algebraic relation among 23 monomials of homogeneous degree 6 made out of F_0, F_1, G and H:

$$H^2 + (c_0F_0 + c_1F_1)HG + = 0; \quad \text{(216)}$$

Thus, the image (S) is mapped in a subspace of $W P^3_{1,2,\beta}$ given by an equation obtained by replacing F_0, F_1, G and H in the relation above by homogeneous coordinates $Z^0; Z; X$ and Y:

$$Y^2 + (c_0Z^0 + c_1Z)XY + = 0; \quad \text{(217)}$$

Complex structure moduli of a dP_8 are described by eight complex parameters. In the description A, 16 complex numbers are needed to specify 8 points in P^2, but there is redundancy of $PGL_3\mathbb{C}$, which is of dimension 8. Thus, the dimension of the moduli space is 8. One arrives at the same conclusion in the description B. The defining equation of a dP_8 surface in $W P^3_{1,2,\beta}$ can be cast into Weierstrass form

$$Y^2 = X^3 + F^{(4)}(Z^0;Z)X + G^{(6)}(Z^0;Z) \quad \text{(218)}$$

by redefining Y and X. $F^{(4)}$ and $G^{(6)}$ are homogeneous function of Z and Z^0 and are of degree 4 and 6, respectively. Thus, they are described by $5 + 7 = 12$ complex numbers. Since the $GL_3\mathbb{C}$ coordinate transformation of $(Z;Z^0)$ can be still used to reduce the freedom, there are 8 moduli parameters left. Those eight moduli correspond to those of E_8 at bundles on an elliptic curve E.

52
6.1.2 SU(5) Bundle in Description A

For physics application, it is often more interesting to think of a bundle with smaller structure group, because the commutant of the structure group is left unbroken and can be seen in low-energy physics. We are definitely interested in such situations for phenomenological applications. Smaller structure group corresponds to a restricted moduli space. We take SU(5)$_{\text{bd1}}$ (E$_8$) structure group as an example; this is certainly the most motivated case in phenomenology.

In the description A, the SU(5)$_{\text{bd1}}$ structure group of a at bundle on E corresponds to choosing four points p_{A+1} (A = 1; 2; 3; 4) in nisimally near, i.e., on P^1 that is obtained by blowing up p_A. Because these four points are chosen within P^1's and not from the entire P^2, the dimension of the moduli space is reduced by four, leaving $8 - 4 = 4$ moduli. This agrees with our expectation coming from dim $P^4 = 4$, the dimension of the moduli space of at SU(5)$_{\text{bd1}}$ bundles on E. Among the generators of R_8, $C_A = L_A$ L_{A+1} for $A = 1; 2; 3; 4$ are P^1 obtained right after blowing up the point p_A, and are effective curves. Their intersection form is the (1) Cartan matrix of Su(5)$_{GUT}$. When the P^1 cycles obtained by the first four blow-ups are of zero size, then S develops an A_4 type singularity. dP_8 surface contains an element of I_8

$$l_0 = 3L_0 \ 2L_1 \ L_2 \ L_3 \ L_4 \ L_6 \ L_7 \ L_8; \quad (219)$$

which is a cubic curve in P^2 that has a double point at p_1. Intersection diagram of l_0 (or $C_0 = l_0 \ x = L_1 + L_5$) and C_A (A = 1; 2; 3; 4) forms the extended Dynkin diagram of A_4. Since

$$l_0 + \prod_{A=1}^{4} C_A = x; \quad (220)$$

one of generators of $H^0(S; O(x), F_1)$, can be chosen so that its zero locus becomes an effective divisor $l_0 + (C_1 + \ldots + C_4)$. Effective divisors C_A's do not intersect with a generic element E 2 k. and hence the vector bundles on E are trivial for the roots generated by C_A's. Thus, the su(5)$_{GUT}$ algebra generated by C_A's (A = 1; 2; 3; 4) is the commutant of the SU(5)$_{\text{bd1}}$ structure group of vector bundles on E.

The Lie algebra of e_8 has 240 roots, and those of su(5)$_{GUT}$ account for only 20 in the first sum and of the irreducible decompositions

$$248! \ (24; 1) \ (1; 24) \ [(10; 5) \ (5; 10)]; \quad (221)$$

2Curves of the form $mL_0 + \sum d_i L_i$ are interpreted as zero locus of a homogeneous function of degree m on P^2 that has p_1 as a zero of order d_1 [27,29].
Figure 7: Extended Dynkin diagrams of E_8. The two diagrams correspond to two different choices of Weyl chamber. By removing the node C_5 from the diagram (ii), one finds $su(5)_{GUT} + su(5)_{bd1}$ subalgebra generated by C_A ($A = 1, 2, 3, 4$) and C_8, C_6, C_7 and C.

Here, $(R ; R^0)$ denotes an irreducible component that is in R representation of $su(5)_{GUT}$, and in R^0 of $su(5)_{bd1}$. A group of roots in the $(10 ; 5)$ representation of $su(5)_{GUT} + su(5)_{bd1}$ is given by

$$C^{ab_1} = \begin{pmatrix} 0 & 1 & 0 \\ C^{ab_2} = 6j & 0 \\ C^{ab_3} = 5j \end{pmatrix} A = L_0 + (L_1 + 1/2)L_0,$$

$$C^{ab_4} = \begin{pmatrix} 0 \\ L_0 + L_2 \\ 2L_0 \\ (L_1 + 1/2)L_0 \end{pmatrix} A ; \quad (a \neq b); \quad (222)$$

Indices $1, 2$ label the weights of the $SU(5)_{GUT}$ fundamental representation, and $p = f_6, f_7, f_8, g$ (on the left-hand side of [222]) label the weights of the $SU(5)_{bd1}$ fundamental representation. It is clear that C^{ab} form a 10 representation of $su(5)_{GUT}$. One can also see that these are in the fundamental representation of $su(5)_{bd1}$; the structure group is generated by four simple roots, C_8, C_6, C_7 and C, where

$$C_8 = C_1 + 2C_2 + 3C_3 + 2C_4 + C_5 + 2C_6;$$
$$= 2L_0 \quad (L_1 + L_2 + L_3 + L_4 + L_5 + L_6); \quad (223)$$
$$C = (2C_1 + 4C_2 + 6C_3 + 5C_4 + 4C_5 + 3C_6 + 2C_7 + 3C_8);$$
$$= 3L_0 \quad (L_1 + 1/2)L_0 \quad L_8; \quad (224)$$

C corresponds to the minimal root of E_8 when C_1 ($I = 1, 2, \ldots, 8$) are chosen as a set of positive simple roots, and C_8 is determined so that $C_{12} ; ; C$ and C_8 form an extended Dynkin diagram of E_8 in Figure [iv] (ii). Through a straightforward calculation, one can see that the weights in [222] for a given $(a ; b)$ are obtained from C^{ab_1} by applying C_8, C_6, C_7 and C successively:

$$C^{ab_1} = C^{ab_2} C_8; \quad C^{ab_3} = C^{ab_2} C_{I = p} \quad (p = 6, 7); \quad C^{ab_4} = C^{ab_3} C \quad : \quad (225)$$
Lines in I_8 that corresponds to those 10 5 roots are given by $l^{\text{abp}} = c^{\text{abp}} + x$. Those in the $(10;5)$ representation are given by just multiplying (1) to c^{abp}.

Roots in the $(5;10)$ representation are given by

$$C_{a, pq} = L_a + \theta \quad 2L_0 + (L_1 + \theta)L_p + L_8 \quad L_0 \quad (L_6 + L_7 + L_8) + L_5 A ;$$

where $\theta = 1; \theta = 5$ is the SU(5) index, and $p; q \in \{ f_6; i; j; k; l \}$. The 5 5 matrix on the right-hand side forms a 10 representation of $\text{su}(5)_{bd1}$. The 5 10 lines are given by $L^{\text{pq}}_a = C^{\text{pq}}_a + x$, and those for the $(5;10)$ representation are by $C^{\text{pq}}_a + x$.

6.1.3 SU(5) Bundle in Description B

Reference [15,10] proposed how to describe SU(5) bundles on an elliptic bration in terms of dP_8 bration in description B. (See also [30].) First, the authors of [15; 10] take

$$Y^2 = X^3 + f_0 Z^4 X + g_0 Z^6$$

$$+ Z^0 a_0 Z^5 + a_2 Z^3 X + a_3 Z^2 Y + a_4 Z X^2 + a_5 X Y$$

(227)

as the equation determining a del Pezzo surface S in \mathbb{P}_{2}^{3}. For a del Pezzo surface $S_b = \nu^{-1}(b) (b 2 B_2)$, spectral data $a_{0,2}; (b)$ are used in the equation above. We consider that this is a very non-trivial discovery, and we will take time in the following to examine the geometry given by this equation until this idea sinks in.

The $Z^0 = 0$ locus is an elliptic curve given by a W einstein equation $y^2 = x^3 + f_0 x + g_0$, where $(x; y) = (X = Z; Y = Z^3)$, which is E_b. The $Z = 0 (z_0 = 0)$ locus is an elliptic curve given by

$$y^2 x^3 a_5 xy = y \frac{a_5}{2} x^2 x + \frac{a_5^2}{4} = 0;$$

(228)

where now $(x; y) = (X = Z; Y = Z^3)$. Thus, this curve has a double point at $(x; y) = (0; 0)$. Moreover, one can see by examining the equation (227) around $[Z^0 : Z : X : Y] = [1 : 0 : 0 : 0]$ that this point is an A_4 singularity, and the $Z = 0$ locus consists of irreducible components with their intersection form that of the extended Dynkin diagram of A_4. In the description A_4 of del Pezzo surfaces that correspond to SU(5) bundles and unbroken $\text{su}(5)_{\text{UT}}$ symmetry, a curve given by $F_1 = 0$ also has exactly the same property. The map [214] identifies the two
curves \(Z = 0 \) and \(F_1 = 0 \) that have the same property. Thus, it is likely that the way \(SU(5) \) bundles are formulated in the description B here is the same as the one in the description A.

Among the 240 lines in \(I_8 \), 105 of them form a group \(\mathfrak{P}^{abp} = C^{abp} + x \), but for a given \(p \) \(6^i; 7; 8; 9 \), the ten lines are different only by \(C_{A=1,\beta} \) that are buried in the \(A_4 \) singularity, and they do not look different anywhere else in \(S \). Thus, those lines can be treated as five sets of lines \(\mathfrak{P} \equiv \mathfrak{P}^{abp} \) mod \(C_{A=1,\beta} \). Reference [15,10] provided how to describe those five lines in the description B: they are the zero locus of

\[
FL = a_0 Z^5 + a_2 Z^3 X + a_3 Z^2 Y + a_4 ZX^2 + a_5 X Y.
\]

Suppose that a \(SU(5) \) bundle on an elliptic curve \(E_b \) is given by a spectral surface \([144]\) at \(b \) \(2 \) \(B_2 \). The spectral surface determines five points \(f_p i \). Let us denote the coordinates of \(p_i \) as \((x_i; y_i) \). Then, a map

\[
\mathfrak{l} : P^1 3 [Z^0 : Z^7] \to [Z^0 : Z^x : Z^2 : y_i Z^3] 2 W P^3_{1;\beta_2\beta}
\]

is defined. The image \(\mathfrak{l}(P^1) \) falls into the zero locus of \(FL \), and also satisfies the equation \([227]\). Thus, each one of \(\mathfrak{l}(P^1) \)'s \((i = 1; 5) \) becomes a line in \(S \), and is an irreducible component of the zero locus of \(FL \). Because \(FL = 0 \) admits only five solutions for a given \([Z^0 : Z] \), those five irreducible components are all in the zero locus of \(FL \). Those lines intersect a general element \(E_2 \) just once, since such elements are in one to one correspondence with \(P^1 \) parametrized by \([Z^0 : Z] \). The five lines \(\mathfrak{l}(P^1) \) intersect \(E_b \) at the \(Z^0 = 0 \) locus at \([1 : x_i : y_i] \), which is \(p_i \) itself \([15,10]\).

All those five lines pass through the \(A_4 \) singularity point. Once the \(A_4 \) singularity is blown up, then one can see explicitly that the five lines remain distinct irreducible components.

When \(FL \) is pulled back to \(S \) itself by \([214]\), \(FL \) is a global section of \(0(5x) \).

\(FL \) should be factorized into five irreducible pieces, because the \(FL = 0 \) locus consists of five irreducible components in the description B. Because the five lines \(\mathfrak{l} \) in the description A satisfy

\[
X^p \quad P \quad X^p \quad C^{abp} + x \quad 5X
\]

mod \(C_{A=1,\beta} \), \(P \)'s can be the irreducible zero loci of \(FL \) \(2 H^0(S; O(5x)) \), and hence \(\mathfrak{l}(P^1) \)'s in the description B.

56
6.1.4 Enhancement of Singularity

For a structure group smaller than SU(5)_{adj}, the description B using W P^3_{1β,1β} is more convenient. One only needs to turn off a_5 to obtain an SU(4) bundle, and a_4 to an SU(3) bundle.

Let us consider a limit a_5 \to 0. It can be regarded as a limit B_3 \to B_4. Then, FL is factorized:

F L = Z \left(a_0 Z^4 + a_2 Z^2 X + a_3 Z Y + a_4 X^2 \right).

(232)

Four lines among five still scan over P^1 parametrized by [Z^0 : Z^1], but one of the five is absorbed in the Z = 0 locus. Suppose that the absorbed line is \(I^{p=6} = (L_0 + (L_1 + L_2 + L_3)) + x = C_8 + x \mod C_{A=1β,1β} \). This process adds C_8 to the set of roots whose bundle in \([213] \) is trivial. The unbroken symmetry group is enhanced from SU(5)_{GUT} to SO(10), because the intersection form of C_{1β,1β} and C_8 is that of SO(10).

If a_4 is further set to zero, another line is absorbed to the Z = 0 locus. When the absorbed line is \(I^{p=6} \) then another 2-cycle (and corresponding root)

\[
I^{p=6} = L_0 + (L_1 + L_2) + L_6 + x \mod C_{A=1β,1β};
\]

(233)

\[
C_5 + x \mod C_{1β,1β} \tag{234}
\]

joins the unbroken symmetry group, which is now E_6.

Similar process of symmetry (singularity) enhancement is observed when one of lines \(I^{p=1} = L_1 \mod C_{A=1β,1β} \) is absorbed in the Z = 0 locus. If \(I^{p=6} = (L_5 + L_6) + x \) is absorbed, C_5 is now buried in the Z = 0 locus, and the intersection form of C_{1β,1β} becomes the (1) Cartan matrix of SU(6).

6.2 Chirality from Four-Form Fluxes

6.2.1 From dP_8 to dP_9

A dP_8 surface S containing an elliptic curve E determines a \(\sigma \) at bundle on E, and a dP_8 bration \(\nu : U \to B_2 \) is able to play the same role as the spectral surface. Spectral data \(a_6 \) in \([224] \) are promoted to sections of \(0 (rK_{B_2} + \nu) \), and the homogeneous coordinates \([Z^0 : Z^1 : X : Y] \) of \([224] \) should now be regarded as sections of

\[
O((J_H \quad L^6_H; \quad O(J_H); \quad O(2J_H \quad L^2_H; \quad O(3J_H \quad L^3_H; \quad (235)
\]

respectively.
Dual F-theory geometry is given by a dP_9 bration on B_2, rather than this dP_8 bration. dP_9 (ber) is obtained by blowing up $e_0 = [0 : 0 : c^3 : c^2] (c \neq 0)$.

Such correspondence between the Heterotic and F-theories is rather a well-known story. The process of blowing up dP_8 to obtain dP_9 is well understood, and no new problems should be posed. Nevertheless, we will carefully follow this process, in order to make our presentation pedagogical, and also not to make a mistake.

In order to blow up a dP_9 surface S (to obtain a strict transform of S), we begin with blowing up the ambient space $W P_1^{3; \beta}$, $W P_1^{3; \beta}$ is a $W P_2^{3; \beta}$-bration over P. Two patches cover the new ambient space; the base P is covered by $z_6 \in 1$ patch and $z_6 \in 0$ patch, and so is the entire ambient space. $(z_6; [Z^0:X:Y])$ (resp. $(z_6^0; [Z^0:X:Y])$) is the coordinate set in the $z_6 \in 1$ patch (resp. $z_6 \in 0$ patch). The map to $W P_1^{3; \beta}$ is given by $Z = Z^0 z_6$ from the $z_6 \in 1$ patch and by $Z^0 = Z z_6^0$ from the $z_6 \in 0$ patch. $z_6^0 = 1 = z_6$. The exceptional locus that is mapped to the center of blow-up $e_0 = [0 : 0 : c^2 : c^3]$ $W P_1^{3; \beta}$ is given by $(z_6; [0 : c^2 : c^3])$ in the $z_6 \in 1$ patch (resp. $(z_6^0; [0 : c^2 : c^3])$ in the $z_6 \in 0$ patch).

The defining equation of the blow-up dP_9 surface is given in the new ambient space by

\begin{align}
y^2 &= x^3 + z_6^4 f_0 x + z_6^6 g_0 + (a_5 z_6^5 + a_2 z_6^2 x + a_3 z_6^2 y + a_4 z_6 x^2 + a_5 yx); \\
y^2 &= x^3 + f_0 x + g_0 + z_6^5 (a_0 + a_2 x + a_3 y + a_4 x^2 + a_5 yx);
\end{align}

the first one is in the $z_6 \in 1$ patch, and the second one in the $z_6 \in 0$ patch. Inhomogeneous coordinates $(y; x)$ correspond to $(Y = Z^0; X = Z^2)$ in the two patches, and hence they are sections of $O_{P^1}(3)$ and $O_{P^1}(2)$, respectively. A del Pezzo surface dP_9 obtained this way is an elliptic bration on P. The exceptional locus of this blow up passes through the infinity points, $(y; x) = (1; 1)$.

Geometry of dP_9 bration $W : W ! B_2$ is now given by the same data a_0, β, μ, β that described the vector bundles. It is now straightforward to cast the equation into the Weierstrass form

\begin{align}
y^2 &= x^3 + f x + g;
\end{align}

where we now use the $z_6 \in 1$ patch. After a redefinition of the coordinates $(x; y)$, f and g in the $z_6 \in 1$ patch are given in $z_6 = Z = Z^0$ expansion as

\begin{align}
f &= \sum_{i=0}^{X^4} z_6^4 f_i; \\
g &= \sum_{i=0}^{X^6} z_6^6 g_i;
\end{align}

\[\text{The stable degeneration limit of K 3-bration in F-theory corresponds to the situation in Heterotic theory where the volume of the ber T^2 is sufficiently large relative to } 0.\]
\[f_0 = f_0; \quad (240) \]
\[f_1 = a_2; \quad (241) \]
\[f_2 = \frac{1}{3} a_1^2 + \frac{1}{2} a_5 a_3; \quad (242) \]
\[f_3 = \frac{1}{6} a_5^2 a_4; \quad (243) \]
\[f_4 = \frac{1}{48} a_5^4; \quad (244) \]

and

\[g_0 = g_0; \quad (245) \]
\[g_1 = a_0 - \frac{1}{3} a_4 f_0; \quad (246) \]
\[g_2 = \frac{1}{4} a_3^2 - \frac{1}{3} a_4 a_2 + \frac{1}{12} a_5^2 f_0; \quad (247) \]
\[g_3 = \frac{2}{27} a_4 - \frac{1}{6} a_5 a_4 a_3 + \frac{1}{12} a_5^2 a_2; \quad (248) \]
\[g_4 = a_5^2 - \frac{1}{18} a_4^2 + \frac{1}{24} a_5 a_3; \quad (249) \]
\[g_5 = \frac{1}{72} a_5 a_4; \quad (250) \]
\[g_6 = \frac{1}{864} a_5^6; \quad (251) \]

The overall rescaling redundancy of the spectral data \([a_0 : a_2 : a_3 : a_4 : a_5]\) corresponds to the rescaling rede nition of the coordinate \(z\). A part from this rescaling, all the coefficients are determined. This precise dictionary proves very powerful later in translating the Heterotic theory description of the sheaves \(F_{(V)}\) into F-theory language.

Now, suppose that a dP\(_9\) surface \(S^0\) is a blow up of a dP\(_8\) surface \(S\):

\[: S^0 ! S; \quad (252) \]

The second cohomology group of \(S\) is generated by \(C_1\)'s \((I = 1; \quad 8)\) and the anti-canonical divisor \(x_8 = x\) of \(S\), while that of \(S^0\) by \((C_1)_i\), and the anti-canonical divisor \(x_9 = x\) of \(S^0\). Note that the anti-canonical divisors of \(S\) and \(S^0\) are related via

\[(x_8) = 1(x_8) + x_9 + \quad (253) \]

\[(1) \quad (C_i) + x_9 + \quad (253) \]

\[59 \]
holds for a pair of 12 I_8 and C 2 R_8. Intersection form among the 2-cycles of S^0 is given by

$$
\begin{pmatrix}
\text{C}_{E_8}
\end{pmatrix}
\begin{pmatrix}
0 & 1 \\
1 & 1
\end{pmatrix}
$$

(254)

where $(C_1)'s$ are the basis of the (C_{E_8}) part and $(x_9;)$ of the latter 22 matrix. C_{E_8} means the Cartan matrix of E_8.

6.2.2 Four-Form Fluxes

In the Heterotic string theory description, matter multiplets are characterized in terms of spectral surfaces and line bundles on them. All these pieces of information are associated with the fiber elliptic curve, which is now found in the $z^2 = 0 (z_\ell = 1)$ locus of the dP_9 bration. On the other hand, in the F-theory description, non-Abelian gauge field of the unbroken symmetry group are localized within the locus of enhanced singularity, which is found in $z_\ell = 0$ locus. Chiral matter multiplets are also supposed to be at the $z_\ell = 0$ locus. So, how are these two descriptions related?

The spectral surface C_V in the Heterotic description only determines N points for an SU(N) bundle in a given elliptic fiber (which is at $z_\ell = 1$), but each point corresponds to a line F belonging to I_8. The N lines specified by (229,230) cover all the region of the base P^1, including $z_\ell = Z = Z^0 = 1$ and $z_\ell = 0$. Thus, in a description using dP_8 bration (and dP_9 bration), the information of spectral surface is not particularly localized at either end of the elliptic bration over P^1. In fact, the data a_{02}, specifying the spectral surface controls the entire geometry of the del Pezzo bration in (227,236,237).

More important in generating chiral matter spectrum in low-energy physics is the line bundle N_V on C_V, or to be more precise, determining $q (N_V)$ through (3). Reference [13] introduced four-form $\mathrm{ux} \ G^{(4)}_H$ in a description using dP_8 bration, so that it plays the role of in the Heterotic theory. C_V is regarded locally as N copies of a local patch of B_2, and each copy corresponds to a point p_p for one of $p 2 \ f 61;6;7;8;8'g$ (in case of an SU(5) bundle) sweeping over B_2. On C_V is locally described by two forms on each one of those copies. Suppose that a four-form $\mathrm{ux} \ G^{(4)}_H$ is given in a dP_8 bration $U : U ! B_2$. Then, on the copy of p_p, p, is given by (15)

$$
\begin{align*}
Z_p &= \int_p G^{(4)}_H \\
&= \int_p G^{(4)}_H
\end{align*}
$$

(255)

Because of this correspondence between and $G^{(4)}_H$, only topological aspects of $G^{(4)}_H$ in dP_8 matter.
When considering SU(N) vector bundles, on C_V has a constraint. The vanishing of the first Chern class c_1(V) = 0 means that

$$c = 0.$$ \hfill (256)

This implies that the integration of G^{(4)}_H over the five lines specified by (229) should vanish. Because of the topological relation (231) satisfied by the five lines, the condition above is equivalent to

$$G^{(4)}_H = 0; \quad \text{and hence} \quad G^{(4)}_H = 0;$$ \hfill (257)

Here, we assume that only SU(5)_GUT preserving fluxes are introduced in the dP_8 bration. Because of these constraints, G^{(4)}_H can be expressed as

$$G^{(4)}_H = \sum_{P = 0; 2} \Phi^P;$$ \hfill (258)

where \(\Phi^P \)'s are 2-forms on B_2, and C_P's are 2-cycles. Poincaré dual of 2-forms \(\Phi^P \) in \(S = \text{dP}_8 \). Fluxes proportional to \(x_8 \) should not be introduced.

We should be clear what we mean by (258). Four-form \(G^{(4)}_H \) is classified by \(H^4(U;Z) \), where \(U : U ! B_2 \) is a dP_8-bration. Using Leray spectral sequence, one finds that \(H^4(U;Z) \) has a filtration structure:

$$H^4(U;Z) = F_0 \quad F_2 \quad F_4 \quad \text{f0g}.$$ \hfill (259)

with

$$F_4 = H^4(B_2;R^0 U Z); \quad F_2 = F_4 = H^2(B_2;R^2 U Z); \quad F_0 = F_2 = H^0(B_2;R^4 U Z);$$ \hfill (260)

G^{(4)}_H in (258) is understood as an element of \(F_2 = F_4 \) modulo \(F_4 = H^4(B_2;Z) \), and C_P as local generators of \(R^2 U Z \). Although the Poincare dual 2-forms of C_P's are well-defined in \(H^2(U;Z) \) only modulo \(H^2(B_2;Z) \), this ambiguity does not appear in (258) because \(G^{(4)}_H \) is given in (258) only modulo \(H^4(B_2;Z) \). Since \(x_8 \) is a cycle in the fiber direction, differential forms on \(B_2 \) is trivial when pulled back to \(x_8 \), and hence (257) cannot determine the \(F_4 \) part. Because of the same reason, however, (255) does not depend on the \(F_4 \) part either. Therefore, in describing vector bundles in Heterotic theory, it is sufficient to have a four-form \(G^{(4)}_H \) in \(F_2 = F_4 \), and leave the ambiguity in \(F_4 \) undefined.

\footnote{There may or may not be an issue along the ramification locus of the spectral surface C_V. We do not address this issue in this article.}
By using this explicit expression of $G_H^{(4)}$ and the intersection form

$$C_{\alpha \beta \gamma} = 61 \neq \phi \neq \beta$$

one can see explicitly that $[15]$

$$C_{\alpha \beta \gamma} = \bar{C}_{\alpha \beta \gamma} = 0$$

Although $G_H^{(4)}$ in (258) has the ambiguity $F_4 = H^4(B_2; \mathbb{Z})$, $G_H^{(4)} \times G_H^{(4)}$ does not depend on the ambiguity. The same is true for other $SU(N)$ bundles with $N < 5$; $!^P = 6$ is set to zero for $SU(4)$ bundles, and $!^P = 6 = 0$ is further imposed for $SU(3)$ bundles.

In the F-theory compactification, there is totally an independent condition for 4-form $\varphi^{(4)}$ on a Calabi-Yau 4-fold compactification: the $(2,2)$ part of the four-form φ has to be primitive in order to preserve $N = 1$ supersymmetry. Reference [15] observed that the condition (256) and the primitiveness condition

$$J \wedge G_H^{(4)} = 0$$

are quite similar, and certainly they are. On the other hand, $H^2(dP_9; \mathbb{Z})$ is larger than $H^2(dP_8; \mathbb{Z})$ by rank one. Thus, with only one constraint on $H^2(dP_8; \mathbb{Z})$ and one for $H^2(dP_9; \mathbb{Z})$, there should be no one-to-one correspondence between Heterotic and F-theory vacua. This gap has to be filled in order to complete the dictionary of the Heterotic-F theory duality.

The primitiveness condition (263) involves a two-form J on W and a four-form $G_F^{(4)}$ on W, where W : W ! B_2 is a dP_9 bration. $H^4(W; \mathbb{Q})$, in which $G_F^{(4)}$ takes its value, has a lattice structure just like in (259):

$$H^4(W; \mathbb{Q}) = F_0 \quad F_2 \quad F_4;$$

with

$$F_4 = H^4(B_2; \mathbb{Q}); \quad F_2 = F_4 = H^2(B_2; R^2 \wedge \mathbb{Q}); \quad F_0 = F_2 = H^0(B_2; R^4 \wedge \mathbb{Q});$$

notations F_0, F_2, F_4 are recycled here, as we expect little confusion. Z in (259) is replaced by Q here, because the four-form φ in F-theory is not necessarily quantized as integral value.
It is known that the four-form flux in F_0 has its two legs in the T^2-fiber directions of the dP_9, and results in non $SO(3;1)$ Lorentz symmetric vacuum. Thus, we only consider $G^{(4)}_F$ that belongs to F_2 in the following. $G^{(4)}_F$ being an element of F_2 is not a sufficient condition for the $SO(3;1)$ Lorentz symmetry; we will elaborate on it later.

Similarly, the Kähler form J takes its value in $H^2(W;R)$, and this cohomology group also has a filtration structure:

$$H^2(W;R) = E_0 \oplus E_2; \quad E_2 = H^2(B_2;R); \quad E_0 = E_2 = H^0(B_2;R^2 \otimes W; R); \quad (266)$$

Thus, the Kähler form J is written as

$$J = \sum J_{B_2} + t_2J_0; \quad (267)$$

projection of J into $E_0= E_2$ specifies a 2-form on dP_9, and J_0 is a representative of the class specified by the 2-form on dP_9. $t_2 = 0$ is a parameter.

In the Heterotic/F theory duality, moduli space is shared by the two theories, but one of the two theories provides a better description of some part of the moduli space, and the other of some other parts. The description in the Heterotic theory (without stringy excitations taken into account in calculations) becomes unreliable either when the Heterotic theory dilaton expectation value is large, or when the volume of the T^2 fiber becomes comparable to 0. In the first case, the base \mathbb{P}^1 manifold of $S^0 = dP_9$ has a large volume. Thus, whenever F-theory provides a better description, the volume of the base \mathbb{P}^1 of dP_9 is larger than that of the T^2 fiber. Therefore, in the F-theory limit, we can take it that the Kähler form on dP_9 specified by J or J_0 has a dominant contribution only from the the \mathbb{P}^1 base of dP_9, not from the T^2 fiber. Thus, J_0 (or J) regarded as a 2-form on dP_9 is a Poincare dual of x_9.

The filtration structure of J and $G^{(4)}_F$ makes the analysis of the primitiveness condition easier. The condition takes its value in $H^6(W;R)$, and this group also has a filtration structure

$$H^6(W;R) = G_2 \oplus G_4 \oplus 0; \quad (268)$$

with

$$G_4 = H^4(B_2;R^2 \otimes W; R); \quad G_2 = G_4 = H^2(B_2;R^4 \otimes W; R); \quad (269)$$

We begin with the primitiveness condition in $G_2 = G_4$, and we will come back later to the condition in the G_4 part. The $G_2 = G_4$ part of the primitiveness condition receives contributions only from the wedge product of the $E_0 = E_2$ part and the $F_2 = F_4$ part, and we find that

$$t_2 x_9 \quad G^{(4)}_F \quad 0 \quad (270)$$
mod G_4.

The primitiveness condition (270) allows two types of local expressions for the four-form flux:

\[
G_{F}^{(4)} \quad \begin{bmatrix} \chi^8 \\ (1) \end{bmatrix} = \begin{bmatrix} C_I \\ I = 1 \end{bmatrix} \quad (271)
\]

\[
G_{F}^{(4)} \quad \begin{bmatrix} \chi^9 \\ I = 9 \end{bmatrix} \quad (272)
\]

Here, we abuse the notation, and denote (C_I) of $H^2(dP_9;Z)$ as C_I, because the intersection form of (C_I)'s are the same as those of C_I's in $H^2(dP_9;Z)$. The four-form flux $G_{H}^{(4)}$ in the Heterotic theory description can be mapped into the first type of $G_{F}^{(4)}$:

\[
G_{F}^{(4)} \quad G_{H}^{(4)} \quad (273)
\]

everything is in modulo $F_4 = H^4(B_2;\mathbb{Q})$. Here, we understand that the four-form flux G in [10] belongs to this class modulo $F_4 = H^4(B_2;\mathbb{Q})$.

A little more attention has to be paid in interpreting the other contribution (272). F-theory dual of a Heterotic compactification involves a Calabi-Yau 4-fold that is a K3-biration on a base 2-fold. Although the K3 ber becomes two dP_9 surfaces in the stable degeneration limit, K3 ber, rather than two dP_9's, is better in understanding this aspect. As explained clearly in [51], out of 22 two-cycles of a K3 ber, $2^8 = 16$ two-cycles correspond to the C_I's in two dP_9's. Four-form fluxes associated with these two-cycles, like (271), satisfy the primitiveness condition in the $G_2 = G_4$ part. Fluxes associated with the zero section of the elliptic bered K3 (like x_9 of dP_9) and with the T^2-ber class (like x_9 of dP_9), on the other hand, do not either satisfy the primitiveness condition or preserve the $SO(3;1)$ Lorentz symmetry. Thus, such fluxes should not be introduced. Two other (1,1) two-cycles remain, and the four-form fluxes associated with these two two-cycles as well as the (2,0) and (0,2) two-cycles of K3 ber correspond to the three-form fluxes of the Type IIB string theory [51]. Therefore, when the three-form fluxes are set to zero,

\[
C \left(\begin{array}{c} ^{\uparrow} \\ \end{array} \right) = \begin{bmatrix} \quad \end{bmatrix} = \begin{bmatrix} \quad \end{bmatrix} = \begin{bmatrix} \quad \end{bmatrix} ;
\]

Once again, the $F_4 = H^4(B_2;\mathbb{Q})$ ambiguity in $G_F^{(4)}$ does not matter to the relation (274).

The correspondence between the number of M 5-branes in the Heterotic theory and the number of 3-branes in F-theory is one of the most important clues of the Heterotic (F theory
duality. The number of 5-branes wrapped on the elliptic fiber is given by [12]

\[n_5 = \sum_{B_2} (c_2(TZ) \cdot c_2(V_1)j_1 + c_2(V_2)j_2) + \frac{1}{2} j_1^2 + \frac{1}{2} j_2^2 \]

(275)

where \(V_1\) and \(j_i\) (\(i = 1, 2\)) are vector bundle and discrete twisting data in \(\mathbb{Z}_2\), respectively, in the visible \((i = 1)\) and hidden \((i = 2)\) sector. The number of 3-branes in F-theory is given by [31]

\[n_3 = \frac{(X)}{24} \sum_{l = 1}^{X} \frac{1}{2} G_F^{(4)} \wedge G_F^{(4)} ; \]

(276)

where \(F^{(3)} \wedge H^{(3)}\) contribution from the three form uxes of the Type IIB string theory are set to zero. The equality between the first terms in \(n_5\) and \(n_3\) was proved in [12, 25, 32]. The equality (274) was basically shown in [15]. When the \(F^{(3)} \wedge H^{(3)}\) contribution is turned on, the \(n_3\) in F-theory will be different from the original \(n_5\) in a Heterotic compactification (that is no longer a dual). What we did so far in section 6.2.2 is basically to collect references (mainly [15, 51]) and tell a combined story.

The extra degree of freedom in the four-form uxes \(G_F^{(4)}\) (the 3-form uxes \(F^{(3)}\) and \(H^{(3)}\) in the Type IIB language) brings about another issue. In the Heterotic theory description, on \(C_V\) has an alternative expression

\[p = \frac{Z}{C_P} G_H^{(4)} ; \]

(277)

where \(C_P = p \cdot x_8 = C_{abp} \mod C_{A = 12} \mathbb{Z}^4\), because the difference from (255), \(x_8 \cdot C_{P}^{(4)}\), vanishes. In F-theory, however, the two natural guesses

\[p = \frac{Z}{F} G_F^{(4)} ; \]

(278)

\[p = \frac{Z}{C_P} G_F^{(4)} \]

(279)

are not necessarily the same. The meaning of (278) is not even well-defined, because \((\ell_p)\)'s are well-defined two-cycles in dP_9, but their meaning has not been specified in K3. Depending on how the \((\ell_p)\)'s are defined in K3, (278) may or may not depend on the three-form uxes \(F^{(3)}\) (and \(H^{(3)}\)). \((C_P)\) on the other hand, are naturally identified with one of two sets of two-cycles of K3 whose intersection form is \(1\) Cartan matrix of \(E_8\). Since those two-cycles have vanishing intersection numbers with the two-cycles to which the three-form uxes are associated with (see [51]), (279) does not depend on the choice of the extra discrete degrees.
of freedom in F-theory, and is the same as \(255, 277\). Thus, we adopt \(278\) in translating in Heterotic theory into F-theory language. Note that \(p\)'s defined by \(273\) (and those by \(278\)) do not depend on the \(F_4\) part of \(G_F\).

6.2.3 Line Bundles on Discriminant Locus of F-theory

Here is a side remark on \(U(N)\) bundles and line bundles. In section 6, we studied vector bundles whose structure group is \(U(N)\), as well as \(SU(N)\) bundles. \(U(N)\) bundles appear in phenomenological applications of Heterotic string compactification in a form \(V = U_N \oplus U_M\), where \(U_N\) and \(U_M\) are bundles with structure group \(U(N)\) and \(U(M)\), respectively, and \(U(N) \oplus U(M) = SU(N + M) \oplus E_8\). If the bundles \(U_N\) and \(U_M\) are given by spectral cover construction on an elliptically fibered Calabi-Yau 3-fold, then \"the structure group of the spectral surface\" is \(SU(N) \oplus SU(M)\), and the geometry of dual F-theory description has a locus of enhanced singularity that corresponds to the commutant of \(SU(N) \oplus SU(M)\) in \(E_8\). The unbroken symmetry is smaller than the commutant, because the structure group of the vector bundle \(V = U(N) \oplus U(M)\), not \(SU(N) \oplus SU(M)\). In the dual F-theory description, this symmetry breaking is given by a line bundle on the locus of singularity. The four-form \(B\) determines the line bundle.

Let us see this correspondence between the Heterotic and F-theory descriptions more explicitly. We use a \(V = U_3 \oplus U_2\) bundle with the structure group \(U(3) \oplus U(2)\). Much the same story follows for a bundle \(V = U_4 \oplus U_1\) with the structure group \(U(4) \oplus U(1)\). In the spectral cover construction of the bundles \(U_3\) and \(U_2\), two two-forms \(3\) and \(2\) are used. Since the structure group is \(U(3) \oplus U(2)\), the condition \(256\) does not have to be imposed separately for \(3\) and \(2\); only \(c_3(3 + 2) = 0\) is required. Because of the overall traceless condition, \(3 + 2\) corresponds to a four-form \(B\) of the form

\[
G_F^{(4)} X C_P^{!p} \quad p = 3 \oplus \beta \beta ; \quad (280)
\]

mod \(F_4 = H^4(B_2; Z)\) in F-theory description. Four-form \(B\) 's that correspond to the traceless parts of \(3\) and \(2\) are proportional to \(C_P = 3\) and \(C_P = 2\), respectively, and preserve the \(SU(6)\) symmetry generated by \(C_{A = 1} 25\) \(\beta \beta \beta \). However, a four-form \(B\) of the form

\[
G_F^{(4)} \frac{1}{6} (3C_8 + 6C_6 + 4C_7 + 2C_5) C_3 \quad \frac{1}{6} (L_1 + 4) L_5 L_6 \quad C_3 \quad (281)
\]

 coefficients of \(C_P = 3 \oplus \beta \beta \beta \) are determined so that the linear combination has vanishing intersection number with the \(SU(3)\) generators \(C_P = 3\), and with the \(SU(2)\) generator \(C_8\). The same logic is behind the choice of the linear combination coefficients in \((283)\).
breaks the SU(6) symmetry.

In section 5.1, we studied the direct images of \(^2U_2\) of a rank-2 bundle \(U_2\). Matter multiplets from \(^2U_2\) are described in terms of a line bundle \(E^1 = 0_{B_2}(c_2)\) on \(B_2\). Remembering that the matter multiplets from \(^2\) \(U_2\) correspond to two-cycles \(C_{a_1}^{(5)} = (L_a + L_6)\), one can see that the four-form \(G_F^{(4)}\) in 5.1) solely reproduces the divisor of the line bundle \(E^1\):

\[
C_{a_1}^{(6)} G_F^{(4)} = c_3 = c_2 ;
\]

Note that we use the dictionary \(279\) here. The dictionary \(279\) determines the gauge field that matter fields feel in a very natural way. In F/M-theory, matter multiplets that correspond to the roots \(C_{a_1}^{(5)}\) (or any other roots) are fluctuations of an M 2-brane wrapped on these two-cycles. The three-form \(C^{(3)}\) of M-theory is integrated over a two-cycle to become a gauge field for the matter field associated with the two-cycle. Degrees of freedom that appear in low-energy physics come from M 2-branes wrapped on collapsed two-cycles. In the case of \(U(3)\) \(\times\) \(U(2)\) bundle, the two-cycles \(C_{a_1}^{(6)}\) (\(a = 1; \ldots; 5\)) are also collapsed everywhere along the 0 locus isomorphic to \(B_2\), a locus of \(A_5\) singularity. Thus, the fields from those two-cycles propagate over the entire \(A_5\) singularity locus, and are under the influence of the gauge field \(C_{a_1}^{(6)} C^{(3)}\) everywhere.

Here, bundles for roots in adjoint representation of SU(6) were obtained directly, without considering a bundle in the fundamental representation on the locus of \(A_5\) singularity. Since we used \(282\), the bundles are well-defined as long as the relevant part of the four-form \(G_F^{(4)}\) is integral. It is true that the four-form \(G_F^{(4)}\) of F-theory has to be shifted from integral-valued quantization by \(c_3(T X) = 2\) \(33\), where \(X\) is an elliptic fibered Calabi-Yau 4-fold \(X : X\) ! \(B_3\) for F-theory compactification. But at least for cases with a Heterotic dual, i.e., \(B_3\) is a \(P^1\)-bration over \(B_2\), \(c_3(T X)\) can be calculated. Relevant to the issue above is a component of \(c_3(T X)\) that is 2-form on \(B_2\) and 2-form on the K3-brane. Explicit calculation of \(c_3(T X)\) reveals \(27\) that the terms proportional to \(J_0\) and \(J_0\) are even. Therefore, \(G_F^{(4)}\) is quantized integrally for these components, and this is sufficient in guaranteeing that the bundles for fields in the roots of \(E_8\) are well-defined.

It is also possible to turn on a line bundle in the \(U(1)\) direction within SU(5)\(_{\text{GUT}}\), so that the SU(5)\(_{\text{GUT}}\) symmetry is broken down to local SU(3)\(_C\) \(\times\) SU(2)\(_{\text{GUT}}\), and possibly globally \(U(1)\).
symmetry, as in [34]. If the line bundle in the $U(1)_Y$ direction is trivial in the fiber direction in the Heterotic string compactification, then its F-theory dual exists, and a four-form \mathbf{x}^4 u s $\begin{align*}
G^{(4)}_F / (2C_1 + 4C_2 + 6C_3 + 3C_4) !_Y
\end{align*}$

(modulo $H^4(B_2)$) turns on a $U(1)_Y$ bundle on a locus of A_4 singularity in the F-theory dual description. Because the $SU(3)_C$ and $SU(2)_L$ gauge interactions come from the same worldvolume (A_4 singularity locus) in F-theory, unification of the gauge coupling constants at the Kaluza-Klein scale is maintained. The doublet-triplet splitting problem in the Higgs sector can also be solved with a $U(1)_Y$ line bundles, because the spectrum in the doublet part and triplet part of $SU(5)_{UT}^5 + 5 + 5$ representations are different in the presence of a line bundle. Of course, a line bundle in the $U(1)_Y$ direction on an A_4 singularity locus can also maintain gauge coupling unification and solve the doublet-triplet splitting problem [35], if the A_4 singularity locus has a non-trivial fundamental group.

We have yet to study the G_4 part of the primitiveness condition [270]. As long as $G^{(4)}_F$ belongs to F_2 and is further expressed as [271],[28] in $F_2=F_4$, then $J^\gamma G^{(4)}_F$ vanish in $G_2=G_4$. Thus, $J^\gamma G^{(4)}_F$ is contained in G_4. The four-form \mathbf{x}^4 is primitive if and only if the condition in G_4 is satisfied. Reference [10] chose a representative G_2, F_2 from a class in $F_2=F_4$ specified by [271],[273]. We understand that the calculations in [10] mean that

\[
J^\gamma (G + G^{(4)}_{F,B_2}) = t_2x_9 (\mathbf{c}_\gamma + G^{(4)}_{F,B_2}) + C_1 (1^1 \wedge J_{B_2});
\]

Here, $G^{(4)}_{F,B_2}$ means an element of $F_4 = H^4(B_2;\mathbb{Q})$, and $(+G^{(4)}_{F,B_2})$ is added on the left-hand side, so that we can see how $J^\gamma G^{(4)}_F$ changes when the representative is chosen differently. Here, we follow the way the authors of [10] specify in separating t_2J_0 from wJ_{B_2}. Because x_9 and C_1's remain mutually independent over the entire base 2-fold B_2, the first and second term should vanish separately in order for $G^{(4)}_F$ to be primitive (and the $N=1$ supersymmetry is preserved).

The c_γ term is the non-primitive contribution [10]. This contribution, however, might be cancelled by choosing a representative in F_2 differently (put another way, by exploiting the ambiguity in $G^{(4)}_{F,B_2} 2 F_4$). If the projective cylinder map [15] formulated in dP_9 bisection is used instead of the cylinder map in the determining a representative, then the ξ_9 component on the right-hand side of (284) vanishes, and at the same time, this new G is odd under the involution flipping the elliptic fiber, implying that the $SO(3;1)$ Lorentz symmetry may

\footnote{We assume here that the $F^{(3)}$ and $H^{(3)}$ components of the four-form \mathbf{x}^4 vanish.}
be restored. Furthermore, in the entire K 3–bered Calabi(Yau 4-fold X (rather than in one of dP 9–bered 4-fold W 's), there is another contribution proportional to the T 2–ber class x 9 from the hidden sector as well. It is more appropriate to study the primitiveness condition in the \(x_9\) component" in \(G_4\) using the entire K 3–bered geometry. Contributions from \(F^{(3)}\) and \(H^{(3)}\) may or may not mix into the business. On the other hand, we need to make sure that we obtain a low-energy effective theory with \(SO(3;1)\) Lorentz symmetry, which means that a representative from a class in \(F_2=\mathbb{F}_4\) cannot be chosen arbitrarily. Although the specific choice mentioned above in the \(dP_9\) bration seems to be consistent with the \(SO(3;1)\) Lorentz symmetry, things should be reconsidered carefully in terms of K 3–bration once more. There is also a quantization condition on \(G_{F_B^2}\) (possibly shifted by half integral value, depending on \(c_2(\mathbb{P}_X)=2\)). Therefore, we find that it is premature to conclude that the four-form \(ux\) cannot (or can) be chosen primitive, although there is a non-primitive contribution pointed out by [10].

Reference [10] showed that the second term vanishes when \(C_V\) is irreducible. Although \(C_1\)'s are independent generators of \(\mathbb{R}^2 \otimes \mathbb{Z}\) locally in \(B_2\), they are not globally over \(B_2\) for the \(C_{P}^0\)'s in the generator of the structure group of \(C_V\). There is only one independent condition for them, and the tracelessness condition guarantees that the condition is satisfied.

When the spectral surface \(C_V\) is reducible, for example, when the degree-5 cover \(C_V\) consists of irreducible degree-3 and degree-2 covers \(C_{U_3}\) and \(C_{U_2}\), then the second term of the right-hand side of (283) consists of three independent components: one for the SU (3) part, \(C_P=7\), one for the SU (2) part, \(C_8\) and one for the U (1) part / \((3C_8 + 6C_6 + 4C_7 + 2C)\).

The primitiveness condition is satisfied in the first two components, which is not more than a special case of [10]. If a \(U_3\) \(U_2\) bundle is chosen semi-stable in the Heterotic compactification, then the primitiveness condition is satisfied for the last component as well in F-theory. If the U (1) part has non-vanishing Fayet(Iliopoulos parameter, \(R_{B_2}^R C_{C}^3 _ J_{B_2}\), then the U (1) symmetry in F-theory description also has a non-vanishing Fayet(Iliopoulos parameter \(c / (C _ C)_{B_2}^R J_{B_2}\), with \(C\) the two-cycle that appear in (281). This Fayet(Iliopoulos parameter is an F-theory generalization of an expression in [36] in Type IIB orientifold compactification. A related subject is discussed in [51,10,11].

If a line bundle in the U (1), direction is introduced by the four-form \(ux\) in (283), the Fayet(Iliopoulos parameter may not vanish in general. In order to find a model of the real world, the four-form \(ux G_{F}^{(4)}\) and \(J_{B_2}\) should be chosen so that the Fayet(Iliopoulos parameter vanishes. This is an F-theory translation of a condition in [54].
6.2.4 Chirality in \((V) = V\)

The matter curve \(c_V\) in \(B_2\) in the Heterotic string description is where a line \(l = C + x_8\) in \(\mathbb{P}^2\) is absorbed in the \(Z = 0\) locus of \(dP_9\) bration. In the \(dP_9\) bration for the F-theory description, \((C)\) (often simply denoted in this article as \(C\)) is in the \(z_\ell = 0\) locus, and moreover, shrinks to zero size. \(C\) is a two-cycle isomorphic to \(\mathbb{P}^1\), and have self intersection number 2. Singularity of \(dP_9\) bration is enhanced along the matter curve because of the extra collapsed two-cycle.

Chiral matter multiplets are localized along the matter curve, and they are identified with the global holomorphic sections of sheaves \(F_V\) on \(c_V\). The sheaves (28) are calculated in the Heterotic string compactification. All the topological quantities associated with these sheaves should be the same in F-theory dual description, or otherwise, that is not dual. Non-topological aspects of the sheaves may be subject to corrections; we will discuss this issue in section 6.3 later.

One of the components of the divisors determining the sheaves (28) is \(j\), pulled back onto the matter curve \(c_V\) from \(C_V\). In order to have a description of matter multiplets entirely in terms of F-theory, we need a translation. It is well-known that the matter curves \(c_V\) are identified with loci of codimension-2 singularity (loci of enhanced singularity) in F-theory geometry, and the moduli space controlling the locus of the codimension-2 singularity in F-theory is the same as that of the spectral surface in Heterotic theory description. \(j\) corresponds to (279) in F-theory. Now \(j = R C\) \(G^{(4)}\) is the field strength tensor of a gauge field obtained by integrating the 3-form field \(C^{(3)}\) over the collapsed two-cycle \(C\) an M 2-brane is wrapped on.

Now the chirality formula (36) can be rewritten in a more F-theory fashion:

\[
(V) = \frac{Z}{c_V} \frac{Z}{c_V} = \frac{Z}{c_V} \frac{Z}{c_V} = \frac{C^{(3)}}{c_V}:
\]

This expression would be the most natural expectation for the chirality formula, even before passing through all the calculation of direct in ages and translation between the Heterotic string(F-theory duality); \((V)\) is obtained by counting the number of vortexes that the gauge field \(C^{(3)}\) creates. In this sense, this is a beautiful result, but not surprising. The true benefit of all these processes starting from the Heterotic theory is to know that codimension-3 singularities of F-theory do not give rise to extra contributions to the chirality formula. It would be difficult to say something about the codimension-3 singularities of F-theory without a better (and fundamental) formulation of F-theory itself or using duality with the Heterotic
The chirality formula above generalizes a corresponding formula in the Type IIB string theory. In the Type IIB string theory, SU(5)$_{\text{GUT}}$ vector multiplets can be realized by wrapping ve D 7-branes on a holomorphic four-cycle, and chiral multiplets in the 10 representation of SU(5)$_{\text{GUT}}$ are localized on a curve $c_{1,0}$ that is the intersection of and an O 7-plane. The chirality formula in the Type IIB string theory is given by [38,39,1]

$$ Z(10) = \frac{F}{2} \frac{B}{(2)^0} $$

The net chirality can also be expressed in terms of K-theory pairings [40] of D 7-brane charge and O 7-brane charge in a Calabi-Yau 3-fold for the Type IIB orientifold compactification [41]. But the expression in terms of only local geometry along the intersection curve allows straightforward generalization in F-theory.

Among the ve two-cycles $C^{ab\bar{p}}$ for $p \geq 2$ $\{6;\bar{7};\bar{8};\bar{8}\}g$ in $\{222\}$ in dP$_{8}$ bration, four are linearly independent. (Here, we ignore the difference in the choice of ab.) In the language of spectral surface, only one point in the spectra surface intersects the zero section along the matter curve generically. Thus, only one out of ve is absorbed in the $Z = 0$ locus at a generic point on c_{ν}. In F-theory language, this means that only on two-cycle C that corresponds to $\{222\}$ collapses along the matter curve c_{ν}.

It is possible only in a local patch of B_{2} to individually trace the ve points $fp_{i}g_{\mu=1,\nu}$ of the spectral surface, or ve two-cycles C^{p} ($p = \{6;\bar{7};\bar{8};\bar{8}\}g$). Globally on B_{2}, those ve objects have to be glued together between two adjacent patches by the Weyl group S_{5} of A_{4}. A system of ve two-cycles glued by S_{5} along B_{2} is a part of $R^{2} \times Z$ introduced in [15]. It will often be the case (though we do not have a proof) that there is only one topological four-cycle coming out of $H^{2}(B_{2};R^{2} \times Z)$, one given by $C \times c_{\nu}$, where C is now the collapsed two-cycle along the curve c_{ν}. The net chirality is given by the topological number of the four-form flux $G_{F}^{(4)}$ on this four-cycle. Only one topological number matters. This will be in one to one correspondence with the parameter in [178].

29The $B-$ field has to be chosen half integral, if $c_{1}(\Gamma)$ is not even (Freed-Witten anomaly) [37]. But, the field strength for the Type IIB open strings in the rank-2 anti-symmetric representation receives a contribution $2B$, and the vector bundle for these fields are well-defined.

30Two points among $fp_{i}g_{\mu=1,\nu}$ in an elliptic fiber E_{b} are on the zero section only for special isolated points on the matter curves. Such exceptional points are the subject of section 6.3, and we will ignore this issue here.
6.2.5 Chirality in \((V) = \gamma^2 V\)

We are now ready to study the sheaf \(F^{\gamma^2}V\) on the matter curve \(c^{\gamma^2}V\), or \(\mathbb{F}^{\gamma^2}V\) on the covering curves \(c^{\gamma^2}V\). As we have learnt in section 5, divisors of the line bundles \(\mathbb{F}^{\gamma^2}V\) always contain \(\sim_D\). Let us study what this contribution means in the F-theory language.

\(\sim_D : D \to c^{\gamma^2}V\) is a degree-2 cover, allocating two points \(p_i, p_j\) to a point in \(c^{\gamma^2}V\) so that \(p_i, p_j = e_0\). Let us denote the lines in \(I_8\) for those two points (in the fundamental representation of \(SU(5)_{\text{GUT}}\)) as \(I^F\) and \(I^F(p; q \in \{2, 6 \uparrow, 7; 8; 8'\}\); here, we consider those lines modulo \(C_A\) (\(A = 1; 2; 3; 4\)) for the unbroken \(SU(5)_{\text{GUT}}\) symmetry. Now

\[
\sim_D = \frac{G_H^{(4)}}{I^F} + \frac{G_H^{(4)}}{C^F + C^A} + \frac{G_H^{(4)}}{C^F}.
\]

Here, a topological relation \(C^P + C^A \equiv C^P (\text{mod } C_A (A = 1; 2; 3; 4))\) between the 2-cycles in \((222)\) and \((223)\) was used in the last equality.

There is a uniqueness problem in translating the Heterotic theory result of \(\sim_D\) into F-theory language, as we encountered in translating \(j\) into \((278)\) or \((279)\). We adopt

\[
\sim_D = \frac{G_F^{(4)}}{C^P}\]

in the same spirit as we chose \((279)\) for \(j\). This is the field strength of a gauge field obtained by integrating the 3-form field \(C^{(3)}\) over the two-cycle \(C_{a_i}^{[P]}\) a gauge field on an M 2-brane wrapped on the collapsed two-cycle \(C_{a_i}^{[P]}\) is coupled to. As long as we adopt this rule of translation, the flux quanta associated with the non-\(E_8\) part of the two-cycles in \(K 3\)-collapse do not have an influence on the net chirality, or even on that describes a line bundle in F-theory.

It is interesting to note that the notion of the covering curve \(c^{\gamma^2}V\) we introduced in sections 4 and 5 is not only for mathematical convenience. An M 2-brane wrapped on a cycle \((C^{P})\) propagates on the covering matter curve \(c^{\gamma^2}V\), not on the matter curve \(c^{\gamma^2}V\), because the each point of the covering matter curve is in one to one correspondence with the collapsed two-cycle.

The chirality formula in this (pair of) irreducible representation(s) follows immediately:

\[
(\gamma^2 V) = \begin{pmatrix} Z & Z \\ \sim_D & \frac{G_F^{(4)}}{c^{\gamma^2}V} \end{pmatrix}
\]

This is quite a natural result, once again. But all the hard work in section 5 that has led to this conclusion tells us that we do not need to add an extra contributions associated
with codimension-3 singularities of F-theory; it was the part hardly accessible with limited intuition in F-theory, yet our study using the Heterotic(F theory duality shows that [289] is indeed ne.

This expression is an F-theory generalization of the Type IIB chirality formula in a corresponding system. Here, we imagine a Type IIB set up where five D7-branes are wrapped on a holomorphic four-cycle 5 of a Calabi-Yau 3-fold, and another D7-brane on another four-cycle 1. Topological U(1) gauge configuration F_5 and F_1 is assumed on the both four-cycles, 5 and 1, respectively. Then, the net chirality in the SU(5)$_{SU-5}$ representation is given by [39]:

$$\# (5; 1^+) \# (5; 1) = \frac{i}{2} F_1 \frac{i}{2} F_5 :$$ (290)

This expression, written only in terms of local geometry around the D7(D7 intersection curve, is equivalent to the one in [42] given by pairing of D-brane charge vectors in K-theory [40, 43, 44]. The F-theory formula (289) is the most natural generalization of the local formula of the Type IIB string theory (290).

6.2.6 Chirality in $(V) = ^3 \Sigma V$

It is now straightforward to provide an F-theory interpretation for the $\sim_T j$ contribution to the sheaves $F_{^3 \Sigma V}$ in [204]. In the Heterotic theory description,

$$\sim_T \Rightarrow Z \frac{G^{(4)}_H}{Z} \frac{G^{(4)}_F}{Z} = G^{(4)}_{C^{(4)}_{pqr} \Sigma \Sigma V} ;$$ (291)

where $C^{(4)}_{pqr}$'s are now two-cycles that correspond to the roots in the $(^3 \Sigma V; 1; 2)$ of the group $SU(6) SU(3) SU(2) E_6$. In F-theory, this is replaced by $\left[\prod_{(pqr)} \Sigma V^{(4)}_F \right]$.

In the SU(6)-bundle compactification of the Heterotic string theory, there are two types of massless chiral multiplets in the $(1; 2)$ representation of the unbroken symmetry group $SU(3) SU(2) E_6$. One group of multiplets is $H^0 (\Sigma \Sigma V; \Sigma \Sigma V^+)$, and the other $H^0 (\Sigma \Sigma V; \Sigma \Sigma V^+)$ $H^1 (\Sigma \Sigma V; \Sigma \Sigma V^+)$]. Thus, a net chirality can be defined in the SU(2)-doublet sector as the difference between the degrees of freedom of the two groups. It is

$$\sim_T = (\Sigma \Sigma V; \Sigma \Sigma V^+) = T_+ = (\Sigma \Sigma V; \Sigma \Sigma V^+) :$$ (292)

In F-theory, this chirality is given by

$$\left(\Sigma \Sigma V\right)_+ = \frac{Z \Sigma \Sigma V^{(4)}_F}{\Sigma \Sigma V^{(4)}_F ;}$$ (293)

73
6.3 Codimension-3 Singularities in F-theory Geometry

There are many aspects in low-energy physics that do not depend only on the net chirality in each representation. One will be surely interested in whether the two Higgs doublets of the Minimal Supersymmetric Standard Model can be vector-like in nature. If there are light vector-like SU(5)$_{\text{GUT}}$-charged multiplets, they may serve as messenger sector of gauge mediated supersymmetry breaking, for example. For these purposes, we need to know both $h^0(\mathbb{C}_2; F^*_{\mathbb{Z}_N})$ and $h^1(\mathbb{C}_2; F^*_{\mathbb{Z}_N})$ separately, not just the difference between these two numbers. Even if there are no vector-like pairs of multiplets in low energy, heavy vector-like states can make some qualitative differences in physics observed in low energy (e.g. [24]). However, $d = \text{deg} c_1(F^{*}_{\mathbb{Z}_N})$ alone cannot determine both h^0 and h^1, if $0 < d < 2g$, where g is the genus of \mathbb{C}_2. Since g is generically large for the curve \mathbb{C}_2 (see Tables 2, 3), and d is not different very much from $g - 1$ (c.f. (177)), d is quite likely to be in the window above, indeed. More numerical information such as values of Yukawa couplings of quarks and leptons depend on more detail of the divisors specifying the sheaves on the matter curves; Yukawa couplings may depend on the values of global holomorphic sections at intersection points of matter curves [11], and just d is clearly not enough information in determining the values of the sections.

In order to obtain all this information, one needs to use all the information of the line bundles $F^{*}_{(N)}$ on the matter curves, or of the divisors that determine them. We have clarified how the divisors proportional to \mathbb{C}_2 originate in F-theory geometry. It is now time to do the rest. All the divisors of $F^{*}_{(N)}$'s contain a pullback of the canonical divisor of the base manifold B_2. Since the Heterotic and F-theory share the same base 2-fold B_2, K_{B_2} is well-defined in F-theory as well. Thus, we study the rest of the components of the divisors on the (covering) matter curves in this subsection. We will see that most of the divisors that we identified in section 5 in Heterotic theory compactification correspond to codimension-3 singularities in F-theory geometry.

Geometry of special \mathbb{Z}_N-bration $\pi : W \to B_2$ is specified by equations \(236, 237\), and (singular) geometry along $z_\ell = 0$ locus is described better by \(236\). A z_ℓ in this equation is the global holomorphic sections of 0 (rK_{B_2}) on B_2, and they originally described the spectral surfaces. Parameters a^Tate_{ℓ} that appeared in \([10]\) are related to these a^SS_{ℓ} (SS is a short hand notation of spectral surface) are related through

$$a^\text{Tate}_{\ell} = (1)^i a^\text{SS}_{\ell} z_\ell^5$$

(294)

74
and the property
\[
\text{ord } a_T^{\text{Tate}} = r + 1
\]
required for geometry with A_4 singularity is reproduced from the correspondence above. Note in the Heterotic (F theory) dictionary in \[240\] \[251\], however, that all the coefficients are already fixed except the rescaling of the coordinate z_T. Codimension-3 singularities of F-theory geometry were studied in detail in \[32\]. (See also \[45\].) We will use the precisely determined dictionary \[240\] \[251\] instead and do the same calculation over again in the following.

6.3.1 Geometry with a Locus of E_6 Singularity

If the sections a_4 and a_5 vanish, then the dP_9-bered geometry develops a locus of E_6-type singularity at $z_T = 0$:
\[
y^2 = x^3 + g_2 z_T^4:
\]
(296)

The discriminant of the elliptic fiberation is given by
\[
= z_T^8 \left(\frac{27}{16} a_3^4 + \frac{z_T}{2} (8a_2^3 + 27a_2^2a_0) + z_T^2 (27a_2^2 + \ldots) \right) + \ldots
\]
(297)

The sheaves F_V and F_{-2V} on the matter curve c_V involve a divisor $b^{(a)} = j r$. In order to obtain a description of these sheaves in F-theory, we would not want these divisors to be expressed in terms of the ramification divisor r, which is rather closely associated with geometry of vector bundles in Heterotic theory. In section \[5.2\],
\[
b^{(a)} := \text{div } a_2
\]
(298)

was the definition of the divisor on c_V. Since the defining equation of dP_9-bered geometry of F-theory uses the same data a_0, a_2 and a_3, we know where the support of $b^{(a)}$ is in F-theory geometry as well.

The codimension-1 $z_T = 0$ locus in the base 3-fold is now a zero of the discriminant of order z_T^8. The matter curve c_V is a codimension-2 locus in the 3-fold and $O(z_T^9)$ there. Singularity is enhanced from E_6 to E_7 there. Because the coefficient of z_T^9 term is $4a_2^2$ when it is evaluated on the matter curve $a_3 = 0$, $b^{(a)}$ is actually the codimension-3 locus in the 3-fold where $O(z_T^{10})$. Singularity is now enhanced to E_8. Thus, the divisor $b^{(a)}$ on the matter curve can be defined as the codimension-3 singularity of the dP_9-bered geometry of F-theory.
We are now able to describe the sheaves (28) and (85) entirely in terms of geometric objects in F-theory. We lack an explanation for why the coefficient of the divisor $b^{(a)}$ is $1=2$, nothing else. Of course we know that it has to be $1=2$, because otherwise,

$$\deg \ K_{B_2} + c_6 b^{(a)} = \frac{1}{2} \deg K_{\mathcal{O}_4} + c_6 \frac{1}{2} \ deg b^{(a)};$$

and a consistency relation $F_V = K_{\mathcal{O}_4} F_v^{-1}$ no longer holds for $c_6 \neq 1=2$. We believe that there must be an explanation for $1=2$ in terms of local geometry around the codimension-3 singularity within F-theory itself, not just from a global consistency above, but we do not have one; the coefficient was determined through the Heterotic(F theory duality, instead.

For practical purposes such as model building, one can just use the coefficient $1=2$, and there is nothing wrong. A local explanation of $1=2$ in F-theory itself remains an (academic but quite interesting) open problem for the future.31

6.3.2 Geometry with a Locus of $E_5 = D_5$ Singularity

If only the global holomorphic section a_5 vanishes, and $a_{0,2,3,4}$ are generic, then we have a locus of D_5 singularity.

$$y^2 = x^3 + f_2 z_1^2 x + g_3 z_2^3;$$

The discriminant is given by

$$\Delta = z_1^7 \ a_4^3 a_3^2 + z_1 \ \frac{27}{16} a_3^4 + \frac{9}{2} a_3^2 a_2 a_4 + a_4^2 (a_2^2 + 2a_0 a_4) + O(z_1^2) ;$$

Singularity is D_5 along the codimension-1 locus $z_1 = 0$ locus, and \(O(z_1^7) \). Along codimension-2 loci $a_4 = 0 (\mathcal{O}_4)$ and $a_3 = 0 (\mathcal{O}_{-2V})$, \(O(z_1^5) \), and the singularity is enhanced to E_6 and D_6, respectively.

The description of F_V involves a divisor $j r$ on \mathcal{O}_4, and that of F_{-2V} a divisor $B^{(c)}$ on \mathcal{O}_{-2V} (resp. $b^{(c)}$ on \mathcal{O}_{-2V}). Thus, let us think of characterizing those divisors in terms of F-theory geometry.

Because the argument around (97) is valid independent of rank N of the vector bundles in Heterotic theory compactification, the relation (96) holds for any N. Here, the definition of $b^{(a)}$ is now

$$b^{(a)} = \text{div} \ a_{N-1}$$

31 (note in v.4) A clear answer is now given to this problem; see section 5 of [52].
on the matter curve a_4 ($a_4 = 0$). The E_6 singularity along the matter curve $a_4 = 0$ is enhanced to E_7 at the codimension-3 singularity, $a_3 = 0$, and this is where we end the divisor $b^{(a)}$. Thus, this can be used as the F-theory characterization of the divisor $b^{(a)}$. At such codimension-3 singularities, the order of the discriminant is enhanced, an extra two-cycle collapses, and sometimes multiple two-cycles exhibit a monodromy around a codimension-3 singularity. Such nature of F-theory geometry may be able to account for the coefficient $1=2$ of the divisor $b^{(a)}$, but we do not have a clear answer for this problem, apart from the global consistency conditions we mentioned after (299).

The divisor $b^{(c)}$ is where the covering matter curve c_{-2V} is ramified over the matter curve c_{-2V}, and the branched locus was characterized as the zero locus of $R^{(4)}$; see (104) and (105). Since the coefficient of the z_i^6 term of the discriminant is

$$a_3^2 R^{(4)} + O (a_3^5);$$

it is at $b^{(c)}$ that this coefficient vanishes, and $O (z_i^4)$.

It is interesting to note that there is a contribution $b^{(c)}$ to the divisor of F_{-2V}^+, but from the other codimension-3 singularity such as $b^{(a)}$ which also defines a divisor on c_{-2V}. On the other hand, the divisor $b^{(a)}$ contributes to F_V with a coefficient $1=2$. We regret that we only have the results, and do not have a local explanation for these interesting phenomena, apart from the global consistency conditions such as $F_{-2V}^+ = K_{c_{-2V}}$, $F_{-2V}^+ = F_{-2V}^+$ (or equivalently (140)).

6.3.3 Geometry with a Locus of $E_4 = A_4$ Singularity

For fully generic choice of a_0, a_1, a_2, a_3, a locus of A_4 singularity exists in the $z_i = 0$ locus. The singularity is at $(x, y) = (0; 0)$ in the coordinate used in (236), and $(x, y) = (a_0^2 = 12; 0)$ in the coordinates for the Weierstrass form equation in (238). The discriminant around the A_4

$$R / \frac{3}{4}f_1^2 + 2g_1 h + 3f_2 h^2 = 0;$$

There is a loose Heterotic/F-theory correspondence between sections of a common line bundle:

$$f_1, a_2 \ 2 \ (B_2 i O (2K_B +)); \quad g, a_0 \ 2 \ (B_2 i O ());$$

$$h, a_4 \ 2 \ (B_2 i O (4K_B +)); \quad f_2 \ 2 \ (B_2 i O (4K_B));$$

It is only with the precise Heterotic/F dictionary (240, 251), however, that one can find (or even discuss) an agreement between the divisors of R_{-2V}^+ in the Heterotic theory and the codimension-3 singularities in F-theory. Note that f_2 responsible for the complex structure of the elliptic fiber enters also in (246, 247).
singularity locus is given by

\[\begin{align*}
&= z_5^5 \left(\frac{1}{16} a_5^4 P^{(5)} + \frac{1}{16} a_5^2 12a_4 P^{(5)} + a_5^2 R^{(5)} \right) \\
&+ z_5^2 a_3 a_4^3 + O(a_5) + O(z_5^2) \quad : \quad (307)
\end{align*} \]

The matter curve \(\mathcal{C}_V \) is given by \(a_5 = 0 \), and \(c_{-2V} \) by \(P^{(5)} = 0 \), where \(P^{(5)} \) is defined in (146).

The sheaf \(F_V \) on the matter curve \(\mathcal{C}_V \) involves a divisor \(j r = b^{(a)} \), which is identical with the locus of \(a_5 = a_4 = 0 \), just like we argued for the case with \(D_5 \) singularity. This locus corresponds to the type (a) intersection points of \(\mathcal{C}_V \) and \(c_{-2V} \) (see Figure 4). Singularity is enhanced here, and \(O(z_5^6) \).

The sheaf \(F_{-2V} \) on the covering matter curve \(c_{-2V} \) involves \(b^{(c)} \). Among the type (c) ramification points, we have identified the locus of type (cl) points, and their positions on \(c_{-2V} \) was specified by the zero locus of \(R^{(5)} \) defined in (150). One can see from (307) that this is exactly the place in F-theory geometry where singularity is enhanced, and the discriminant becomes \(O(z_5^7) \) from \(O(z_5^6) \) on generic points on \(c_{-2V} \).

Although the divisors of the sheaves \(F_V \) and \(F_{-2V} \) correspond to codimension-3 singularities of F-theory geometry, however, not all those singularities contribute to the divisors, just like we have already seen in the case of \(D_5 \) singularity locus. For example, along the matter curve \(\mathcal{C}_V \), \(O(z_5^7) \) at type (d) intersection points of \(\mathcal{C}_V \) \(c_{-2V} \) as well (\(a_3 = 0 \) as well as \(a_5 = 0 \)), but there is not contribution to the divisor of \(F_V \) there. Similarly, there is no contribution at the type (a) intersection points to \(F_{-2V} \), although \(O(z_5^7) \) at \(a_5 = 0 \) along \(c_{-2V} \).

We do not have an explanation which codimension-3 singularities contribute by how much, apart from the global consistency conditions \(F_V = K_{\mathcal{C}_V} F_{-2V} \) and \(F_{-2V} = K_{c_{-2V}} F_{-2V} \) (or equivalently (156)).

7 Describing Matter Multiplets in F-theory

F-theory is compactified on an elliptic Calabi-Yau 4-fold

\[x : X \rightarrow B_3 \quad (308) \]

in order to obtain low-energy effective theory with \(N = 1 \) supersymmetry. Suppose that the elliptic bration is given by

\[y^2 = x^3 + fx + g ; \quad (309) \]
where \(f \) and \(g \) are global holomorphic sections of line bundles \(L_F^4 \) and \(L_F^6 \), respectively. Calabi-Yau condition of \(X \) requires that \(L_F ' \) \(O (K_{B_3}) \).

The discriminant locus of the elliptic fibration is given by

\[
\text{div} = 12K_{B_3}^\#: \quad (310)
\]

Suppose that the discriminant locus has an irreducible component \(S \) with multiplicity \(c \):

\[
\text{div} = c + : \quad (311)
\]

c = 5 when \(X \) has \(A_4 \) singularity along , \(c = 7 \) for \(D_5 \) singularity and \(c = 8 \) for \(E_6 \) singularity.

A topological class of divisor \(\text{on} \) is defined by [46]

\[
N_{B_3} = O (6K +); \quad (312)
\]

where \(K \) is the canonical divisor of , and \(N_{B_3} \) is the normal bundle of \(B_3 \). Normal coordinate of \(\text{in} \ B_3, z_t \), is a section of the normal bundle.

Global holomorphic sections on \(B_3, f \) and \(g \), can be expressed around \(\) by expansion in the normal coordinate \(z_t \).

\[
f = \begin{array}{c}
X \\
_0
\end{array} z_t^4 f_4^\#: \quad (313)
\]

\[
g = \begin{array}{c}
X \\
_0
\end{array} z_t^6 g_6^#: \quad (314)
\]

Because

\[
K_{B_3}^\# = K + N_{B_3} = 5K + ; \quad (315)
\]

\(f_4^\# \) and \(g_6^\# \) are holomorphic sections of the following:

\[
f_4^\# \begin{array}{c} \begin{array}{c}
2 \\
\end{array} \end{array} (; O (4(5K +)) N_{B_3}^\#) = (; O (20 6iK + (4 i))); \quad (316)
\]

\[
g_6^\# \begin{array}{c} \begin{array}{c}
2 \\
\end{array} \end{array} (; O (6(5K +)) N_{B_3}^\#) = (; O (6(5 i)K + (6 i)))); \quad (317)
\]

In order to preserve \(A_4, D_5 \) or \(E_6 \) singularity along , there should exist global holomorphic sections

\[
a_r \begin{array}{c} \begin{array}{c}
2 \\
\end{array} \end{array} (; O (rK +)); \quad r = 0; 2; 3; 4; 5; \quad (318)
\]

so that \(f_4^\# \)'s and \(g_6^\# \)'s are given globally on \(B_3 \) as in [(240),(251)]. Note that \(a_r \)'s and the divisor \(\text{are characterized only in terms of geometry of} \ X \text{ around } B_3 \), and one does not need
to refer to a dual description in the Heterotic string theory, or even to assume that B_3 is a
\mathbb{P}^1-bration over and a Heterotic dual exists.

Matter curves are determined by the sections a_0, a_2, a_3, a_4, a_5 and various divisors on the
matter curves by locus of codimension-3 singularities. Three-form background configuration
involves the sheaves $F_{(V)}$, only through its behavior on the collapsed two-cycles along or
matter curves on it. Thus, the sheaves $F_{(V)}$ are described only in terms of local geometry around

Since only local information of X around is involved, descriptions of $F_{(V)}$ still hold
true, as long as local geometry remains the same. In particular, the same description of the
sheaves can be used even when the Heterotic dual does not exist. It is true that the calculation
of $R^{1,2}_{(V)}$ and hence $F_{(V)}$ that we carried out is reliable only in the region of the moduli
space where the volume of T^2 is reasonably larger than zero (but the stability of the bundle given
by spectral cover construction is guaranteed only when the size of T^2 is smaller than the
typical size of the base manifold B_3). Such large T^2 region of the moduli space corresponds
to the stable degeneration limit of a K3-ber into two dP_9-brations, one for the visible sector
E_8, and the other for the hidden sector E_8. As the volume of T^2 becomes comparable to
zero, spectral surface parameters $[a_0 : a_2 : a_3 : a_4 : a_5] \in \mathbb{P}^4$ describing four Wilson lines in the T^2-ber directions become a part of the $SO(18;2) = SO(18) \times SO(2)$ Narain moduli of the
T^2 compactification of the Heterotic string theory, and should be treated in a way mixed up
with the Kahler and complex moduli parameters of T^2. Although a theory calculation in the
Heterotic theory is unreliable and the meaning of a_0, a_2, a_3, a_4, a_5 is not clear, we can rather take
$[240, 251]$ as the definition of $a_0, a_1, a_2, a_3, a_4, a_5$ in such region of the moduli space. An idea that the
divisors specifying the sheaves $F_{(V)}$ are associated with codimension-3 singularities seems
so natural (at least to the authors) that we speculate that the relations between the sheaves
and the codimension-3 singularities persist without a correction in the entire region of the
F-theory moduli space. We obtain $F_{(V)}$ for generic configuration of F-theory geometry X in this way. We will be more explicit for specific cases later on in this section.

Since the description of $F_{(V)}$ determined as above relies only on local geometry of X along
such a set up may allow for local model building of particle physics; "local" in the sense
that the geometry in the other parts of X does not matter (very much) to particle physics
of the visible sector. That will be an F-theory version of $[47]$ in the Type IIB string, $[48]$ in
Type IIA and $[49]$ in G_2 holonomy compactification of eleven-dimensional supergravity.
7.1 On an E_6-Singularity Locus

The Calabi-Yau 4-fold X develops a locus of E_6 singularity along \mathcal{O}, when a_4 and a_5 are set to zero. The discriminant of the elliptic fibration (308) is given by (297) around \mathcal{O}. Zero locus of a_3 defines a matter curve $c_{(27)}$, along which the singularity in the directions transverse to \mathcal{O} becomes E_7. There is an extra collapsed two-cycle along the matter curve, so that the intersection form of the P^1's becomes E_7. The matter curve $c_{(27)}$ belongs to a topological class $j\mathbb{K} + j$. The singularity is enhanced even to E_8 at some special points on the matter curve, determined by the condition $a_2 = 0$. Collection of these points defines a divisor $b^{(a)}$ on $c_{(27)}$ as in (302).

Suppose that a vector bundle E is turned on the E_6 singular locus. Then, the unbroken symmetry at low energy is a subgroup H of E_6 that commutes with the structure group of E. First group of chiral multiplets in low energy effective theory arises from the entire bulk of \mathcal{O}. By generalizing B_2 in (44,46) to a general E_6 discriminant locus of F-theory, the matter multiplets are in $[10,11]$:

$$H^1(\cdot; \text{adj}(E)) \quad H^0(\cdot; O(K) \text{ adj}(E))$$

References [10,11] build an intrinsic formulation of F-theory itself and explain why the latter cohomology group is for a bundle involving K, rather than N_{B_3}. Calculation in Heterotic dual also concludes that K should be used, rather than N_{B_3}, regardless of whether the discriminant locus has codimension-2 (and -3) loci of enhanced singularity or not [10]. The Heterotic theory calculation in section 3 suggests, however, that not all the generators of the cohomology group $H^0(\cdot; O(K) \text{ adj}(E))$ are massless in fact. Only the kernel and cokernel of the map (43) remain massless there, and it may be that similar phenomenon exists in F-theory. The formula for the net chirality itself does not depend on this subtlety, however, and a generalization of (53) gives

$$Z_{(R_{H})} = c_1(T)^c c_1(\cdot; E)$$

just like in [1,11]; here, we assume that the structure group of E is a proper subgroup of E_6 and its commutant is H, and the net chirality is considered for a pair of Hermitian conjugate pair of irreducible representations $(E); R_{H}) + (E; R_{H})$.

\[31\] When we use representations of unbroken symmetries (like 27 of E_6) as subscripts, instead of representations of structure groups, we will do so by using parenthesis, like (27).
The second group of chiral multiplets are localized on the matter curve $c_{(27)}$.

\[H^0 \, c_{(27)}; O \, iK + \frac{1}{2} b^{(a)} \, L_G \, (27)(E) ; \]
\[H^0 \, c_{(27)}; O \, iK + \frac{1}{2} b^{(a)} \, L_G^1 \, (27)(E) ; \]

(321)

(322)

where L_G is a line bundle on $c_{(27)}$ determined by a gauge field obtained by integrating the 3-form field on the vanishing 2-cycle along $c_{(27)}$. See (273). The formula for the net chirality is given by $= c_{(27)} \, c_1 (L_G \, (27)(E))$, or simply by (285) in the absence of the bundle E on the locus of E_6 singularity.

7.2 On a $D_5 = E_5$-Singularity Locus

If a_5 is set to zero and $a_{0,2,3,4}$ do not vanish, then a locus of $E_5 = D_5$ singularity develops along $c_{(16)}$. The discriminant is given by (301) around.

As for the chiral matter multiplets arising from the entire worldvolume of the D_5 singularity locus, everything stated in the second paragraph of section (7.1) holds true, after replacing E_6 by SO (10), and interpret E as a bundle in SO (10).

The zero locus of a_4 defines a matter curve $c_{(16)}$, and singularity of X in the direction transverse to it becomes E_6. An extra two-cycle is collapsed along this matter curve, so that the intersection form becomes E_6. The singularity becomes E_7 on special points on $c_{(16)}$, specified by $a_3 = 0$. These points define a divisor $b^{(a)}$ as in (302). Chiral multiplets localized on the matter curve are

\[H^0 \, c_{(16)}; O \, iK + \frac{1}{2} b^{(a)} \, L_G \, (16)(E) ; \]
\[H^0 \, c_{(16)}; O \, iK + \frac{1}{2} b^{(a)} \, L_G^1 \, (16)(E) ; \]

where L_G is a line bundle determined by a 2-form on $c_{(16)}$ which is obtained by integrating the four-form field strength $G^{(4)}$ over the two-cycle collapsed along $c_{(16)}$. The net chirality is given by (285), if E is trivial.

Another group of chiral multiplets arises from another matter curve $c_{(vec)}$, which is given by zero locus of a_3. Singularity of X becomes D_6 along this curve. There are two two-cycles collapsing along this curve. We are already familiar with this phenomenon in the Type IIB string theory. When a D_7-brane intersects a stack of D_7-branes and an $O7$-plane that forms an SO (10) symmetry, an orientifold mirror D_7-brane always intersects the stack of
7-branes at the same intersection curve. Two different kinds of open strings become massless simultaneously on this curve. Codimension-3 singularities along this curve are \(b^{(a)} \) that we have already mentioned, and zero locus of \(R^{(4)} = a_2^2 - 4a_0a_4 \).

The two collapsed two-cycles turn into one another, when they are traced around one of the codimension-3 singularities at zero of \(R^{(4)} \). Therefore, it is convenient to think of a covering curve \(c_{(\text{vec})} \) that traces the collapsed two-cycles. \(c_{(\text{vec})} \) is a degree-2 cover of \(c_{(\text{vec})} \), and ramifies at the zero locus of \(R^{(4)} \). Divisor of the branch points on \(c_{(\text{vec})} \) is denoted by \(b^{(c)} \), and that of ramification points on \(c_{(\text{vec})} \) by \(b^{(a)} \). This degree-two cover \(c_{(\text{vec})} : c_{(\text{vec})}
 c_{(\text{vec})} \) has branch cuts whose number is given by the half of \((106) \). The genus of the covering curve is given by \((138) \). Chiral multiplets on this matter curves are

\[
H^0 c_{(\text{vec})}; O \ i K + b^{(c)} \ L_G \ (\text{vec})(E) : (325)
\]

\(L_G \) is defined by the strength given by \((288) \). Since only one collapsed two-cycle is associated with each point in the covering matter curve, it is well-defined as a line bundle on the covering curve. The covering matter curve is where \(M \) 2-brane propagates, and is more appropriate object in describing this group of matter multiplets than the ordinary matter curve \(c_{(\text{vec})} \). One could also describe the same chiral multiplets, though, as global holomorphic sections of a rank-2 vector bundles on \(c_{(\text{vec})} \) obtained by pushing forward the line bundle in \((325) \) by \(c_{(\text{vec})} \).

The two different matter curves \(c_{(16)} \) and \(c_{(\text{vec})} \) intersect at codimension-3 singular loci \(b^{(a)} \). There are \((4K + 1)(3K + 1) \) such points. This is where Yukawa couplings

\[
\mathcal{W}_{(a)} = 16 16 10 \quad (326)
\]
can be generated \([11,10]\). Simple algebraic relation among the collapsed two-cycles there| \(C^P + C^Q = C^P \{ \text{allows M 2-branes to reconnect} \} \).

7.3 On an \(A_4 = E_4 \)-Singularity Locus

When all \(a_0, a_2, a_4 \) are allowed to be non-zero, \(S \) is an \(A_4 = E_4 \) singular locus. The discriminant of the elliptic fibration \((308) \) is given locally around \((307) \) by \((307) \) and \((146) \) and \((150) \) for the definitions of \(P^{(5)} \) and \(R^{(5)} \), respectively. No arguments on chiral multiplets from the bulk of have to be changed from the cases with \(D_5 \) or \(E_6 \) singularities. A bundle \(E \) may be turned on in the U(1) direction to break the SU(5)_GUT symmetry of unified theories. The four-form \(\mathcal{Y} \) to be used in this case is \((283) \), where \(\mathcal{Y} \) is a two-form on the \(A_4 \) singularity.
locus, and \(C_{A=1,2,3,4} \) are collapsed four two-cycles forming a basis whose intersection form is \((C_{A=1,2,3,4}) \).

A matter curve \(c_{(10)} \) is the zero locus of \(a_5 \), along which the \(A_4 \) singularity on a generic point of \(c_{(10)} \) is enhanced to \(D_5 \). There are two groups of codimension-3 singularities on \(c_{(10)} \). One is where \(a_4 \) also vanishes (type (a) intersection points), and the other is where \(a_3 \) does (type (d) intersection points). Those points define divisors \(b^{(a)} \) and \(b^{(d)} \) on \(c_{(10)} \). See Figure 4. Chiral multiplets on \(c_{(10)} \) are

\[
H^0 c_{(10)}; O \ iK + \frac{1}{2} b^{(a)} L_G (10) (E) ; \quad (327)
\]

\[
H^0 c_{(10)}; O \ iK + \frac{1}{2} b^{(d)} L^1_G (10) (E) ; \quad (328)
\]

The line bundle \(L_G \) is given by (279), and the net chirality by (285).

Another matter curve \(c_{(5)} \) is the zero locus of \(P^{(5)} \), along which the singularity is enhanced to \(A_5 \). Codimension-3 singularities along \(c_{(5)} \) are \(b^{(a)}, b^{(d)} \), and \(b^{(c)} = \text{div} \ R^{(5)} + b^{(a)} \). The matter curve \(c_{(5)} \) forms a double point singularity at \(b^{(d)} \), and it is convenient to discuss its blow up, the covering matter curve \(c_{(5)} \). This covering matter curve is where \(M \) 2-brane propagates, and not the matter curve \(c_{(5)} \) itself, because each point in the covering matter curve is in one-to-one correspondence with the collapsed two-cycle along the matter curve. Chiral multiplets are global holomorphic sections of line bundles on the covering matter curve,

\[
H^0 c_{(5)}; O \ iK + \frac{1}{2} b^{(c)} L_G (5) (E) ; \quad (329)
\]

\[
H^0 c_{(5)}; O \ iK + \frac{1}{2} b^{(c)} L^1_G (5) (E) ; \quad (330)
\]

See Figure 4 for the rough sketch of the geometry of the two matter curves and the variety of their intersection points. Table 2 show sets of geometric data such as genus of the covering matter curve \(c_{(5)} \) and the number of various types of codimension-3 singularities for a few examples of \(c_{(5)} \).

The topological relation among the collapsing cycles,

\[
C^{abP} + C^{cdR} = \begin{array}{ccc}
& a & b \\
\text{e}_e & c & d \\
\end{array} ; \quad (332)
\]

allows a reconnection of \(M \) 2-branes wrapped on the relevant two-cycles and Yukawa couplings of the form (up-type like)

\[
W_{(a)} = 10^{ab} 10^{cd} 5^e \begin{array}{ccc}
& a & b \\
\text{e}_e & c & d \\
\end{array} \quad (333)
\]
may be generated. These types of Yukawa couplings are generated at type (a) intersection points of \(c_{(10)} \), because all the two-cycles \(C^p, C^q \) and \(C^{pq} \) mod \(C_A \) \((A = 1; 2; 3; 4)\) collapse to zero size there. Singularity is enhanced from \(A_4 \) to \(E_6 \) at each type (a) intersection point.

Another relation

\[
C_{a,j}^{pq} + C_{b,j}^{rs} + \frac{1}{pqrst} C_{abj}^{srt} = 0
\]

(334)

allows a different kind of reconnection of \(M \) 2-branes, and hence Yukawa couplings (down-type like)

\[
W = 5_{a} 10^{ab} 5_{b}
\]

(335)

may be generated. This type of reconnection is possible at the type (d) intersection points, because all the two-cycles \(C^t, C^{pq} \) and \(C^{rs} \) can collapse to zero size simultaneously there. Singularity is enhanced from \(A_4 \) to \(D_6 \) there. Three branches of matter curves intersect at each type (d) intersection point (see Figure 4). Local geometry around this type (d) intersection point allows a Type IIB interpretation. This is where a stack of ve D 7-branes, an O 7-plane, one D 7-brane and its orientifold mirror intersect simultaneously.

It is interesting that the up-type and down-type Yukawa couplings are associated with different kinds of the intersection points of the two matter curves \(c_{(10)} \) and \(c_{(5)} \). This is an important observation in an attempt to understand Yukawa couplings of quarks and leptons.

7.4 On an \(A_2 + A_1 = E_3 \)-Singularity Locus

The SU(6) bundle compactification of the Heterotic theory can be used to study various properties of F-theory vacua with a locus of \(A_2 + A_1 = E_3 \) singularity. There are three matter curves on the \(E_3 \) singularity locus; \(c_{(Q)} \), where the singularity is enhanced to \(A_4 = E_4 \), \(c_{(U)} \) where the symmetry is enhanced to SU \((4) \) SU \((2) \), and finally \(c_{(L)} \), where the enhanced symmetry is SU \((3) \) SU \((3) \). See Figure 4 for how those curves intersect one another. Table 3 shows numerical data of the geometry of those curves for a few examples. Although the analysis in section 5.6 relies on field theory approximation of the Heterotic string theory, qualitative nature of the intersection of those curves are believed to be the same in dual F-theory vacua.

In the Heterotic theory language, the matter curve \(c_{(Q)} \) is given by \(a_6 = 0 \). Chiral multiplets \(Q \) and \(Q^c \) in the \((3; 2) \) and \((3; 2) \) representation of the SU \((3) \) SU \((2) \) unbroken symmetry group are localized on this curve, and they are identified with the independent
generators of the cohomology groups,
\[H^0 \mathcal{C}(\mathbb{Q}); \mathcal{O} \cap K + \frac{1}{2} b^{(a)} L_G ; \]
(336)
\[H^0 \mathcal{C}(\mathbb{Q}); \mathcal{O} \cap K + \frac{1}{2} b^{(a)} L_G^1 ; \]
(337)
the divisor \(b^{(a)} \) is defined by (302) with \(N = 6 \), and corresponds to the type (a) intersection points in Figure 6.

The matter curve \(\mathcal{C}(\mathbb{U}) \) is defined by (161). Chiral multiplets \(\mathcal{U} \) and \(\mathcal{U}^c \) in the \((3;1)\) and \((3;1)\) representations correspond to
\[H^0 \mathcal{C}(\mathbb{U}); \mathcal{O} \cap K + \frac{1}{2} b^{(c)} L_G ; \]
(338)
\[H^0 \mathcal{C}(\mathbb{U}); \mathcal{O} \cap K + \frac{1}{2} b^{(c)} L_G^1 ; \]
(339)
here, the covering matter curve \(\mathcal{C}(\mathbb{U}) \) is obtained by blowing up and resolving triple points of the curve \(\mathcal{C}(\mathbb{U}) \), the type (e) points in Figure 6. The divisor \(b^{(c)} \) is given by \(\text{div} \mathcal{R}^{(6)} + 2b^{(a)} \).

The last group of chiral multiplets, denoted by \(\mathcal{L} \), come from
\[H^0 \mathcal{C}(\mathbb{L}); \mathcal{O} \cap K + \frac{1}{2} b^{(f)} L_G ; \]
(340)
These matter multiplets are localized on the curve \(\mathcal{C}(\mathbb{L}) \). Its defining equation is given by the zero locus of (180). The divisor \(b^{(f)} \) is the zero locus of (201).

The duality map (240) between the moduli parameters of the Heterotic and F-theories was established only for bundles with a rank \(N = 5 \). Thus, the divisors \(b^{(c)} \) and \(b^{(f)} \) are still characterized in terms of the data \(a_0, a_2, a_4, b_0 \) describing the vector bundle \(V \). Thus, we have not seen for the rank-6 bundle compactification of F-theory that those divisors correspond to codimension-3 singularities in F-theory.

There are three types of the way matter curves intersect, as we see in Figure 6. Topological relations of collapsed two-cycles are all different for those different kinds of intersection points. Thus, the interactions generated at the codimension-3 singularities are different for different types of singularities. At type (a) intersection points,
\[W_{(a)} = Q^a Q^b U^c_{ab} \]
(341)
may be generated, where \(a, b \) are SU (3) indices and \(c \); SU (2) indices. At the type (e) points, we may have
\[W_{(e)} = U_a U_b U^c_{abc} \]
(342)
The other type of three point couplings is

$$W_{(d)} = Q^a U_a L; \quad (343)$$

and this type of interactions may be generated at the type (d) points. The enhanced singularity at the type (d) points is A_5, and this interaction is what we expect when six D7-branes are separated into three, two and one coincident D7-branes intersecting one another [47].

Suppose that the low-energy spectrum of chiralm multiplets consists of the minima alanomaly free choice. That is, the cohomology groups $(336), (338)$ and (340) have one, two and one independent generators, respectively, and all other cohomology groups vanish. Then, the type (e) Yukawa couplings vanish because of the anti-symmetric nature of the contraction of the SU(3) indices, and the type (a) Yukawa interactions simply do not exist because there is no particle like U^c at low-energy. Thus, the effective theory is only with the type (d) Yukawa interaction. This model is known as the $312m$ model, one of the most famous calculable models of dynamical supersymmetry breaking [50].

Acknowledgements

T. W. thanks Ron Donagi and Stefano Guerra for useful comments and fruitful discussion. Communications with Martijn Wijnholt helped us in prove section [52] in version 2. M. Y. would like to thank Yukawa Institute for Theoretical Physics for hospitality where he stayed during the final stages of this work. This work is supported by PPARC (RT), by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan (YT, TW), and by JSPS fellowships for Young Scientists (MY).

A Direct Image as a Pushforward from its Support

If a sheaf E on an algebraic variety X is supported on a closed subvariety $i: Y \hookrightarrow X$, there exists a sheaf of Abelian group F on Y such that $E = i F$ as a sheaf of Abelian group. It is not true in general, however, that there exists a sheaf of O_Y-module F such that $E = i F$ as a sheaf of O_X-module.

Any locally holomorphic functions on X acts on a sheaf of the form $i F$ by restricting them on Y first, and then by multiplying them to F. Thus, in order to see whether E on X is given by a pushforward of a sheaf of O_Y-module F, one needs to make sure that any local
sections of ideal sheaf of Y, I_Y in

$$0 ! I_Y ! O_X ! O_Y ! 0; \quad (344)$$

acts trivially on E.

To get a feeling of when Fourier-Mukai transforms \cite{[19]} of bundles \((V)\) and direct images \(R^1_z(V)\) are given by pushforward of sheaves of modules, we explicitly calculate direct images for a simple case using Čech cohomology.

A.1 Warming Up

We would like to calculate direct images associated with elliptic bration \(z : Z \to B_2\). Before discussing \(R^1_z(V)\), however, we begin with an elementary exercises of calculating sheaf cohomology on an elliptic curve E.

Suppose that an elliptic curve E is given by an equation

$$Z Y^2 = X^3 + f_0 X Z^2 + g_0 Z^3 \quad (345)$$

in P^2, where \([X : Y : Z]\) are homogeneous coordinates of P^2. E is covered by two open sets, U_z and U_Y. U_z is in $P^2 \cap Z = 0$, and hence is $E_{nf_0} = 1$. In U_z, the defining equation of E above can be written in terms of homogeneous coordinates $(x, y) = (X = Z, Y = Z)$. U_Y is obtained by removing three points in E specified by intersection of E and a hyperplane $Y = 0$. This choice of hyperplane $Y = 0$ is rather arbitrary; it could have been any other hyperplane, as long as it is not $Z = 0$. When the $Y = 0$ hyperplane is used, then the three points $p_i (i = 1, 2, 3)$ that are not contained in E correspond to $(x, y) = (x_i, 0)$, with x_i's three roots of $x^3 + f_0 x + g_0 = 0$. A open sets U_z and U_Y cover the entire E, and this open covering can be used to calculate Čech cohomology \cite{[27]}.

Let us begin with calculation of $H^i(E; O_E) (i = 0, 1)$ in terms of Čech cohomology. In the Čech complex

$$0 ! C^0 ! C^1 ! 0; \quad (346)$$

\begin{align*}
C^0 &= f'_z 2 C(E) \cap \{ E_{nf_0} \} \cap \{ E_{nf_0} \cap g \equiv 1 \}; \quad (347) \\
C^1 &= f' 2 C(E) \cap \{ E_{nf_0} \cap p_1 \cap p_2 \cap p_3 \} \cap \{ E_{nf_0} \cap g \equiv 0 \}; \quad (348)
\end{align*}

Here, $C(E)$ means a set of rational functions on E, and $C(U)$ a set of regular functions on U \(\subseteq E \). Now, $H^0(E; O_E)$ is a subset of C^0 given by $f(\xrightarrow{z} \xrightarrow{Y}) f'_z = f' \cap (U_z \setminus U_Y) g$. Thus,
\[\frac{y}{x - x_1} \quad (i = 1; 2; 3); \] (349)

These functions are regular on \(U_Z \setminus U_Y \), and have poles of order one at \(e_0 \) and \(p_i \), but nowhere else. They are elements of \(C^1 \). If the functions (349) on \(U_Z \setminus U_Y \) are to be expressed as \('1 \quad '2 \) with \('1 \quad 2 C^0_Z \) and \('2 \quad 2 C^0_Y \), the order-one pole at \(e_0 \) should come from \('1 \) and the order-one pole at \(p_i \) from \('2 \). Both \('1 \) and \('2 \) have to be regular otherwise. Since any elliptic functions have at least a pole of order two or two poles of order one, no elliptic functions have properties required for \('1 \) or \('2 \). Thus, the functions (349) belongs to the cokernel of \(C^0 \). \(C^1 \), and hence can be a generator of \(H^1(E; O_E) \). On the other hand, difference between any two functions in (349) does not have a pole at \(e_0 \), and hence it can be expressed as \('1 \quad '2 \). Thus, there is only one independent generator out of three functions in (349). This is how one can understand \(h^1(E; O_E) = 1 \).

We will work on another exercise: \(H^1(E; O_p(e_0)) \) (i = 0; 1). It is well known that both cohomology groups vanish for \(p \neq e_0 \), but it is an instructive exercise to reproduce this result, before taking on an even more difficult problem, calculation of \(R^1 \) in elliptic fibration given by \(E \). For \(O_E(e_0) \),

\[C^0 = C^0_Z \quad C^0_Y; \] (350)
\[C^0_Z = f' z \quad 2 C(E) \quad f' z \quad 2 C \quad [\text{Enf} \quad p; \quad g]; \quad v_p('z) \quad 1g; \] (351)
\[C^0_Y = f' Y \quad 2 C(E) \quad f' Y \quad 2 C \quad [\text{Enf} \quad p; \quad g]; \quad v_p('Y) \quad 1; \quad v_{e_0}('Y) \quad 1g; \] (352)
\[C^1 = f' 2 C(E) \quad f' 2 C \quad [\text{Enf} \quad p; \quad g]; \quad v_p(') \quad 1g; \] (353)

Here, \(v_p(') = m \) means that a rational function ' has a zero of order \(m \) at a point \(p \) if \(m > 0 \), and ' has a pole of order \((m) \) at a point \(p \) if \(m < 0 \). Thus, global holomorphic section, \(('z; 'Y) \) such that \('z \quad 'Y = 0 \) on \(U_Z \setminus U_Y \), has to be constant-valued function with \('Y(e_0) = 0 \). Thus, there is only one trivial holomorphic section, \('z = 'Y = 0 \), and \(h^0(E; O_E(e_0)) = 0 \).

Let us now turn to \(H^1(E; O_E(e_0)) \). Although the functions (349) generate the coho-
mology group $H^1(E; O_E)$, they are now decomposed into

$$\frac{y}{x} = \frac{y + y(p)}{x + x(p)} \frac{y(x(p)x_1) + y(p(x)x_1)}{(x + x(p))(x + x_1)} : '1 '2$$ \hspace{1cm} (354)

Here, $(x(p); y(p))$ are the coordinates of the point p. $'1$ has poles of order one at p and e_0, nowhere else. Thus, $'1 2 C^0_Z$. $'2$ has poles of order one at p and p_i, but e_0 is a zero of order one for $'2$. Thus, $'2 2 C^0_Y$. Thus, the functions (349) do not generate the cokernel of $C^0 ! C^1$, and hence the cohomology group $H^1(E; O_E (p e_0))$ is trivial. Note also that the decom position $'1 2 C^0_Z$ and $'2 2 C^0_Y$ is actually unique.

A.2 $R^1 O \left(C_{(V)} \right)$

Fourier-Mukai transforms

$$R^1 p_1 p_2 (V) \quad P_{B_1}^1 \quad O(q K_{B_2})$$ \hspace{1cm} (355)

for an elliptic bration $p_1 : Z \quad B \quad Z ! Z$ and direct images

$$R^1 Z (V)$$ \hspace{1cm} (356)

for an elliptic bration $Z : Z ! B_2$ often vanishes apart from closed subsets $C_{(V)} ! Z$ and $C_{(V)} ! B_2$. We address a question here, whether those sheaves with their support on closed subvarieties are expressed as pushforwards of sheaves of $O_{C_{(V)}}$-modules and $O_{C_{(V)}}$-modules, respectively.

We restrict our attention to cases where the support subvariety codimension-1 has its well-defined normal coordinate. Since the question whether the direct images are expressed as pushforwards or not is about a local property, the following argument is valid wherever a normal coordinate to the support is well defined locally. If the normal coordinate is well defined, then the question is answered by checking whether multiplication of the normal coordinate (seen as a function) upon the generators of direct images is trivial or not.

For a bundle V given by spectral cover construction, V is locally expressed as $(p_i e_0)$, with p_i varying over the coordinates of base manifold. (V) also share the same property. Multiplication of P_{B_1} in Fourier-Mukai transform does not change this structure, either. Thus, it is sufficient to deal with individual summands, all of which are of the form $O (C_{(V)})$ with C describing a locus of p_i, varying over the base manifold. Because of the nature of our question we try to address, it is sufficient to maintain only the normal direction in the
base manifold; a normal direction of $C_{(x)}$ in Z, or that of $C_{(y)}$ in B_2. We will use t as the coordinate of this transverse direction.

$R^1O\left(C_{(x)}\right)$ is trivial around a point away from $C_{(x)}$ or $C_{(y)}$. We only need to allow the coefficients in C and C^1 in (356)(359) to be holomorphic functions of t. Arguments there leading to $h^1(E;O(p-e_0)) = 0$ does not need to be changed.

On the support locus of $R^1O\left(C_{(x)}\right), C_{(x)}$, things are different. Let us take an open set U on the base manifold that contains some section of $C_{(x)}$. Then,

$$[R^1O\left(C_{(x)}\right)](U) = H^1(1(U);O(C_{(x)})) = (357)$$

$^1(U)$ is covered by two open sets, U_Z and U_Y; notion of $Z = 0$ and $Y = 0$ are well-defined in elliptic fibration. C^0_Z, for example, is given by

$$C^0_Z = \text{Span}_{C^1} 1;x;y;x^2; C[t]+ '1'(tC[t]): (358)$$

'1' is not contained in C^0_Z, because, as we see shortly, $v_{br}(1') = 1$. This is why only $t = C[t]$ are allowed as a coefficient of '1'. Similarly, '2' does not belong to C^0_Y without being multiplied by the transverse coordinate t. This means that

$$\frac{Y}{X} = '1' \quad '2' \quad (359)$$

in C^1 is not expressed as an image from C^0_Z; the decomposition into '1' and '2' was unique, but neither '1' nor '2' belong to C^0_Z or C^0_Y. Thus, these functions ($i = 1;2;3$) generate the cohomology group $H^1(1(U);O(C_{(x)}))$. On the other hand, once it is multiplied by the transverse coordinate t,

$$t \quad \frac{Y}{X} = '1' \quad t \quad '2' \quad (360)$$

is in the image from C^0_Z. Therefore, i) there is a non-vanishing direct image $R^1O\left(C_{(x)}\right)$ that is localized on C and, ii) multiplication of the transverse coordinate t annihilates it. Thus, the ideal sheaf of $C_{(x)}$ acts trivially on $R^0O\left(C_{(x)}\right)$, and it is given by a pushforward of a sheaf on C as a sheaf of Q_1-module. Furthermore, iii) the sheaf on C is rank-1, (the same argument after (345) is applied also here) and iv) since generator $y=(x \quad x_1)$ transform as a section of $L^3_{H}L^2_{H} \cdot L_{H}$, its coefficient function transform as $L^1_{H} \cdot O(K_{B_2})$.

We have yet to verify

$$v_{br}(1') = v_{br}(2') = 1: \quad (361)$$

As a point p approaches to e_0, $(x(p);y(p))$ goes to $(1;1)$. To see geometry of elliptic curve around the origin point, it is better to use $p = (X=Y;Z=Y)$ as the affine coordinate
The defining equation of elliptic curve becomes
\[y^2 = x^3 + f_0 x^2 + g_0 x; \]
(362)
and the infinity point \(e_0 \) corresponds to \((0;0)\). \(e_0 \) can be chosen as a local coordinate on \(E \) around the infinity point \(e_0 \), and \(x^3 \) approximately. Thus, as a point \(p \) approaches \(e_0 \),
\[
\begin{align*}
x(p) &= -\frac{1}{(p)}; \\
y(p) &= \frac{1}{(p)}.
\end{align*}
\]
(363)
(364)
By extracting the leading behavior of \((p) \to 0 \), we find that
\[
\begin{align*}
x(p) &= -\frac{1}{(p)}; \\
y(p) &= \frac{1}{(p)}.
\end{align*}
\]
(365)
(366)
Since we chose \(t \) as the transverse coordinate to \(C(V) \) or \(C(V) \), \((p) \) / \(t \) around \(C \). Thus, we verified \((361) \).

B Appendices to Section [5]

B.1 A Relation between \((V) \) and \((V^2) \)

In this section, prove \((375) \), which gives a relation between \((V) \) and \((V^2) \). This relation can be used as a consistency check of the computation, or as a shortcut to obtain \((V^2) \) from \((V) \).

For a \(U(N) \) bundle \(V \), one can show that
\[
\begin{align*}
c_1(V^2) &= (N-1)c_1(V); \\
ch_3(V) &= \frac{1}{2}c_3(V) - \frac{1}{2}c_2(V)c_1(V) + \frac{1}{6}c_1(V)^3; \\
ch_3(V^2) &= (N-4)ch_3(V) - c_2(V)c_1(V) + \frac{1}{2}c_1(V)^3.
\end{align*}
\]
(367)
(368)
(369)
See e.g. an appendix B of [18].
For a Calabi-Yau 3-fold Z ($c_1(TZ) = 0$),

$$
\begin{align*}
(Z; V) &= \frac{c_1(V)}{Z^2} + \frac{c_2(TZ)}{12} c_1(V); \\
(Z; V^2) &= \frac{c_1(V^2)}{Z^2} + \frac{c_2(TZ)}{12} c_1(V^2) \\
&= (N^2 4) \frac{c_1(V)}{Z} + (N 1) \frac{c_2(TZ)}{12} c_1(V) + \frac{z}{z} c_2(V) c_1(V) + \frac{1}{2} z c_1(V)^3; \\
\end{align*}
$$

(370)

(371)

Since for elliptic bration $z : Z \rightarrow B$ we have

$$
\begin{align*}
c_2(TZ) &= 12 c(TB) + \; ; \\
c_2(V) &= \; ; \\
c_1(V)^3 &= 0 \text{ for } c_1(V) = z c \; ;
\end{align*}
$$

(372)

(373)

(374)

we finally obtain

$$
(V^2) = (N^2 4) (V) + (N 1) (3K_B +) \cdot (V) ;
$$

(375)

where $(V) = (Z; V)$ and and $(V^2) = (Z; V^2)$.

B.2 Calculation of $\deg rj$ and $\deg jr$

We present an explicit calculation of $\deg rj$, on D from individual type (a) intersection points. In other words, we calculate the multiplicity of intersection of two curves r and D in the spectral surface C_V. The type (a) intersection points of r and D are also where the ramification divisor r intersects the matter curve $C_V = j_\gamma$. We will also see below through explicit calculation that the multiplicity of the intersection of r and C_V is 1, although this is already clear from an argument presented in the text.

In order to find out the multiplicity of intersection of two curves on a surface, only local geometry of the surface matters. We will first describe local geometry of the spectral surface C_V around a type (a) intersection point, and then the defining equations of the curves r, D and C_V. It is quite easy, then, to find out the multiplicity of intersection.
B.2.1 For a rank $V = 3$ Case

Because the type (a) intersection points are always on the zero section, it is convenient to use the coordinates $(u; v)$ in describing the direction of the elliptic fiber. Furthermore, since we focus on a local geometry of C_V, we can use.

Type (a) intersection points are found wherever both a_N and a_{N+1} vanish on the base 2-fold B_2. Here, $N = \text{rank } V$. We choose a local patch of one of such points in B_2, and set coordinates in the patch so that $a_N = u$, and $a_{N+1} = v$. In a local patch of Z with a set of coordinates $(u; v; \cdots)$, the spectral surface of a rank-3 bundle V is given by

$$u \cdot v + \cdots = 0; \quad (376)$$

where we have set $a_0 = 1$ at the point; we do not lose generality by doing so, because the coordinates u and v can be rescaled if necessary. We study the rank $V = 3$ case first. This defining equation was used when drawing the spectral surface C_V in Figure 3.1.

An appropriate choice of local coordinates on C_V is $(u; v)$, whereas $(u; v)$ can be used for the base 2-fold B_2. The projection $C : C_V \rightarrow B_2$ is given by

$$C : p \mapsto b = C(p); \quad (377)$$

Thus,

$$C(du \wedge dv) = (u \cdot v + \cdots)^3 du \wedge dv; \quad (378)$$

and hence

$$r = \text{div} (u \cdot v + \cdots); \quad (379)$$

Note also that

$$C(u) = (u \cdot v + \cdots)^2; \quad \text{and} \quad \text{div}_C(u) = \text{div} + \text{div} (v \cdot a_0 + D); \quad (380)$$

Thus, r and D intersect with multiplicity 2, while r and a_0 with multiplicity 1. See Figure 3.1.

B.2.2 For rank $V = 4$ Case

For bundles with rank $V = 4$, local defining equation of the spectral surface becomes

$$u \cdot v + a_0 = 0; \quad (381)$$

94
where now local coordinates of B_2 around a type (a) point are chosen so that $a_N = u$ and $a_{N-1} = v$, and we set $(a_N - 2x^{(N-2)x^2 + \theta})a_{N-2} = 1$ at a type (a) intersection point without a loss of generality. The difference from (378) is due to the fact that the a_{N-2} term is absent in the equation determining the spectral surface of rank-3 bundles. The left panel of Figure 2 was drawn using the defining equation above.

We can use $(u;v)$ as the local coordinates on C_V, and the projection $c : C_V \to B_2$ is given by

$$c : (u,v) \mapsto b = c(b); \quad (u,v) \mapsto (u,v) = (v^2,v)$$

(382)

and the ramification divisor can be read out from

$$c(du^2 + dv) = (u^2 + dv);$$

(383)

now we have $r = \text{div} (v^2)$. Note also that $D = \text{div} v$ and $\varphi = \text{div} v$. Thus, the curves r and D intersect with multiplicity 1 at a type (a) intersection point for bundles with rank $V > 3$. The two curves c_V and r also intersect transversely.

B.3 Geometry of C_{-2V} around the Pinch Points

In this appendix, geometry of the spectral surface C_{-2V} for rank-4 bundles V is discussed.

For any point $b \in B_2$, the spectral surface C_V for the bundle in the fundamental representation determines four points p_i, p_j, p_k, p_l in the elliptic fiber of b, E_b. Points on B_2 satisfying both $a_3 = 0$ and $R^{(4)} = a_2^2 - 4a_4a_0 = 0$ are called type (c) points. We will focus on a local neighborhood $U \ni B_2$ of a type (c) point, and determine the behavior of C_{-2V} in $z^3(U) \subset \mathbb{Z}$.

Figure 8: This figure shows how the curves r, D and c_V intersect on C_V at a type (a) point.
We can choose \(a_3 = a_4 \) and \(\mathbb{R}^{(4)} = a_4^2 = (a_2^2 + 4a_4a_0) = a_3^2 \) as a set of local coordinates. Then, the coordinates of the four points of \(C_V \) in the \(\theta \) direction are determined as functions of the coordinates of the base manifold for small \((a_3; \mathbb{R}^{(4)}) \):

\[
\begin{align*}
 p_i : (x; y) & \leftarrow \frac{1}{2} q \mathbb{R}^{(4)} + 4y a_3; + y + 3x^2 + f_0 \left(\frac{L}{4y} \right) \mathbb{R}^{(4)} + 4y a_3; \quad (384) \\
 p_j : (x; y) & \leftarrow \frac{1}{2} q \mathbb{R}^{(4)} + 4y a_3; + y + 3x^2 + f_0 \left(\frac{L}{4y} \right) \mathbb{R}^{(4)} + 4y a_3; \quad (385) \\
 p_k : (x; y) & \leftarrow \frac{1}{2} q \mathbb{R}^{(4)} + 4y a_3; + y + 3x^2 + f_0 \left(\frac{L}{4y} \right) \mathbb{R}^{(4)} + 4y a_3; \quad (386) \\
 p_2 : (x; y) & \leftarrow \frac{1}{2} q \mathbb{R}^{(4)} + 4y a_3; + y + 3x^2 + f_0 \left(\frac{L}{4y} \right) \mathbb{R}^{(4)} + 4y a_3; \quad (387)
\end{align*}
\]

where \(p_i = p_k = (x ;+ y) \) and \(p_j = p_2 = (x ; y) \) are the four points right on the type (c) point, and \(x = a_2 = (2a_4) \) and \(y = x^3 + f_0x + q_0 \). Only the leading order deviation from \((x ; y) \) for small \((a_3; \mathbb{R}^{(4)}) \) are maintained in the expressions above, and higher order dependence on \((a_3; \mathbb{R}^{(4)}) \) is dropped.

Now that the coordinates in the \(\theta \) direction are given for the four points of \(C_V \) in each \(\theta \), one can determine the coordinates for the six points of \(C_{-2V} \) in each \(\theta \). If two points \(p_i \) and \(p_2 \) on an elliptic curve are given coordinate values \(p_i = (x_1; y_1) \) and \(p_2 = (x_2; y_2) \), then the coordinates of their group-law sum \(p_1 \cdot p_2 = (x_1 2 ; y_1 2) \) are given by

\[
\begin{align*}
 x_{1 2} &= x_1 \cdot x_2 + \frac{y_1 \cdot y_2}{x_1 \cdot x_2} \quad ; \\
 y_{1 2} &= \left(\frac{(y_1 \cdot y_2) x_1 \cdot x_2 + (x_1 y_2 \cdot x_2 y_1)}{(x_1 \cdot x_2)} \right) \quad ;
\end{align*}
\]

Using this addition theorem, one can calculate \((x; y) \) for all six \(p_1 \cdot p_2 \ (1 \leq i < j \leq 4) \).

We know that two points \(p_i \cdot p_j \) and \(p_2 \) are on the zero section on the matter curve \(C_{-2V} \) specified by \(a_3 / a_3 = 0 \). We also know that \(p_k \) is \(p_i \cdot p_j \) on the type (c) points, and hence \(p_i \cdot p_1 \) and \(p_j \cdot p_2 \) are also on the zero section. We are interested in how those four points on \(C_{-2V} \) behave around the zero section in \(x \equiv 1 (U) \). For the purpose of describing geometry around the zero section, \(x=y \) is more useful coordinate in the \(\theta \) direction.
than the pair \((x; y)\). After a little calculation, one finds that

\[
\begin{align*}
\mathbf{q} &\begin{array}{c}
R^{(4)} \quad 4y a_3 + R^{(4)} + 4y a_3 \\
\end{array} \\
&+ R^{(4)} \quad 4y a_3 \quad R^{(4)} + 4y a_3 \\
&+ \quad 4y \quad q \\
\mathbf{q} &\begin{array}{c}
R^{(4)} \quad 4y a_3 \\
\end{array} \\
&+ R^{(4)} \quad 4y a_3 \quad R^{(4)} + 4y a_3 \\
&+ \quad 4y \\
\mathbf{q} &\begin{array}{c}
R^{(4)} \quad 4y a_3 \\
\end{array} \\
&+ R^{(4)} \quad 4y a_3 \quad R^{(4)} + 4y a_3 \\
&+ \quad 4y \\
\end{align*}
\]

(390)\hspace{1cm} (391)\hspace{1cm} (392)\hspace{1cm} (393)

The geometry (i.e., \(C^{2V} \)) that those four points sweep is better parametrized by

\[
w = R^{(4)} 4y a_3
\]

(394)

With these two parameters, the spectral surface \(C^{2V} \) is locally described by

\[
\begin{align*}
; a_3; R^{(4)} & \begin{array}{c}
\frac{w^+ + w}{4y} ; \\
\frac{w^+_2 + w^2}{8y} ; \\
\frac{w^+_2 + w^2}{2} ; \\
\end{array} \\
\end{align*}
\]

(395)

The two panels in Figure 2 showing \(C^{2V} \) were obtained in this way. The defining equation of \(C^{2V} \) in the ambient space \(Z \) with coordinates \((; a_3; R^{(4)})\) is obtained by erasing \(w^+ \) and \(w^2 \). It is

\[
a_3^2 = \frac{2}{4y} R^{(4)} 4y^2 4
\]

(396)

From this equation, one can see that \((; a_3) = (0; 0)\) is a double point in the \((; a_3)\) plane for \(8 R^{(4)} \neq 0 \), and hence the \((; a_3) = (0; 0)\) locus is a double curve. Furthermore, at the type (c) point, \(R^{(4)} = 0, C^{2V} \) becomes more singular; it is called a pinch point.

On a generic point on the matter curve \(C^{2V} \), two branches of \(C^{2V} \), \(p_i \), \(p_j \), and \(p_k \), \(p_l \) approach the zero section as \(a_3 = \frac{R^{(4)}}{a_3} \), where \(a_3 \) is the coordinate transverse to the matter curve. At a type (c) point, on the other hand, two points \(p_i \), \(p_j \) and \(p_k \), \(p_l \) approach as \((w^+, w) \), and two others \(p_i \), \(p_l \) and \(p_k \), \(p_j \) as \((w^+, w) \). The transverse coordinate \(a_3 \) \((w^+ + w)(w^+ w) \) contains both factors. It is necessary to know these behavior, when one tries to determine how the sheaf of \(0_B^2 \)-modules \(R^1_z \wedge^2 V \) responds to the action of the ideal sheaf of the matter curve \(C^{2V} \).
Finally, let us study the geometry of \mathcal{C}^{2V} introduced in section 4. \mathcal{C}^{2V} is obtained by resolving two branches of C^{2V} along the double-curve singularity into two disjoint components. Because we did not specify in section 4 how to define \mathcal{C}^{2V} around the pinch points of C^{2V}, we will obtain \mathcal{C}^{2V} along the double-curve singularity, and extrapolate it to the pinch points to see what happens there.

\mathcal{C}^{2V} is obtained as a strict transform of C^{2V}, when the ambient space Z is blown up with a center along the double curve singularity of C^{2V}. Let Z' be the blow up of Z. Since the double-curve locus is $\{\mathbb{A}_2\} = (0;0)$, we consider a blow up of Z centered at $\{\mathbb{A}_2\} = (0;0)$. The coordinate system $(\mathbb{A};u;v)$ of a local neighborhood $\mathbb{Z}^{1}(U)$ is replaced by those of two patches of $\mathbb{Z}^{1}(\mathbb{Z}^{1}(U))$ in one patch and $(\mathbb{A};u;v)$ in the other. The two patches are glued together under an identication

$$u = u; \quad v = \tilde{v}: \quad (397)$$

These relations also determine the map $Z : Z' \to Z$.

In the first patch of Z', the defining equation of \mathcal{C}^{2V} becomes

$$u^{2} = v; \quad 4v^{2} = 2: \quad (398)$$

Although this blow-up was intended to resolve the double-curve singularity of C^{2V} at $(\mathbb{A};u) = (0;0)$ and $v \neq 0$, this process also resolves the codimension-2 singularity at $(\mathbb{A};u;v) = (0;0;0)$. \mathcal{C}^{2V} given by the equation above is smooth even at $(\mathbb{A};u;v) = (0;0;0)$. We use the equation above as the definition of \mathcal{C}^{2V} even at the pinch point $(\mathbb{A};u;v) = (0;0;0)$.

The zero section $\mathbb{Z}^{1}(U)$ is now replaced by $\mathbb{Z}^{1}(U) \to Z$. It consists of two irreducible components. One of them does not appear in the first patch, because it is specified by $\mathbb{A} = 1 = u = 0$. The other component is the exceptional locus E of this blow-up. It is given by $\mathbb{A} = 0$. If the covering matter curve c^{2V} is defined by $c^{2V} = \mathcal{C}^{2V}$, then it is specified by

$$u^{2} = v; \quad \mathbb{A} = 0: \quad (399)$$

u can be chosen as a local coordinate of the covering matter curve c^{2V}, while v is the local coordinate of the matter curve c^{2V}. The map $c^{2V} : c^{2V} \to c^{2V}$ is clearly a degree-2 cover, $v = u^{2}$, and each type (c) point on c^{2V} ($v = 0$) is a branch point of this degree-2 cover.

References

C.A.Scruccia and M.Serone, Anomalies and in ow on D-branes and O-planes, Nucl.
[46] G.Rajesh, Toric geometry and F-theory/heterotic duality in four dimensions, JHEP
A bottom-up approach to the string embedding of the standard model, JHEP 0008,
[49] E.Witten, D-deconstruction, G(2) holonomy, and doublet-triplet splitting,
[50] I.Aebcck,M.Dine and N.Seiberg, Dynamical Supersymmetry Breaking In Four-
[51] K.Dasgupta,G.Rajesh and S.Sethi, M theory, orientifolds and G - ux, JHEP 9908,
[52] H.Hayashi,T.Kawano,R.Tatar and T.Watari, Codimension-3 Singularities and
[53] R.Donagi and M.Wijnholt, Higgs Bundles and UV Completion in F-Theory,