Two tim escale analysis of extreme mass ratio inspirals in Kerr. I. Orbital Motion

Tanja Hinderer1 and Eanna E. Flanagan1,2

1 Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853, USA
2 Laboratory for Elementary Particle Physics, Cornell University, Ithaca, NY 14853, USA

(Dated: draft of June 12, 2008; printed April 19, 2013 at 9:25)

Inspirals of stellar mass compact objects into massive black holes are an important source for future gravitational wave detectors such as Advanced LIGO and LISA. Detection of these sources and extracting information from the signal relies on accurate theoretical models of the binary dynamics. We cast the equations describing binary inspiral in the extreme mass ratio limit in terms of action angle variables, and derive properties of general solutions using a two-tim escale expansion. This provides a rigorous derivation of the prescription for computing the leading order orbital motion. As shown by Mino, this leading order or adiabatic motion requires only knowledge of the orbit-averaged, dissipative piece of the self-force. The two tim escale method also gives a framework for calculating the post-adiabatic corrections. For circular and for equatorial orbits, the leading order corrections are suppressed by one power of the mass ratio, and give rise to phase errors of order unity over a complete inspiral through the relativistic regime. These post-1-adiabatic corrections are generated by the fluctuating, dissipative piece of the self-force, by the conservative piece of the self-force, and by the orbit-averaged, dissipative piece of the second order self-force. We also sketch a two-tim escale expansion of the Einstein equation, and deduce an analytic formula for the leading order, adiabatic gravitational waveform generated by an inspiral.

I. INTRODUCTION AND SUMMARY

A. Background and Motivation

Recent years have seen great progress in our understanding of the two-body problem in general relativity. Binary systems of compact bodies undergo an inspiral driven by gravitational radiation reaction until they merge. As illustrated in Fig. 1, there are three different regimes in the dynam ics of these systems, depending on the values of the totaland reduced mass M and of the system and the orbital separation r: (i) The early, weak regime at r \(\gg M \), which can be accurately modeled using post-Newtonian theory, see, for exam ple, the review [1]. (ii) The relativistic, equal mass regime at r \(\sim M \), which must be treated using numerical relativity. Over the last few years, numerical relativists have succeeded for the first time in simulating the merger of black hole binaries, see, for example, the review [2] and references therein. (iii) The relativistic, extreme mass ratio regime at r \(\sim \mathcal{M} \), where typical scales short compared to the dephasing time \(\sim \mathcal{M}^2 \); systems in this regime can be accurately modeled using black hole perturbation theory, with the mass ratio \(\mathcal{M} \) serving as the expansion parameter. The subject of this paper is the approximation methods that are necessary to treat such systems over the longer inspiral time \(\mathcal{M} \), necessary for computer simulation of compact binaries.

This extreme mass ratio regime has direct observational relevance: Compact objects spiraling into much larger black holes are expected to be a key source for both LIGO and LISA. Intermediate mass-ratio inspirals (IMRIs) are inspirals of black holes or neutron stars into intermediate mass (50 \(M \) 1000M) black holes; these would be visible to Advanced LIGO out to distances of several hundred M pc [3], where the event rate could be about 30 per year [4,5]. Extreme mass-ratio inspirals (EMRIs) are inspirals of stellar-mass compact objects (black holes, neutron stars, or possibly white dwarfs) into massive (\(10^4 \ M \) 10M) black holes in galactic nuclei; these will be visible to LISA out to redshifts z \(\sim 1 \) [6,7,8]. It has been estimated [9,10] that LISA should see about 50 such events per year, based on calculations of stellar dynamics in galaxies’ central cusps [11]. Because of the EMRIs or IMRIs small mass ratio \(\mathcal{M} \), the small body lingers in the large black hole’s strong-curvature region for many wave cycles before merger: hundreds of cycles for LIGO’s IMRIs; hundreds of thousands for LISA’s EMRIs [11]. In
Gravitational waves from these sources will be rich with information:

The waves carry not only the details of the evolving orbit, but also a map of the large body’s spacetime geometry, or equivalently the values of all its multipole moments, as well as details of the response of the horizon to tidal forces (12,13). Extracting the map (both of its own) is a high priority for LISA, which can achieve ultrahigh accuracy, and a moderate priority for LIGO, which will have a lower (but still interesting) accuracy [3]. Measurements of the black hole’s quadrupole (fractional accuracy about 10^{-3} for LISA [14,15], about 1 for Advanced LIGO [4]) will enable tests of the black hole’s no hair property, that all of the mass and current multipole moments are uniquely determined in terms of the first two, the mass and spin. Potentially, these measurements could lead to the discovery of non-black-hole central objects such as boson stars [16,17] or naked singularities.

One can measure the mass and spin of the central black hole with fractional accuracies of order 10^{-4} for LISA [14,15] and about 10^{-2} (10$^{-1}$ for Advanced LIGO [4]). Observing many events will therefore provide a census of the masses and spins of the massive central black holes in non-active galactic nuclei like M 31 and M 32. The spin can provide useful information about the hole’s growth history (mergers versus accretion) [24].

For LISA, one can measure the inspiralling objects’ masses with precision about 10^{-4}, teaching us about the stellar population in the central parsec of galactic nuclei.

The LISA event rate is large enough, one can measure the Hubble constant H_0 to about 1% [21], which would indirectly aid dark energy studies [22]. The idea is to combine the measured luminosity distance of cosmological (2 + 1 = 3) EMRIs with a statistical analysis of the residuals of candidate host galaxies located within the error box on the sky.

To realize the science goals for these sources requires accurate theoretical models of the waveforms. There are two exceptions, where corrections to the point-particle model of the waveform are formatted 1 attached to the waveforms. The accuracy requirement is roughly that the theoretical term plate’s phase must remain accurate to 1 cycle over the next cycles of waveform in the highly relativistic regime (10cycles for LIGO, 109 for LISA). For signal detection, the requirement is slightly less stringent than this, while for parameter extraction the requirement is slightly more stringent: The waveforms are characterized by 14 parameters, which makes a fully coherent search of the entire data train computationally in possible. Therefore, detection template plates for LISA will use short segments of the signal and require phase coherence for 10 cycles [12]. Once the presence of a signal has been established, the source parameters will be extracted using measurement segments that require a fractional phase accuracy of order the reciprocal of the signal-to-noise ratio [14], in order to keep systematic errors as small as the statistical errors.

B. Methods of computing orbital motion and waveforms

A variety of approaches to computing waveforms have been pursued in the community. We now review these approaches in order to place the present paper in context. The foundation for all approaches is the fact that, since $\nu = M/\ell$, the orbit of the compact object can be treated as a small perturbation to the large black hole’s gravitational field. On short timescales M, the compact object moves on a geodesic of Kerr geometry, characterized by its conserved energy, E, z-component of angular momentum L_z, and Carter constant Q. Over longer timescales $M \approx N$, radiation reaction causes the parameters E, L_z, and Q to evolve adiabatically and the orbit to shrink. The effect of the internal structure of the object is negligible, so it can be treated as a point particle. At the end of the inspiral, the particle passes through an innermost stable orbit where adiabaticity breaks down, and it transitions onto a geodesic plunge orbit [27,28,29,30]. In this paper we restrict attention to the adiabatic portion of the motion.

Numerical Relativity: Numerical relativity has not yet been applied to the extreme mass ratio regime. However, given the recent successful simulations in the equal mass regime $\nu = 1$, one could contemplate trying to perform simulations with smaller mass ratios. There are a number of different methods that arise as ν gets small: (i) The orbital timescale and the radiation reaction timescale are separated by the large factor $1/\nu$. The huge number of wave cycles in-piles in practically large scale simulations. (ii) There is a separation of length scales: the compact object is much smaller than the central black hole by a factor $1/\nu$. (iii) Most importantly, in the strong field region near the small object, the piece of the metric perturbation responsible for radiation reaction is of order $1/\nu$, and
since one requires errors in the radiation reaction to be of order \(\sigma\), the accuracy requirement on the metric perturbation is of order \(\sigma^2\). These data imply that numerical simulations will not likely be possible in the extreme mass ratio regime in the foreseeable future, unless major new techniques are devised to speed up computations.

Use of post-Newtonian methods: Approximate waveform s which are qualitatively similar to real waveforms can be obtained using post-Newtonian methods or using hybrid schemes containing some post-Newtonian elements. Although these waveforms are insufficiently accurate for the eventual detection and data analysis of real signals, they have been very useful for approximate scoping out the detectability of inspiral events and the accuracy of parameter measurement, both for LIGO \([4,5]\) and LISA \([14,26]\). They have the advantage that they can be computed relatively quickly.

Black hole perturbation theory (first order): There is a long history of using first-order perturbation theory \([1]\) to compute gravitational waveforms from particles in geodesic orbits around black holes \([3,6,33,34]\). These computations have recently been extended to fully generic orbits \([37,38,39]\). However, first-order perturbation theory is limited to producing "snapshot" waveforms that neglect radiation reaction. Such waveforms fall out of phase with true waveforms after a dephasering time \(\Delta t\). The metric component of the orbital radius of the radiation reaction time scales, and so are of limited utility.

Black hole perturbation theory (second order): One can in principle go to second order in perturbation theory \([41,42,43]\). At this order, the particle's geodesic motion must be corrected by self-force effects describing its interaction with its own spacetime distortion. This gravitational self-force is analogous to the electromagnetic Abraham–Lorentz–Dirac force. Although a formal expression for the self-force is known \([44,45]\), it has proven difficult to translate this expression into a practical computational scheme for Kerr black holes because of the mathematically complex nature of the self-force regularization, which is required. Research into this topic is ongoing; see, for example, the review \([46]\) and Refs. \([47,48,49,50,51,52,53,54]\) for various approaches and recent progress.

When the self-force is correctly computed, second-order perturbation theory will provide a self-consistent framework for computing the orbital motion and the waveform, but only over short time scales. The second order waveform will fall out of phase with the true waveform after only a dephasering time \(\Delta t\). Computed accurate waveforms describing full inspiral therefore requires going beyond black hole perturbation theory.

Use of conservation laws: This well-explored method allows tracking an entire inspiral of certain special classes of orbits. Perturbation theory is used to compute the virial of the radial and angular momentum of the point particle \([37,38,39]\). In the second order, the virial of the radial and angular momentum is conserved.

Adiabatic approximation (leading order): Over the last few years, it has been discovered how to compute inspiral to leading order for generic orbits. The method is based on the Mino's realization \([55]\) that, in the adiabatic limit, one can use the timelike averaged dissipative piece of the second-order self-force, which can be straightforwardly computed from the retarded metric. This is the leading order for generic orbits since there is no known global conservation law associated with the Carter constant \(Q\).

We now recap and assess the status of these various approaches. All of the approaches described above have shortcomings and limitations \([56]\). Suppose that one computes the inspiral motion, either from conservation laws, or from the timelike averaged dissipative piece of the second-order self-force, or from the exact second-order self-force when it becomes available. It is then necessary to compute the radiation generated by this inspiral. One might be tempted to use linearized perturbation theory for this purpose. However, two problems then arise:

\[2\] The source for the linearized Einstein equation must be a conserved stress energy tensor, which for a point particle requires a geodesic orbit.

\[3\] Dvos has argued that snapshot waveforms may still be useful for signal detections in certain limited parts of the \(\mathcal{M}\) \(R\)\(\mathcal{E}\) \(\mathcal{M}\) parameter space, since the phase coherence time is actually 1000s = \(\sim 10\).
As noted above, the use of linearized perturbation theory with nongeodesic sources is theoretically inconsistent. This inconsistency has often been remarked upon, and various ad hoc methods of modifying the linearized theory to get around the difficulty have been suggested or in plenum cited [43,72,73].

A related problem is that the resulting waveform will depend on the gauge chosen for the linearized metric perturbation, whereas the exact waveform must be gauge invariant.

It has often been suggested that these problems can be resolved by going to second order in perturbation theory [43,46]. However, as discussed above, a second order computation will be valid only for a dephasing time, and not for a full inspiral.

Of course, the above problems are not fatal, since the motion is locally very nearly geodesic, and so the inconsistencies and ambiguities are suppressed by a factor relative to the leading order waveform. Nevertheless, it is clearly desirable to have a well defined approximation method that gives a unique, consistent result for the leading order waveform. A loco, for parametrization extraction, it will be necessary to compute the phase of the waveform beyond the leading order. For this purpose it will clearly be necessary to have a more fundamental computational framework.

C. The two time scale expansion method

In this paper we describe an approximation scheme which addresses and resolves all of the theoretical difficulties discussed above. It is based on the fact that the system is evolving adiabatically: the radiation reaction time scale $M = \dot{M}$ is much longer than the orbital time scale M [5]. It uses two-time scale expansions, which are a systematic method for studying the cumulative effect of a small disturbance on a dynamical system that is active over a long time e.g. [74].

The essence of the method is simply an ansatz for the dependence of the metric $g_{ab}(\tau)$ on τ, and an ansatz for the dependence of the orbital motion on τ, that is justified a posteriori by order via substitution into Einstein’s equation. The ansatz for the metric is more complex than the Taylor series ansatz which underlies standard perturbation theory. The two time scale method has roughly the same relationship to black hole perturbation theory as post-Newttonian theory has to perturbation theory of Minkowski spacetime \mathcal{E}. The method is consistent with standard black hole perturbation theory locally in time, at each instant, but extends the domain of validity to an entire inspiral. The method provides a systematic procedure for computing the leading order waveform, which we call the adiabatic waveform, as well as higher order corrections. We call the $O(\alpha)$ corrections the post-1-adiabatic corrections, the $O(\beta)$ corrections post-2-adiabatic, etc., paralleling the standard post-Newtonian theory.

The use of two time scale expansions in the extreme mass ratio regime was first suggested in Refs. [55,75]. The method has already been applied to some simplified models: a point particle in Schwarzschild subject to electron magnetoradiation reaction forces by Pound and Poisson [76], and a comutation of the scalar radiation generated by a inspiraling particle coupled to a scalar field by Mino and Price [77]. We will extend and generalize these analyses, and develop a complete approximation scheme.

There are, independent, parts to the approximate scheme. The first is a two time scale analysis of the inspiralling orbital motion, which is the focus of the present paper. Our formalism enables us to give a rigorous derivation and clarification of the prescription for computing the leading order motion that is valid for all orbits, and resolves some controversies in the literature [78]. It also allows us to systematically calculate the higher order corrections. For these corrections, we restrict attention to inspirals in Schwarzschild, and to circular and equatorial inspirals in Kerr. Fully generic inspirals in Kerr involve a qualitatively new feature: the occurrence of transient resonances (which we will discuss in the forthcoming papers [78,79]).

The second part to the approximate scheme is the application of the two time scale method to the Einstein equation, and a meshing of that expansion to the analysis of the orbital motion. This allows some computation of the observable gravitational waveform, and is described in detail in the forthcoming paper [80]. We briefly sketch this formalism in Sec. 15 below, and give an analytic result for the leading order waveform.

We note that alternative methods of attempting to overcome the problem with standard perturbation theory, and of going beyond adiabatic order, have been developed by Mino [55,72,73,84,85]. These methods have some overlap with the method discussed here, but differ in crucial aspects. We do not believe that these methods provide a systematic framework for going to higher orders, unlike the two-time scale method.

D. Orbital Motion

We now turn to a description of our two time scale analysis of the orbital motion. The first step is to exploit the Hamiltonian structure of the unperturbed, geodesic motion to rewrite the governing equations in terms of generalized action angle variables. We start from the forced
geodesic equation
\[
\frac{d^2 x}{d \tau^2} + \frac{dx}{d \tau} \frac{dx}{d \tau} = \eta^{(1)}_{\alpha} + \eta^{(2)}_{\alpha} + O(\alpha^3): \quad (1.1)
\]
Here \(\alpha \) is proper time and \(\eta^{(1)}_{\alpha} \) and \(\eta^{(2)}_{\alpha} \) are the first order and second order self-accelerations. In Sec. II we augment these equations to describe the leading order backreaction of the inspiral on the mass \(M \) and spin \(a \) of the black hole, and show they can be rewritten as [cf. Eqs. (2.47) below]

\[
\frac{dq}{d \tau} = \mathsf{i} (J) + \eta^{(1)}_{\alpha} (q_{\alpha} q_{\beta} J) + \eta^{(2)}_{\alpha} (q_{\alpha} q_{\beta} J) + O(\alpha^3); \quad (1.2a)
\]

\[
\frac{dJ}{d \tau} = \eta^{(1)}_{\alpha} (q_{\alpha} q_{\beta} J) + \eta^{(2)}_{\alpha} (q_{\alpha} q_{\beta} J) + O(\alpha^3); \quad (1.2b)
\]
Here the variables \(J \) are the three conserved quantities of geodesic motion, with the dependence on the particle mass scaled out, together with the black hole mass and spin parameters:

\[
J = (E = M; L_z = \mathcal{J} = \mathcal{J}^2; M; \alpha); \quad (1.3)
\]
The variables \(q = (q_{\alpha} q_{\beta} q_{\gamma} \mathcal{J}); \alpha = 0 \) are a set of generalized angle variables associated with the \(r-, \theta-, \varphi- \) times in Boyer-Lindquist coordinates, and are denoted more precisely in Sec. IIIC below. The variables \(q_{\alpha}, q_{\beta}, q_{\gamma}, \mathcal{J} \) each increase by \(2 \) after one cycle of motion, corresponding to the second order \(r_\text{and zor} \) order self-accelerations. The functions \(J(0) \) are the fundamental frequencies of geodesic motion in the Kerr metric. The functions \(g^{(1)}, \mathcal{G}^{(1)} \) are currently not known explicitly, but their exact form will not be needed for the analysis of this. They are detemined by the first order self-acceleration \(44, 45 \). Similarly, the functions \(g^{(2)} \) and \(\mathcal{G}^{(2)} \) are currently not known explicitly, and are determined in part by the second order self acceleration \(43, 45, 46, 47, 48, 49 \); see Sec. IIIC for more details.

In Secs. IV (V) below we analyze the differential equations \(42 \) using two time scale expansions. In the nonresonant case, and up to post-1-adiabatic order, the results can be summarized as follows. Approximate solutions of the equations can be constructed via a series of steps:

We define the slow time variable \(\tau = t \). We construct a set of functions \((0)(-) \), \((1)(-) \), \((1)(-) \) and \((1)(-) \) of the slow time. These functions are defined by a set of differential equations that involve the functions \(g^{(1)}, \mathcal{G}^{(1)}, g^{(2)} \) and \(\mathcal{G}^{(2)} \) and which are independent of \(J \) [Eqs. (5.29), (5.31), (5.39), (5.37) below].

We define a set of auxiliary phase variables by

\[
(\tau) = \frac{1}{\eta^{(1)}_0 (\mathcal{J})} + \frac{1}{\eta^{(1)}_0 (\mathcal{J})} + O(\alpha^3); \quad (1.4)
\]

where the \(O(\alpha^3) \) symbol refers to the limit \(\alpha \to 0 \) at \(\tau = \). Finally, the solution to post-1-adiabatic order is given by

\[
q(\tau;) = O(\alpha^3); \quad (1.5a)
\]

\[
J(\tau;) = J(0) + \mathcal{J}(1); \quad (1.5b)
\]

where the \(O(\alpha^3) \) and \(O(\alpha^4) \) symbols refer to \(\alpha \to 0 \) at \(\tau \). Here \(H \) is a function which is periodic in its first two arguments and which can be computed from the function \(G^{(1)} \) [Eq. (5.2) below].

We now turn to a discussion of the implications of the final result \((1.5) \). First, we emphasize that the purpose of the analysis is not to give a convenient, practical scheme to integrate the orbital equations of motion. Such a scheme is not needed, since once the self-acceleration is known, it is straightforward to numerically integrate the forced geodesic equations \((1.1) \). Rather, the main beneft of the analysis is to give an analytic understanding of the first order self-acceleration \(J(0) \) on the limit \(\alpha \to 0 \). This serves two purposes. First, it acts as a foundation for the two time scale expansion of the Einstein equation and the computation of waveforms [Sec. IIIB below and Ref. 60].

Second, it clarifies the utility of different approximations to the self-force that have been proposed, by determining which pieces of the self-force contribute to the adiabatic order and post-1-adiabatic order motions \(53, 66 \). This second issue is discussed in detail in Sec. IV below. Here we give a brief summary.

We consider the motion to adiabatic order, given by the functions \((0)(-) \) and \((0)(-) \). These functions are obtained from the differential equations [Eqs. (5.29), (5.31) and (5.39) below]

\[
\frac{d}{d\tau} (0)(-) \ = \ [g^{(1)}(0)(-)]; \quad (1.6a)
\]

\[
\frac{d}{d\tau} (0)(-) \ = \ G^{(1)}(0)(-); \quad (1.6b)
\]

where \(h::d \) denotes the average over the 2-torus

\[
\mathcal{D} \mathcal{G}^{(1)}(J) \ = \ \frac{1}{2} \int_0^\pi \int_0^\pi \mathcal{Z}^2 dq_{\alpha} dq_{\beta} dq_{\gamma} dq_{\mathcal{J}}; \quad (1.7)
\]

This zeroth order approximation describes the inspiralling motion of the particle. In Sec. IIIC below we show that only the dissipative (the half retarded minus half advanced) piece of the self force contributes to the torus

\[6 \] This phase space average is uniquely determined by the dynamical system, and resolves concerns in the literature about inherent ambiguities in the choice of averaging 73.
average [17]. Thus, the leading order motion depends only on the dissipative self-force, as argued by Min 6 [6]. Our result extends slightly that of Min, since he advocated using an in time average on the right hand side of Eq. (1.6b), instead of the phase space or torus average. The two averaging methods are equivalent for generic geodesics, but not for geodesics for which the ratio of radial and azimuthal periods is a rational number. The time average prescription is therefore correct for generic geodesics, while the result [12] is valid for all geodesics. The effect of the nongeneric geodesics is discussed in detail in Refs. [78,79].

Consider next the subleading, post-1-adiabatic corrections to the inspiral given by the functions (1) and (1). These corrections are important for assessing the accuracy of the adiabatic approximation, and will be needed for accurate data analysis of detected signals. The differential equations determining (1) and (1) are Eqs. (5.39) and (5.37) below. These equations depend on (i) the oscillating (not averaged) piece of the dissipative, first order self-force; (ii) the conserving piece of the first order self-force, and (iii) the torus averaged, dissipative piece of the second order self-force. Thus, all three of these quantities will be required to compute the inspiral to subleading order, as mentioned in Refs. [37,68,89,90]. In particular, knowledge of the full first order self-force will not enable computation of one accurate inspiral until the averaged, dissipative piece of the second order self-force is known. 7

E. Two time scale expansion of the Einstein equations and adiabatic waveform

We now turn to a brief description of the two time scale expansion of the Einstein equations and adiabatic waveforms. More details will be given in the forthcoming paper [80]. We focus attention on a region R of spacetime defined by the conditions (i) The distance from the particle is large compared to its mass; (ii) The distance r from the large black hole is small compared to the inspiral time, r M = ; and (iii) The extent of the region in time covers the entire inspiral in the relativistic regime. In this domain we make an ansatz for the form of the metric that is justified in a posteriori order by order. At distances from the particle, one needs to use a different type of analysis (e.g. black hole perturbation theory for a small black hole), and to mesh that analysis with the solution in the region R by matching in a domain of common validity. This procedure is very well understood and is the standard method for deriving the first order self-force [44,46,91]. It is valid for our metric ansatz [12] below since that ansatz reduces, locally in time at each instant, to standard black hole perturbation theory. Therefore we do not focus on this aspect of the problem here. Similarly, at large distances, one needs to match the solution within R onto an outgoing wave solution in order to read off the asymptotic waveform. 8

Within the region R, our ansatz for the form of the metric in the non-resonant case is

\[g(\tau; x) = g^{(1)}(x) + n g^{(1)}(q, \mu, \nu, \tau) + \cdots \]

\[= g^{(1)}(q, \mu, \nu, \tau) + \cdots \]

Here (1) is the background, Kerr metric. The coordinates (1) can be any set of coordinates in Kerr, subject only to the restriction that @=t is the timelike Killing vector. On the right hand side, t is the slow time variable t = "t, and the quantities q, and g are the values of the orbit's angle variables at the intersection of the inspiralling orbit with the hypersurface t = constant. These are functions of t and of "r, and can be obtained from the solutions (1.4) and (1.5) of the inspiral problem by eliminating the proper time . The result is of the form

\[q_r(t; \mu) = q_r^{(1)}(t) + q_r^{(2)}(t) + \cdots \]

8 This matching is not necessary at the leading, adiabatic order, for certain special choices of time coordinate in the background spacetime, as argued in Ref. [17]. It is needed to higher orders.
The organization of this paper is as follows. In Sec. II, we derive the fundamental equations describing the inspiral of a point particle into a Kerr black hole in terms of general action-angle variables. In Sec. III, we derive a class of general, weakly perturbed dynamical systems of which the inspiral motion in Kerr is a special case. We then study the solutions of this class of systems using two-time scale expansions, first for a single degree of freedom in Sec. IV, and then for the general case in Sec. V. Section VI gives an example of a numerical integration of a system of this kind, and Sec. VII gives the final discussion and conclusions.

G. Notation and Conventions

Throughout this paper we use units with $G = c = 1$. Lower case Greek letters α, β, γ, etc. denote abstract indices in the sense of Wald [32]. We use these indices both for tensors on spacetime and for tensors on the eight-dimensional phase space. Lower case Greek indices ξ, η, ζ, etc. are the middle of the alphabet and denote components of spacetime tensors on a particular coordinate system; they thus transform under spacetime coordinate transformations. They run over $0, 1, 2, 3$. Lower case Greek indices ξ, η, ζ, etc. are from the start of the alphabet and denote labels or coordinates on 8-dimensional phase space that are not associated with coordinates on spacetime. They run over $0, 1, 2, 3$ and do not transform under spacetime coordinate transformations. In Sec. V, and just in that section, indices ξ, η, ζ, etc. are from the second half of the alphabet and run over $1, 2, 3$. Bold face quantities generally denote vectors, as in $J = (J_1, J_2, J_3)$, although in Sec. II the bold face notation is used for differential forms.

II. EXTREME-MASS-RATIO INSPIRALS IN KERR-FORMULATED USING ACTION-ANGLE VARIABLES

In this section we derive the form of the fundamental equations describing the inspiral of a point particle into a Kerr black hole, using action-angle type variables. Our final result is given in Eqs. (2.47) below, and the properties of the solutions of these equations are analyzed in detail in the remaining sections of this paper.

The description of geodesic motion in Kerr in terms of action-angle variables was first given by Schmidt [93], and has been reviewed by Giametta and Babak [94]. We follow closely Schmidt's treatment, except that we work in an eight-dimensional phase space instead of a six-dimensional phase space, thus treating the time and spatial variables on an equal footing. We also clarify the extent to which the fundamental frequencies of geodesic motion in Kerr depend on the mass ratio.
m motion are uniquely determined and gauge invariant, as claimed by Schmidt.

We start in subsection II A by reviewing the geometric definition of action angle variables in Hamiltonian mechanics, which is based on the Liouville-A mold theorem [95]. This definition does not apply to geodesic motion in Kerr, since the level surfaces are not the conserved quantities in the eight dimensional phase space are non-compact. In subsection II B we discuss how generalized action angle variables can be de ned for non-compact level surfaces, and in subsection II C we apply this to give a coordinate-independent construction of generalized action angle variables for generic bound geodesics in Kerr. Subsection II D specializes to Boyer-Lindquist coordinates on phase space, and describes explicitly, following Schmidt [93], the explicit canonical transformation from those coordinates to the generalized action angle variables.

We then turn to using these variables to describe a radiation-reaction driven inspiral. In subsection II E we derive the equations of motion in terms of the generalized action angle variables. These equations de ne a 1-form on the eight dimensional phase space, and do not explicitly exhibit the conservation of rest mass. In subsection II F we therefore switch to a modi ed set of variables and equations in which the conservation of rest mass is explicit. We also augment the equations to describe the backreaction of gravitational radiation passing through the horizon of the black hole.

A. Review of action-angle variables in geometric Hamiltonian mechanics

We start by recalling the standard geometric framework for Hamiltonian mechanics [95]. A Hamiltonian system consists of a 2N-dimensional manifold \(M \) on which there is de ned a smooth function \(H \) (the Hamiltonian), and a non-degenerate 2-form \(\omega \). Dening the tensor \(\omega^{ab} \) by \(\omega_{bc} = \frac{\partial H}{\partial \theta^c} \), the Hamiltonian vector \(\mathbf{v} \) is de ned as

\[
\mathbf{v} = \omega^{ab} \mathbf{\theta}^b \mathbf{H} ;
\]

and the integral curves of this vector \(\mathbf{v} \) give the motion of the system. The two forms \(\omega^{ab} \) is called the symplectic structure. Coordinates \((q^a, p_\alpha)\) with \(1 \leq a \leq N \) are called symplectic coordinates if the symplectic structure can be written as

\[
\omega = dp^a \wedge dq^b ; \text{i.e.} \quad \omega^{ab} = 2 \delta_{a \alpha} p_\alpha.
\]

We shall be interested in systems that possess \(1 \) rst integrals of motion which, together with the Hamiltonian \(H \), form a complete set of \(N \) independent rst integrals. We denote these rst integrals by \(P_1, \ldots, P_N \), where \(P_1 = H \). These quantities are functions on \(M \) for which the Poisson bracket

\[
[f_P, f_H] = \omega^{ab} (r_a P_\alpha)(r_b H) \quad (2.2)
\]

vanish for \(1 \leq a \leq N \). If the rst integrals satisfy the stronger condition that all the Poisson brackets vanish,

\[
f_P \omega_H = 0 \quad (2.3)
\]

for \(1 \leq a \leq N \), then the rst integrals are said to be in involution. If the 1-forms \(\omega_1, \ldots, \omega_N \) are linearly independent, then the rst integrals are said to be independent. A system is said to be completely integrable in some open region \(U \) in \(M \) if there exist \(N \) rst integrals which are independent and in involution at every point of \(U \).

For completely integrable system, the phase space \(M \) is foliated by invariant level sets of the rst integrals. For a given set of values \(p = (p_1, \ldots, p_N) \), we denote the level set

\[
M_p = \{x \in M \mid \omega(x) = p \} \quad (2.4)
\]

which is an \(N \)-dimensional submanifold of \(M \). The level sets are invariant under the Hamiltonian ow by Eq. (2.2). Also the pullback of the symplectic structure to \(M_p \) vanishes, since the vector \(\mathbf{v} \) de ned by

\[
\mathbf{v} = \omega^{ab} \mathbf{\theta}^b P_a \quad (2.5)
\]

for \(1 \leq a \leq N \) form a basis of the tangent space to \(M_p \) at each point, and satisfy

\[
\omega^a \mathbf{v}^b \omega^b \mathbf{v}^a = 0 \quad (2.6)
\]

for \(1 \leq a \leq N \). There exist symplectic coordinates \((q^a, \mathbf{J}_b)\) for \(1 \leq a \leq N \) (action-angle variables) on \(V \) for which the angle variables \(q^a \) are periodic,

\[
q^a + 2\pi q^a \quad (2.7)
\]

and for which the rst integrals depend only on the action variables, \(P = \{P_1, \ldots, P_N\} \) for \(1 \leq a \leq N \).

An explicit and coordinate-invariant prescription for computing a set of action variables \(J_b \) is as follows [95]. A symplectic potential is a 1-form which saties \(d = 0 \). Since the 2-form \(\omega \) is closed, such 1-forms always exist locally. For example, in any local symplectic coordinate system \((q^a, \mathbf{J}_b)\), the 1-form \(\omega_1 = \mathbf{J}_a dq^a \) is a symplectic potential. It follows from the hypotheses of the Liouville-A mold theorem that there exist symplectic potentials that are de ned on a neighborhood of \(M \). The rst homotopy group \(\pi_1(M_p) \) is de ned to be the set of equivalence classes of loops on \(M_p \), where
two loops are equivalent if one can be continuously deformed into the other. Since \(M_p \) is di eomorphic to the \(N \)-torus, this group is isomorphic to \((\mathbb{Z}^N \oplus +)\), the group of \(N \)-tuples of integers under addition. Pick a set of generators \(\{1, \ldots, N\} \) of \(1(M_p) \), and for each loop define
\[
J = \frac{1}{2} Z : (2.6)
\]
This integral is independent of the choice of symplectic potential \(^1\). It is also independent of the choice of loop in the equivalence class of the generator of \(1(M_p) \), since if \(Z \) and \(Z^0 \) are two equivalent loops, we have
\[
\begin{align*}
Z & \quad Z^0 \\
\frac{d}{dt} = 0 & \quad \frac{d}{dt} = 0 : (2.7)
\end{align*}
\]
Here \(R \) is a 2-dimensional surface in \(M_p \) whose boundary is \(\partial R \), we have used Stokes' theorem, and in the last equality we have used the fact that the pullback of \(J \) to the level set \(M_p \) vanishes.

Action-angle variables for a given system are not unique \(^2\). There is a freedom to redefine the coordinates via
\[
q_i \to A q_i ; \quad J_i \to B J_i \quad (2.8)
\]
where \(A \) is a constant matrix of integers with determinant 1, and \(A B = 1 \). This is just the freedom present in choosing a set of generators of the group \(1(M_p) \) \((\mathbb{Z}^N \oplus +)\). Fixing this freedom requires the specification of some additional information, such as a choice of coordinates on the torus; once the coordinates \(q \) are chosen, one can take the loops \(J \) to be the curves \(q = \text{constant} \). There is also a freedom to redefine the origin of the angle variables separately on each torus:
\[
q_i \to q_i + \frac{\partial \Omega(J)}{\partial J_i} \quad ; \quad J_i \to J_i \quad (2.9)
\]
Here \(Z(J) \) can be an arbitrary function of the action variables.

B. Generalized action-angle variables for non-compact level sets

One of the crucial assumptions in the Liouville-Arnold theorem is that the level set \(M_p \) is compact. Unfortunately, this assumption is not satisfied by the dynamical system of bound orbits in Kerr which we discuss in Sec. IIIC below, because we will work in the 8-dimensional phase space and the motion is not bounded in the time direction. We shall therefore use instead a generalization of the Liouville-Arnold theorem to non-compact level sets, due to Fiorani, Giaquinta and Sardanashvily \(^3\).

Consider a Hamiltonian system which is completely integrable in a neighborhood \(U \) of a connected level set \(M_p \), for which the \(N \) vector fields \((\mathbb{Z}^N \oplus +)\) are complete on \(U \), and for which the level sets \(M_{p'} \) foliating \(U \) are all di eomorphic to one another. For such systems Fiorani et al. \(^4\) prove that

There is an integer \(k \) with \(0 \leq k \leq N \) such that the level set \(M_{p'} \) is di eomorphic to the product \(T^k R^N \), where \(R \) is the set of real numbers. Moreover, there is a neighborhood \(V \) of \(M_p \) which is di eomorphic to the product \(T^k R^N \) \((\mathbb{Z}^N \oplus +)\), where \(B \) is an open ball.

There exist symplectic coordinates \((q, J)\) for which the action variables \(q \) are periodic,
\[
q + 2 \pi n \quad (n \in \mathbb{Z}) \quad (2.10)
\]
while the \(k \) th integrals depend only on the action variables, \(p = p(J_1, \ldots, J_N) \) for \(1 \leq k \leq N \).

Thus, there are \(k \) compact dimensions in the level sets, and \(N - k \) non-compact dimensions. In our application to Kerr below, the values of these parameters will be \(k = 3 \) and \(N = 1 \).

The freedom in choosing generalized action-angle variables is larger than the corresponding freedom for action-angle variables discussed above. The \(k \) th action variables can be computed in the same way as before, via the integral \((2.8)\) evaluated on a set of generators \(\{1, \ldots, N\} \) of \(1(M_p) \), which in this case is isomorphic to \((\mathbb{Z}^k \oplus +)\).

This prescription is unique up to a group of redefinitions of the form \(\chi^k \equiv \frac{\partial \Omega(J)}{\partial J_i} \) \((2.9)\) above,
\[
q_i \to A q_i ; \quad J_i \to B J_i \quad (2.11)
\]
for \(1 \leq i \leq k \), where the \(k \) \(k \times k \) matrix \(A \) is a constant matrix of integers with determinant 1, and \(A B = 1 \). There is additional freedom present in the choice of the \(k \) action variables \(J_1, \ldots, J_k \). As a consequence, the remaining freedom in choosing generalized action-angle variables consists of the transformations \((2.9) \) discussed earlier, together with transformations of the form
\[
q_i \to \frac{\partial \Omega(J)}{\partial J_i} \quad (2.12)
\]
where \(A \) and \(B \) are constant real \(N \times N \) matrices with \(A B = 1 \) such that \(J_1, \ldots, J_k \) are preserved.

In generalized action-angle variables, the equations of motion take the simple form
\[
q_i = \frac{\partial \Omega(J)}{\partial J_i} \quad (2.12)
\]

\(^1\) The type of argument used in Ref. \(^2\) can be used to show that the pullback to \(M_p \) of the difference between two symplectic potentials is exact since it is closed.

\(^2\) For a detailed discussion of this see reference [citation needed]
and

\[J = \frac{\partial H (J)}{\partial q} = 0; \quad (2.13) \]

We define the quantities

\[(J) \frac{\partial H (J)}{\partial J}; \quad (2.14) \]

which are angular frequencies for \(k \geq 1 \) but not for \(k + 1 \leq N \). The solutions of the equations of motion are then

\[q (t) = (J_0) t + q_0; \quad (2.15a) \]
\[J (t) = J_0; \quad (2.15b) \]

for some constants \(J_0 \) and \(q_0 \).

C. A application to bound geodesic motion in Kerr

We now apply the general theory discussed above to give a coordinate-invariant definition of action-angle variables for a particle on a bound orbit in the Kerr spacetime. We denote by \((M, g_{\alpha \beta})\) the Kerr spacetime, and we denote by \(x^\alpha \) and \(x^\beta \) the timelike and axial Killing vector fields. The cotangent bundle over \(M\) forms an 8-dimensional phase space \(M = T M\). Given any coordinate system \(x \) on the Kerr spacetime, we can define a coordinate system \((x^\alpha, p^\alpha)\) on \(M\) such that the point \((x^\alpha, p^\alpha)\) corresponds to the covector or one form \(p^\alpha \) at \(x\) in \(M\). The natural symplectic structure on \(M\) is then defined by demanding that all such coordinate systems \((x^\alpha, p^\alpha)\) be symplectic. The Killing vector fields \(\xi^\alpha\) and \(\eta^\alpha\) on \(M\) have natural extensions to vector fields on phase space which Lie derive the symplectic structure.

Consider now a particle on a bound geodesic orbit. A Hamiltonian \(H\) on \(M\) that generates geodesic motion is given by

\[H (x^\alpha, p^\alpha) = \frac{1}{2} g (x^\alpha, p^\alpha) p^\alpha; \quad (2.16) \]

This definition is independent of the choice of coordinate system \(x\). If we interpret \(p^\alpha\) to be the 4-momentum of the particle, then the conserved value of \(H\) is \(\Sigma = 2\), and the evolution parameter \(\tau\) is the affine parameter \(\tau = \int \sqrt{g} \) where \(\sqrt{g}\) is proper time.

As is well known, geodesics on \(K\) possess three real integrals, the energy \(E\), the \(z\)-component of angular momentum \(L_z\), and \(C\) constant \(Q = \int Q_{\alpha \beta} p^\alpha p^\beta\) where \(Q_{\alpha \beta}\) is a Killing tensor [28]. Together with the Hamiltonian \(H\), we therefore have four independent constraints:

\[F = (p_0 p_1 p_2 p_3) = (H, E, L_z, Q); \quad (2.17) \]

An explicit computation of the 4-form \(dH \wedge dE \wedge dL_z \wedge dQ\) on \(M\) shows that it is non vanishing for bound orbits except for the degenerate cases of circular (ie. constant Boyer-Lindquist radial coordinate) and equatorial orbits. Also the various Poisson brackets \(\{P, q\}\) vanish: \(\{P, g\}\) and \(\{P, H\}\) vanish since \(a\) and \(\theta\) are Killing fields, \(\{P, L_z\}\) vanishes since these Killing fields commute, and \(\{P, Q\}\) and \(\{P, \phi\}\) vanish since the Killing tensor is invariant under the \(\alpha\) generated by \(a\) and \(\theta\).

Therefore for generic orbits the theorem due to Flanagan et al. discussed in the last subsection applies. The relevant parameter values are \(k = 3\) and \(N = 4\), since the level sets \(M_p\) are non-compact in the \(\tau\) direction only. Thus geodesic motion can be parametrized in terms of general action-angle variables.

We next discuss how to resolve in this context the non-uniqueness of the choice of generalization action-angle variables discussed in the last subsection. Consider first the freedom \((2.10)\) associated with the choice of generators of \(\{M_p\}\). One of these generators can be chosen to be an integral curve of the extension to \(M\) of the axial Killing field \(a\). The other two can be chosen as follows: Let \(M = M_k\) be the natural projection from phase space \(M\) to spacetime \(M_k\) that takes \((x, p)\) to \(x\). A loop \((x(t), p(t))\) in the level set \(M_p\) then projects to the curve \((x(t), M_p)\) in \(M_k\). Requiring that this curve intersect the boundary of \((M_p)\) only twice determines the two other generators of \(\{M_k\}\).

The resulting three generators coincide with the generators obtained from the motions in the \(r\) and \(\theta\) directions in Boyer-Lindquist coordinates [27]. We denote the resulting generalized action-angle variables by \((q_\theta, q_\phi, q_\psi, J_1, J_2, J_3, J_4\)).

The remaining ambiguity \((2.11)\) is of the form

\[J_1 = J_1; \quad J_2 = J_2; \quad J_3 + \sqrt{\psi} J_4; \quad (2.18) \]

where \(i\) runs over \(r, \phi, \theta\), and the parameters \(\psi\) and \(\phi\) are arbitrary. The corresponding transformation of the frequencies \((2.14)\) is

\[t = \frac{1}{t}; \quad t = i; \quad t = \sqrt{\psi} t; \quad (2.19) \]

A portion of this ambiguity (the portion given by \(\psi = 1\)) is associated with the choice of rotational frame and \(t\) where \(\sqrt{\psi}\) is an angular velocity. It is not possible to eliminate this rotational-frame ambiguity using only the spacetime geometry in a neighborhood of the orbit. In this sense, the action angle variables are not uniquely determined by local geometric information. However, we can resolve the ambiguity using global geometric information, by choosing

\[J_t = \frac{1}{2} \frac{d}{dt}; \quad (2.20) \]

12 One can check that the two other assumptions in the theorem listed in the second paragraph of Sec. 25.18 are satisfied.
13 This excludes, for example, loops which wind around twice in the \(r\) direction and once in the \(\phi\) direction.
The Killing field ξ is an integral curve of length L of the extension to \mathcal{M}^4 of the timelike Killing field ξ^a. The definition of time-like and axial Killing fields is independent of the choice of such a curve ξ and of the choice of symplectic potential.

To summarize, we have given a coordinate-invariant definition of the generalized action-angle variables $(q_2; q_3; q_4; J_1; J_2; J_3)$ for generic bound orbits in Kerr. These variables are uniquely determined up to relabeling and up to the residual ambiguity (2.3b). A similar construction has been given by Schmidt [93], except that Schmidt first projects out the time direction of the level sets, and then defines three action variables $(J_3; J; J_1)$ and three angle variables $(q; q_3; q_4)$.

D. Explicit expressions in terms of Boyer-Lindquist coordinates

In Boyer-Lindquist coordinates $(t;r; \theta; \phi)$, the Kerr metric is

\[
\begin{align*}
\text{ds}^2 &= 1 - \frac{2M}{r} \, dt^2 + \frac{dt^2}{r^2} - \frac{dr^2}{r^2} + \frac{dz^2}{(1 - \frac{2M}{r})^2} \\
&= r^2 + a^2 \cos^2 \theta - \frac{r^2}{2M} + \frac{a^2 r}{2} \sin^2 \theta \, d\phi - \frac{4M a r}{r^2 - a^2 \cos^2 \theta} \, dt \, d\phi; \quad (2.21)
\end{align*}
\]

where

\[
\begin{align*}
&= r^2 + a^2 \cos^2 \theta - \frac{r^2}{2M} + \frac{a^2 r}{2}, \quad (2.22)
\end{align*}
\]

and M and a are the black hole mass and spin parameters. The timelike and axial Killing fields are $\xi^a = \partial_t$ and $\xi^a = \partial_\phi$, and so the energy and angular momentum are

\[
E = -p = t p, \quad (2.23a)
\]

and

\[
L_z = p = p \phi. \quad (2.23b)
\]

The Carter constant is given by [93]

\[
Q = p^2 + a^2 \cos^2 \theta - \frac{p^2}{r} + \cot^2 \theta - \frac{p^2}{r} \quad (2.23c)
\]

and the Hamiltonian (2.16) is

\[
H = \frac{1}{2} p_\phi^2 + \frac{1}{2} p_\theta^2 + \frac{p_\phi^2}{2M} + \frac{a \sin^2 \theta \, p_\phi^2}{2} + \frac{(r^2 + a^2)^2 p_\phi + a p_\phi^2}{2}; \quad (2.23d)
\]

Following Schmidt [93], we can obtain an invertible transformation from the Boyer-Lindquist phase space coordinates $(x; p)$ to the generalized action angle variables $(q; J)$ as follows. Equations (2.23) can be inverted to express them in terms of $(x; p)$ and the first four integrals,

\[
\begin{align*}
P &= (H; E; L_z; Q) = \frac{1}{2} E^2 + E \cdot L_z \cdot Q \quad (2.24)
\end{align*}
\]

up to some signs [98];

\[
\begin{align*}
p_\phi &= E; \quad p = L_z, \quad p_\phi = p \frac{V (r)}{r}; \quad p = p \frac{V (r)}{r}; \quad (2.25)
\end{align*}
\]

Here the potentials $V (r)$ and $V (\phi)$ are defined by

\[
\begin{align*}
V (r) &= \frac{(r^2 + a^2) E}{a L_z} - \frac{2}{r^2} + \frac{L_z}{a} \frac{E}{J} + Q; \quad (2.26a)
\end{align*}
\]

\[
\begin{align*}
V (\phi) &= Q \left(- \frac{2}{E^2} a^2 + \frac{L_z^2}{\sin^2 \theta} \right) \quad (2.26b)
\end{align*}
\]

Using these from above together with the symplectic potential $Q = p \, dx$ in the definitions (2.25) and (2.26) gives

\[
\begin{align*}
J_\phi &= \frac{1}{2} I \frac{V (r)}{r} \, dr \quad (2.27a)
\end{align*}
\]

\[
\begin{align*}
J &= \frac{1}{2} I \frac{V (\phi)}{r} \, d\phi \quad (2.27b)
\end{align*}
\]

\[
\begin{align*}
J &= \frac{1}{2} p \, d = L_z \quad (2.27c)
\end{align*}
\]

\[
\begin{align*}
J_\phi &= \frac{1}{2} \left(\frac{Z}{2} \right)^2 \frac{p_\phi}{xd} = E \quad (2.27d)
\end{align*}
\]

These expressions give the action variables as functions of the new integrals, $J = J (P)$. The theorem discussed in Sec. III above guarantees that these relations can be inverted to give

\[
\begin{align*}
P &= P (J) \quad (2.28)
\end{align*}
\]

Next, to obtain expressions for the corresponding generalized angle variables, we use the canonical transformation from the symplectic coordinates $(x; p)$ to $(q; J)$ associated with the general solution of the Hamilton-Jacobi equation

\[
\begin{align*}
H \cdot \frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial \theta} = 0; \quad (2.29)
\end{align*}
\]

A s shown by Carter [92], this equation is separable and the general solution can be written in terms of the first

\[
\text{As indicated by the signs in Eq. (2.31), there are actually four different solutions, one on each of the four coordinate patches on which $(x; P)$ are good coordinates, namely $\text{sign}(p_x) = 1$, $\text{sign}(p_{\phi}) = 1$.}
\]
integrals P

$$S(x;P) = H + W(x;P)$$ \(2.30\)

where $H = \dot{r}^2 = 2,$

$$W(x;P) = Et + L_z = W_r(r)W(\cdot)$$ \(2.31\)

and

$$W(r) = \frac{2r \ p}{dr V_r};$$ \(2.32\)

Using the relation \(2.28\) the function W can be expressed in terms of the Boyer-Lindquist coordinates x and the action variables J:

$$W = W(x;J);$$ \(2.33\)

This is a type II generating function that generates the required canonical transformation from $(x; p)$ to $(q; J)$:

$$p = \frac{\partial W}{\partial x}(x; J)$$ \(2.35a\)

$$q = \frac{\partial W}{\partial J}(x; J);$$ \(2.35b\)

Equation \(2.35a\) is already satisfied by virtue of the definition \(2.31\) of W together with Eqs. \(2.25\). Equation \(2.35b\) furnishes the required formula for the generalized action variables q.16

Although it is possible in principle to express the rest integrals P in terms of the action variables J using Eqs. \(2.27\), it is not possible to obtain explicit analytic expressions for $P(J)$. However, as pointed out by Schm idt \(2.33\), it is possible to obtain explicit expressions for the partial derivatives $\partial P/\partial J$ and this is sufficient to compute the frequencies. We review this in appendix A.

F. Application to slow inspiral motion in Kerr

The geodesic equations of motion in terms of the generalized action variables $(q; J)$ are [cf. Eqs. \(2.12\) above]

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} \frac{dx}{dt} = \frac{\partial F}{\partial x}$$ \(2.40\)

for $0 < 3$. Here τ is proper time and m is the mass of the particle. In this section we derive the modifications to these equations required to describe the radiation-reaction driven inspiral of a particle in Kerr. Our result is of the form

$$\frac{dq}{dt} = (J) + \frac{1}{r} \mathcal{J}(q;J);$$ \(2.37a\)

$$\frac{dJ}{dt} = \frac{2}{r} \mathcal{F}(q;J);$$ \(2.37b\)

We will derive explicit expressions for the forcing terms \mathcal{F} and \mathcal{F} in these equations.

The equation of motion for a particle subject to a self-acceleration \mathcal{F} is

$$\frac{d^2x}{dt^2} + \frac{dx}{dt} \frac{dx}{dt} = \frac{\partial F}{\partial x} = \frac{\partial F}{\partial p}$$ \(2.38\)

Rewriting this second order equation as two first order equations allows us to use the Jacobian of the coordinate transformation $fx; p q ! fq; J \ g$ to relate the forcing terms for the two sets of variables:

$$\frac{dx}{dt} = q, p;$$ \(2.39a\)

$$\frac{dp}{dt} = \frac{1}{2} \ g, p, q + \frac{1}{2} \ a;$$ \(2.39b\)

We start by deriving the equation of motion for the action variables J. Taking a first derivative with respect to J of the relation $J = J(x; p)$ and using Eqs. \(2.39\) gives

$$\frac{dJ}{dt} = \frac{\partial J}{\partial x} p + \frac{\partial J}{\partial p}$$ \(2.40a\)

$$= \frac{1}{2} \frac{\partial J}{\partial x} 1 \ g, p, 1 \ g, p + \frac{\partial J}{\partial p} a;$$ \(2.40b\)

The term in square brackets must vanish identically since J is conserved in the absence of any acceleration \mathcal{F}. Rewriting the second term using $J = J(p)$ and the chain rule gives an equation of motion of the form \(2.37b\), where the forcing terms \mathcal{F} are

$$\mathcal{F} = \frac{\partial J}{\partial p} p, \mathcal{F} x$$ \(2.41\)

Here the subscript x on the round brackets means that the derivative is to be taken holding x fixed. When the sum over all is evaluated the contribution from $P_0 = H$ vanishes since $a = 0$, and we obtain using Eqs. \(2.37\) and \(2.27\)

$$F_\tau = a_\tau;$$ \(2.42a\)

$$F_r = \frac{\partial J}{\partial E} a_r + \frac{\partial J}{\partial q} a_q + \frac{\partial J}{\partial l_z} a;$$ \(2.42b\)

$$F_\tau = \frac{\partial J}{\partial E} a_r + \frac{\partial J}{\partial Q} a_q + \frac{\partial J}{\partial L_z} a;$$ \(2.42c\)

$$F_\tau = a;$$ \(2.42d\)
Here we have defined $a_0 = 2Q$ and the various coefficients $\vartheta_J \equiv \vartheta_P$ are given explicitly as functions of P in Appendix A.

We use a similar procedure to obtain the equation of motion (2.37) for the generalized angle variables q. Differentiating the relation $q = q(x, p)$ with respect to x and combining with the two first order equations of motion (2.35) gives

$$\frac{dq}{dt} = \frac{\partial q}{\partial x} x + \frac{1}{2} \frac{\partial q}{\partial p} p \cdot p + \frac{1}{3} \frac{\partial q}{\partial x} a; \quad (2.43)$$

By comparing with Eq. (2.36a) in the case of vanishing acceleration we see that the term in square brackets is J. This gives an equation of motion of the form (2.37), where the where the forcing term f is

$$f = \vartheta_J \equiv \vartheta_P \cdot x; \quad (2.44)$$

Using the expression (2.35a) for the angle variable q together with $J = q(p)$ gives

$$\frac{\partial q}{\partial P} = \frac{\partial P}{\partial x} \frac{\partial P}{\partial J} \frac{\partial^2 W}{\partial P \partial P} + \frac{\partial W}{\partial P} \frac{\partial J}{\partial P}; \quad (2.45)$$

This yields the forcing term

$$f = a \frac{\partial P}{\partial x} \frac{\partial P}{\partial J} \frac{\partial^2 W}{\partial P \partial P} + \frac{\partial W}{\partial P} \frac{\partial J}{\partial P}; \quad (2.46)$$

In this expression the first two factors are the same as the factors which appeared in the forcing term (2.31) for the action variables. The quantities $\vartheta_P \equiv \vartheta_J$, $\vartheta_P \equiv \vartheta_J$, and $\vartheta^J \equiv (\vartheta_P \vartheta_P)$ can be evaluated explicitly as functions of P using the techniques discussed in Appendix A. The remaining factors in Eq. (2.46) can be evaluated by differentiating the formula (2.31) for Hamilton's principal function W and using the formulae (2.28) for the potentials V_r and V_l.

F. Rescaled variables and incorporation of backreaction on the black hole

We now augment the action-angle equations of motion (2.37) in order to describe the backreaction of the gravitational radiation on the black hole. We also modify the equations to simplify and make explicit the dependence on the mass of the particle. The resulting modified equations of motion, whose solutions we will analyze in the remainder of the paper, are

$$\frac{dq}{dt} = \vartheta_J (q, p) + \vartheta^J (q, p); \quad (2.47)$$

Here runs over $1, 2, 3, 4$, i, j run over $1, 2, 3$, A, B run over $1, 2, 3$, A, B are functions of the arguments, but not all functions of the arguments which are functions of the arguments will be needed for this paper (and are currently unknown aside from ϑ_J).

Our new equations (2.47) are similar in structure to the original equations (2.37), but there are a number of differences:

We have switched the independent variable in the differential equations from a new parameter to proper time $t = \tau$.

We have introduced the ratio

$$n = \frac{\vartheta_J}{M}; \quad (2.48)$$

of the particle mass and black hole mass M, and have expanded the forcing term s as a power series in n.

The forcing terms $q^{(1)}, q^{(2)}, G^{(1)}, G^{(2)}$, and G_A depend only on the angle variables q and q^J, and are independent of q and q^J.

Rather than evolving the action variables J, we evolve two different sets of variables P_i and M_A.

The first of these sets consists of two of the first integrals of the motion, with the dependence on the mass of the particle scaled out:

$$P_i = (P_i, pF_j, P_3) \quad (E = rL = \vartheta^2); \quad (2.49)$$

The second set consists of the mass and spin parameters of the black hole, which gradually evolve due to absorption of gravitational radiation by the black hole:

$$M_A = (M_1, pM_2) = (M, a); \quad (2.50)$$

We now turn to a derivation of the modified equations of motion (2.47). The derivation consists of several steps. First, since the mapping (2.37) between the first integrals P and the action variables J is a bijection, we can use...
the P as dependent variables instead of J.17 Equation (2.37a) is unchanged except that the right hand side is expressed as a function of P instead of J. Equation (2.37b) is replaced by

$$\frac{dP}{dt} = 2 \\frac{\partial P}{\partial p} + q ;$$ \hspace{1cm} (2.51a)

Second, we switch to using modified versions P' of the s integrals P with the dependence on the mass scaled out. These rescaled s integrals are defined by

$$P' = \left(\frac{H}{E}; E; L_3; Q \right)$$

\hspace{1cm} (2.52)

We also change the independent variable from a parameter to proper time t. This gives from Eqs. (2.37) and (2.44) the system of equations

$$\frac{dq}{dt} = \frac{1}{n} (\partial P) \pm \frac{\partial q}{\partial p} a ;$$ \hspace{1cm} (2.53a)

$$\frac{dP'}{dt} = \frac{1}{n} \frac{\partial P}{\partial p} a ;$$ \hspace{1cm} (2.53b)

where we have defined $n = (2;1;1;2)$. The first, we analyze the dependence on the mass of the right hand sides of these equations. Under the transformation $(x ; p)$ to $(x ; sp)$ for $s > 0$, we obtain the following transformation laws for the s integrals (2.24), the action variables (2.27), and Hamilton's principal function (2.31):

$$P' \rightarrow s^n P'$$ \hspace{1cm} (2.54a)

$$J' \rightarrow sJ ;$$ \hspace{1cm} (2.54b)

$$W' \rightarrow sW ;$$ \hspace{1cm} (2.54c)

From the definitions (2.27) and (2.35a) of the angular frequencies and the angle variables q, we also deduce

$$\frac{dq}{dt} = \frac{1}{n} (\partial P) \pm \frac{\partial q}{\partial p} a ;$$ \hspace{1cm} (2.55a)

$$q \rightarrow q' ;$$ \hspace{1cm} (2.55b)

If we write the angular velocity as a function (P') of s integrals P in terms of the scalings (2.54a) and (2.55a) that the right hand side of Eq. (2.53a) is

$$\frac{dP}{dt} = \frac{1}{n} \frac{\partial P}{\partial p} a ;$$ \hspace{1cm} (2.56)

This quantity is thus independent of at xed P', as we would expect.

17 Note that since the variables J are adiabatic invariants, so are the variables P. Similarly, if we write the angle variable q as a function $(q'(x ; p))$ of x and p, then the scaling law (2.55b) implies that $q(x ; sp) = q(x ; p)$, and it follows that the coefficient of the 4-acceleration in Eq. (2.53a) is

$$\frac{\partial q}{\partial p} (x ; p) = \frac{\partial q}{\partial p} (x ; u) = \frac{\partial q}{\partial p} (x ; u) ;$$ \hspace{1cm} (2.57)

where u is the 4-velocity. This quantity is also independent of at xed P'. We will denote this quantity by $f(q ; p')$. It can be obtained explicitly by evaluating the coefficient of a in Eq. (2.46) at $P' = P ; p = u$. A similar analysis shows that the driving term on the right hand side of Eq. (2.53a) can be written in the form

$$f(q ; P) a (0; a ; 2Q ; u a) ;$$ \hspace{1cm} (2.58)

The resulting rescaled equations of motion are

$$\frac{dq}{dt} = f(q ; P) a ;$$ \hspace{1cm} (2.59a)

$$\frac{dP}{dt} = f(q ; p') a ;$$ \hspace{1cm} (2.59b)

Note that this formulation of the equations is completely independent of the mass of the particle (except for the dependence on of the radiation reaction acceleration a which we will discuss below).

Fourth, since $P_0 = H = 2s^2$ the rescaled variable is $P_0 = 1=2$ from Eq. (2.52). Thus we can drop the evolution equation for P_0, and retain only the equations for the remaining rescaled s integrals

$$P'_1 = (P'_1 ; p'_2 ; P'_3) = (E ; L_3 ; Q) ;$$ \hspace{1cm} (2.60)

We can also omit the dependence on P_0 in the right hand sides of the evolution equations (2.53), since P_0 is a constant. This yields

$$\frac{dq}{dt} = f(q ; P'_1) a ;$$ \hspace{1cm} (2.61a)

$$\frac{dP'}{dt} = f(q ; P'_1) a ;$$ \hspace{1cm} (2.61b)

Fifth, the self-acceleration of the particle can be expanded in powers of the mass ratio $\frac{m}{M}$ as

$$a = a^{(1)} + a^{(2)} + a^{(3)} \ldots$$ \hspace{1cm} (2.62)

Here $a^{(1)}$ is the leading order self-acceleration derived by Minos, Sasaki and Tanaka [44] and by Quinn and Wald [45], discussed in the introduction. The subleading self-acceleration $a^{(2)}$ has been computed in Refs. 84, 85, 86.
The accelerations \(a^{(1)}\) and \(a^{(2)}\) are independent of \(\theta\) and thus depend only on \(\mathbf{x}\) and \(\mathbf{u}\), or, equivalently, on \(q\) and \(P_i\). This yields the system of equations

\[
\frac{dq}{dt} = \left(P_j \right) + \left(q \left(q \right) ; P_j \right) + n^2 \left(q \left(q \right) ; P_j \right) + O \left(n^3 \right); \quad \quad \quad \quad (2.63a)
\]

\[
\frac{dP_i}{dt} = \left(G_{i}^{(1)} \left(q \right) ; P_j \right) + n^2 \left(G_{i}^{(2)} \left(q \right) ; P_j \right) + O \left(n^3 \right); \quad \quad \quad \quad (2.63b)
\]

Here the forcing terms are given by

\[
g^{(s)} = f \left(a^{(s)} \right); \quad \quad (2.64a)
\]

\[
G^{(s)} = F \left(a^{(s)} \right); \quad \quad (2.64b)
\]

for \(s = 1; 2\).

The formula \(2.62\) for the self-acceleration, with the explicit formula for \(a^{(1)}\) from Refs. \([44, 45]\), is valid when one chooses the Lorentz gauge for the metric perturbation. The form of Eq. \(2.27\) is also valid in a variety of other gauges; see Ref. \([43]\) for a discussion of the gauge transformation properties of the self-force. However, there exist gauge choices which are incompatible with Eq. \(2.62\), which can be obtained by making \(\theta\)-dependent gauge transformations. We shall restrict attention to classes of gauges which are consistent with our ansatz \(2.23\) for the metric, as discussed in Sec. 1.16 above. This class of gauges has the properties that \((i)\) the deviation of the metric from Kerr is \(\theta\)-over the entire inspiral, and \((ii)\) the expansion \(2.62\) of the self-acceleration is valid. These restrictions exclude, for example, the gauge choice which makes \(a^{(1)}\) \(0\), since in that gauge the particle does not inspiral, and the metric perturbation must therefore become of order unity over an inspiral time. We note that alternative classes of gauges have been suggested and explored by Mino \([52, 71, 81, 83]\).

Sixth, from the formula \(2.35\) for the generalised angular variables \(q_i\) together with Eqs. \(2.31\) and \(2.27\) it follows that \(q_i\) can be written as

\[
q_i = t + f_i(t; \mathbf{P}) \quad (2.65)
\]

for some function \(f_i\). All of the other angle and action variables are independent of \(t\). Therefore the vector \(\mathbf{v} = \mathbf{v}(t)\) on phase space is just \(\mathbf{v} = \mathbf{v}(q)\); the symmetry \(t\) ! \(t + t\) with \(x^i\), \(\mathbf{x}\) xed is the same as the symmetry \(q_i, q_i, q_j, q_j\) and \(J\), \(\mathbf{J}\) xed. Since the self-acceleration as well as the background geodesic motion respect this symmetry, all of the terms on the right-hand side of Eqs. \(2.63\) must be independent of \(q_i\). A similar argument shows that they are independent of \(q_j\).

This gives

\[
\frac{dq_i}{dt} = \left(P_j \right) + \left(q \left(q \right) ; P_j \right) + n^2 \left(q \left(q \right) ; P_j \right) + O \left(n^3 \right); \quad \quad \quad \quad (2.66a)
\]

\[
\frac{dP_i}{dt} = \left(G_{i}^{(1)} \left(q \right) ; P_j \right) + n^2 \left(G_{i}^{(2)} \left(q \right) ; P_j \right) + O \left(n^3 \right); \quad \quad \quad \quad (2.66b)
\]

where \(q\) \((q; q_j)\).

Seventh, consider the evolution of the black hole background. So far in our analysis we have assumed that the particle moves in a xed Kerr background, and is subject to a self-force \(a = a^{(1)} + n^2 a^{(2)} + O \left(n^3 \right)\). In reality, the center of mass, \(m\), on entum and spin angular m on entum of the black hole will gradually evolve due to the gravitational radiation passing through the event horizon. The total change in the mass \(M\) of the black hole over the inspiral time scale \(M = M^\infty\). It follows that the time scale for the black hole mass to change by a factor of order unity is \(M = M^\infty\). The same time scale governs the evolution of the other black hole parameters.

This effect of evolution of the black hole background will alter the inspiral at the lowest leading order (post-1-adaptive) in our two-time scale expansion. A complete calculation of the inspiral to this order requires solving simultaneously for the motion of the particle and the gradual evolution of the background. We introduce the extra variables

\[
M_A = (M_1; M_2) = (M; \mathbf{a}); \quad \quad (2.67)
\]

the mass and spin parameters of the black hole. We modify the equations of motion \(2.29\) by showing explicitly the dependence of the frequencies \(\omega\) and the forcing functions \(q^{(n)}\) and \(G^{(n)}\) on these parameters (dependence has up to now been implicit). We also add to the system of equations the following evolution equations for the black hole parameters:

\[
\frac{dM_A}{dt} = n^2 G_A \left(q_i \left(q \right); P_j \right) M_B^{(2)} + O \left(n^3 \right); \quad \quad (2.68)
\]

where \(A = 1; 2\). Here \(G_A\) are some functions describing the uxes of energy and angular m on entum down the horizon, whose explicit form will not be important for our analyses. They can in principle be computed using, for example, the techniques developed in Ref. \([100]\).

The reason for the prefactor of \(n^2\) is that the evolution time scale for the black hole parameters is \(M = M^\infty\), as discussed above. The functions \(G_A\) are independent of \(q_i\) and \(q_j\) for the reason discussed near Eq. \(2.66\): the uxes through the horizon respect the sym m etry of the background spacetime. Finally, we have omitted in the set of new variables \(2.67\) the orientation of the total
angular momentum, the location of the center of mass, and the total linearmomentum of the sys-tem, since these parameters are not coupled to the inspiral motion at the leading order. However, it would be possible to enlarge the set of variables M_3 to include these parameters without modifying in any way the analyses in the rest of this paper.

These modifications result in the na1 system of equations (2.44).

Finally, we note that an additional effect arises due to the fact that the action-angle variables we use are defined, at each instant, to be the action-angle variables associated with the black hole background at that time. In other words, the coordinate transformation on phase space from (x,p) to (q,J) acquires an additional dependence on time. Therefore, the Jacobian of this transformation, which was used in deriving the evolution equations (2.37), has an extra term. However, the corresponding correction to the evolution equations can be absorbed into a redefine of the forcing term $g^{(2)}$.

G. Conservative and dissipative pieces of the forcing terms

In this subsection, we define a splitting of the forcing terms g and G_i in the equations of motion (2.44) into conservative and dissipative pieces, and review some properties of this decomposed position derived by Minn [61].

We start by defining some notation. Suppose that we have a particle at a point P with four velocity u, and that we are given a linearized metric perturbation h which is a solution (not necessarily the retarded solution) of the linearized Einstein equation equation for which the source is a delta function on the geodesic determined by P and u. The self-acceleration of the particle is then some functional of P,u,h and of the spacetime metric g, which we write as

$$a_{P;u;g;h}.$$ (2.69)

Note that this functional does not depend on a choice of time orientation for the manifold, and also it is invariant under $u = u$. The retarded self-acceleration is defined as

$$a_{\text{ret}}[P;u;g;h] = a_{P;u;g;h^\text{ret}},$$ (2.70)

where h^ret is the retarded solution to the linearized Einstein equation obtained using the time orientation that is determined by demanding that u be future directed. This is the physical self-acceleration which is denoted by a throughout the rest of this paper. Similarly, the advanced self-acceleration is

$$a_{\text{adv}}[P;u;g;h] = a_{P;u;g;h^\text{adv}},$$ (2.71)

where h^adv is the advanced solution. It follows from these definitions that

$$a_{\text{ret}}[P;u;g] = a_{\text{adv}}[P;u;g]:$$ (2.72)

We define the conservative and dissipative self-accelerations to be

$$a_{\text{cons}} = \frac{1}{2}(a_{\text{ret}} + a_{\text{adv}});$$ (2.73)

and

$$a_{\text{dis}} = \frac{1}{2}(a_{\text{ret}} - a_{\text{adv}}):$$ (2.74)

The physical self-acceleration can then be decomposed as

$$a = a_{\text{ret}} = a_{\text{cons}} + a_{\text{dis}}.$$ (2.75)

A similar decomposition applies to the forcing functions (2.44):

$$g^{(s)} = g^{(s)}_{\text{cons}} + g^{(s)}_{\text{dis}};$$ (2.76a)

$$G_i = G_i^{\text{cons}} + G_i^{\text{dis}};$$ (2.76b)

for $s = 1;2$.

Next, we note that \mathbf{f} is any diffeomorphism from the spacetime to itself, then the self-acceleration satisfies the covariance relation

$$a_{\text{ret}}(P;u;g) = a_{\text{ret}}(\mathbf{f}P;u;\mathbf{f}g).$$ (2.77)

Taking the point P to be $(t_0,p_0;\varepsilon;\bar{g})$ in Boyer-Lindquist coordinates, and choosing to be $t_1 = 0$, $t_2 = t$, then an isometry, $g = g'$. It follows that

$$a_{\text{ret}}(u;u_t;u;u) = a_{\text{ret}}(u_t;u_t;u;u);$$ (2.78)

where

$$= (1; 1; 1; 1)$$ (2.79)

and there is no summation over the right-hand side. Combining this with the identity (2.72) gives

$$a_{\text{adv}}(u;u_t;u;u) = a_{\text{ret}}(u;u_t;u;u);$$ (2.80)

Now, under the transformation $p_0 \rightarrow p_0 + p$ with other quantities fixed, the action variables and the quantities P are invariant, the angle variables φ_k and \bar{q} transform as $\varphi_k = 2 \varphi_k$, $\bar{q} = 2 \bar{q}$, while φ and \bar{q} have a sign. This can be seen from the definitions (2.33) and (2.35b). Explicitly, we have

$$q_k(x; p_t) = [q_k(x;p)]_t;$$ (2.81a)

$$q_k(x; p_t) = [q_k(x;p)]_t;$$ (2.81b)

$$q_k(x; p_t) = 2 \bar{q} = 2 \bar{q};$$ (2.81c)

$$p_t(x; p_t) = p_t(x;p_t);$$ (2.81d)

where we use the values (2.79) of φ, the functions q_k are defined before Eq. (2.57), and $q_k = (q_k;\bar{q}_k)$. If we now differentiate with respect to p holding x fixed and use
the de
tions (2.57), (2.53b) and (2.59b) of the functions \(f \) and \(F_i \) we obtain

\[
f (x; u) = f (x; u); \quad \text{(2.62a)}
\]

\[
F_i (x; u) = F_i (x; u); \quad \text{(2.62b)}
\]

We now compute the conservative and dissipative pieces of the forcing functions \(g^{(1)} \) and \(G^{(1)}_i \), using the de
tions (2.64) and (2.76). Using the results (2.80) and (2.82) we obtain

\[
g^{(1)}_{\text{adv}}(u) = f (u) \alpha^{(1)}_{\text{adv}}(u) = [f (u)] \alpha^{(1)}_{\text{ret}}(u)
\]

\[
G^{(1)}_{i\text{adv}}(u) = G^{(1)}_{i\text{ret}}(u); \quad \text{(2.84)}
\]

and using that the mapping \(x ! x, u ! u \) corresponds to \(F_1 ! F_j, q ! 2, q, q ! 2 \), finally yields the identities

\[
g^{(1)}_{\text{con}}(q; F_j) = g^{(1)}(q; F_j) + g^{(1)}(2 q; F_j) = 2; \quad \text{(2.85a)}
\]

\[
g^{(1)}_{\text{dis}}(q; F_j) = g^{(1)}(q; F_j) + g^{(1)}(2 q; F_j) = 2; \quad \text{(2.85b)}
\]

and

\[
G^{(1)}_{i\text{con}}(q; F_j) = G^{(1)}(q; F_j) + G^{(1)}(2 q; F_j) = 2; \quad \text{(2.86a)}
\]

\[
G^{(1)}_{i\text{dis}}(q; F_j) = G^{(1)}(q; F_j) + G^{(1)}(2 q; F_j) = 2; \quad \text{(2.86b)}
\]

Here we have used the fact that the forcing functions are independent of \(q \) and \(q \), as discussed in the last subsection. Similar equations apply with \(g^{(1)} \) and \(G^{(1)}_i \) replaced by the higher order forcing term \(s g^{(s)} \) and \(G^{(s)}_i \), \(s \geq 2 \).

It follows from the identity (2.85a) that, for the action
variable forcing functions \(G^{(1)}_i \), the average over the 2-
torus param et erized by \(q \) and \(q \) of the conservative piece
vanishes. For generic orbits (for which \(! \) and \(! \) are in-
comparable), the torus-average is equivalent to a time
average, and so it follows that the time average vanishes,
a result rst derived by M ino [67]. Sim ilarly from Eqs.
(2.86b) it follows that the torus-average of the dissipative
pieces of \(g^{(1)} \) vanish.

\[
q(t) = q_i (t); q_j (t) ; \ldots ; q_k (t) ; \quad \text{(3.1a)}
\]

\[
J(t) = J_1 (t); J_2 (t) ; \ldots ; J_M (t) ; \quad \text{(3.1b)}
\]

and is de
ned by the equations

\[
\frac{dq}{dt} = q_J \dot{J}; q_J (q; J); t; \quad 1 \quad \text{N}; \quad \text{(3.2a)}
\]

\[
\frac{dJ}{dt} = G (q; J); t; \quad 1 \quad M ; \quad \text{(3.2b)}
\]

Here the variable \(t \) is the slow time variable defined by

\[
\tau = t; \quad \text{(3.3)}
\]

We assume that the functions \(g \) and \(G \) can be expanded as

\[
g (q; J; \tau) = \sum_{s=1}^{\chi} g^{(s)} (q; J; \tau) \quad \frac{s}{s!}
\]

\[
(3.4)
\]
and
\[G(q,J;t^n) = \sum_{s=1}^{\infty} g^{(s)}(q,J;t^n) t^s \]
\[= G^{(1)}(q,J;t) + G^{(2)}(q,J;t)^2 + O(t^3); \]
(3.5)

These series are assumed to be asymptotic series in \(t \) as \(t \to 0 \) that are uniform in \(t \). We assume that the functions \(g^{(s)} \) and \(G^{(s)} \) are smooth functions of their arguments, and that the frequencies \(\omega_s \) are nowhere vanishing. Finally the functions \(g \) and \(G \) are assumed to be periodic in each variable \(q \) with period 2:
\[g(q+2k;J;t) = g(q;J;t); \quad k \in \mathbb{Z}; \quad (3.6a) \]
\[G(q+2k;J;t) = G(q;J;t); \quad k \in \mathbb{Z}; \quad (3.6b) \]
where \(k = (k_1, \ldots, k_N) \) is an arbitrary \(N \)-tuple of integers.

The equations (2.3) derived in the previous section describing the inspiral of a point particle into a Kerr black hole are a special case of the dynamical system (3.2). This can be seen using the identifications \(t' = t \), \(q = (q;J;Jq) \), \(J = (P_1;P_2;F_3;F_4;\Pi_1;\Pi_2) \), \(G^{(1)} = (G^{(1)}_1;G^{(1)}_2;G^{(1)}_3;G^{(1)}_4;0;0) \), and \(G^{(2)} = (G^{(2)}_1;G^{(2)}_2;G^{(2)}_3;G^{(2)}_4;G^{(2)}_1;G^{(2)}_2) \). The forcing functions \(g^{(s)} \) and \(G^{(s)} \) are periodic functions of \(q \) since they depend only on the variables \(q_k = (q;J_q) \) which are angle variables; they do not depend on the variable \(q \) which is not an angle variable. Note that the system (3.2) allows the forcing functions \(g^{(s)} \), \(G^{(s)} \), and frequencies \(\omega_s \) to depend in an arbitrary way on the slow time \(t \), whereas no such dependence is seen in the Kerr inspiral system (2.3). The system studied here is thus slightly more general than is required for our specific application. We include the dependence on \(t \) for greater generality and because it does not require any additional complexity in the analysis.

Another special case of the system (3.2) is when \(N = M \) and when there exists a function \(H(J;t) \) such that
\[H(J;t) = \frac{\delta H(J;t)}{\delta J} \]
for \(1 \leq N \). In this case the system (3.2) represents a Hamiltonian system with slowly varying Hamiltonian \(H(J;t) \), with action angle variables \((q;J;Jq) \), and subject to arbitrary weak perturbing forces that vary slowly with time. The perturbed system is not necessarily Hamiltonian.

Because of the periodicity conditions (3.6), we can work without loss of generality interpret the variables \(q \) to be coordinates on the \(N \)-torus \(\mathbb{T}^N \), and take the equations (3.2) to be defined on the product of this \(N \)-torus with an open set. This interpretation will be useful below.

In the next several sections we will study in detail the behavior of solutions of the system (3.2) in the limit \(t \to 0 \) using a two time scale expansion. We follow closely the exposition in the book by Kevorkian and Cole [24], except that we generalize their analysis and also correct some errors (see Appendices [25]). For clarity we treat rst, in Sec. IV, the simplest case of a single degree of freedom, \(N = M = 1 \), Section V treats the case of general \(N \) and \(M \), but with the restriction that the forcing functions \(g \) and \(G \) contain no resonant pieces (this is done in Sec. V C). The general case with resonances is treated in the forthcoming papers [26, 27]. Finally in Sec. V I we present a numerical integration of a particular example of a dynamical system, in order to illustrate and validate the general theory of Secs. V I and V II.

IV. SYSTEMS WITH A SINGLE DEGREE OF FREEDOM

A. Overview

For system \(s \) with a single degree of freedom, the general equations of motion (3.2) discussed in Sec. III reduce to
\[q(t) = \frac{\partial H(J;t)}{\partial J}; \quad (4.1a) \]
\[J(t) = \alpha G(q;J;t); \quad (4.1b) \]
for some functions \(G \) and \(\alpha \), where \(t = \tau \) is the slow time variable. The asymptotic expansions (4.4) and (3.5) of the forcing functions reduce to
\[g(q;J;t^n) = \sum_{s=1}^{\infty} g^{(s)}(q;J;t^n) t^s \]
\[= g^{(1)}(q;J;t) + g^{(2)}(q;J;t)^2 + O(t^3); \]
(4.2)
and
\[G(q;J;t^n) = \sum_{s=1}^{\infty} G^{(s)}(q;J;t^n) t^s \]
\[= G^{(1)}(q;J;t) + G^{(2)}(q;J;t)^2 + O(t^3); \]
(4.3)
Also the periodicity conditions (3.6) reduce to
\[g(q+2 \cdot J;t) = g(q;J;t); \quad (4.4a) \]
\[G(q+2 \cdot J;t) = G(q;J;t); \quad (4.4b) \]
In this section we apply two-time scale expansions to study classes of solutions of Eqs. (4.1) in the limit \(t' \to 0 \). We start in Sec. [IV.B] by defining our conventions and notations for Fourier decompositions of the perturbing forces. The heart of the method is the ansatz we make for the form of the solutions, which is given in Sec. [IV.C]. Sec. [IV.D] summarizes the results we obtain at each order in the expansion, and the derivations are given in Sec. [IV.E]. Although the results of this section are not directly applicable to the Kerr inspiral problem, the analysis of this section gives an introduction to the method of analysis, and is considerably simpler than the multivariable case treated in Sec. [V] below.

B. Fourier expansions of the perturbing forces

The periodicity conditions (4.4) apply at each order in the expansion in powers of \(t' \):

\[
g^{(s)}(q + 2; J; t) = g^{(s)}(q; J; t); \quad (4.5a)
\]

\[
G^{(s)}(q + 2; J; t) = G^{(s)}(q; J; t); \quad (4.5b)
\]

It follows that these functions can be expanded as Fourier series:

\[
g^{(s)}(q; J; t) = \frac{1}{\cal Z} \sum_{k=1}^{\cal Z} g_k^{(s)}(J; t) e^{i k q}; \quad (4.6a)
\]

\[
G^{(s)}(q; J; t) = \frac{1}{\cal Z} \sum_{k=1}^{\cal Z} G_k^{(s)}(J; t) e^{i k q}; \quad (4.6b)
\]

where

\[
g_k^{(s)}(J; t) = \frac{1}{\cal Z} \sum_{s=0}^{\cal Z} q^{(0)}(s; t) + \sum_{s=0}^{\cal Z} q^{(1)}(s; t) + O(\epsilon^2); \quad (4.7a)
\]

\[
G_k^{(s)}(J; t) = \frac{1}{\cal Z} \sum_{s=0}^{\cal Z} J^{(0)}(s; t) + \sum_{s=0}^{\cal Z} J^{(1)}(s; t) + O(\epsilon^2); \quad (4.7b)
\]

For any periodic function \(f = f(q) \), we introduce the notation

\[
h f = \frac{1}{\cal Z} \sum_{s=0}^{\cal Z} f(s) dq
\]

for the average part of \(f \), and

\[
h f(q) = f(q) \quad h f
\]

for the remaining part of \(f \). It follows from these definitions that

\[
h g^{(s)}(q; J; t)i = g^{(s)}(J; t); \quad h G^{(s)}(q; J; t)i = G^{(s)}(J; t); \quad (4.10)
\]

and that

\[
g^{(s)}(q; J; t) = \sum_{k \in \mathbb{Z}} g_k^{(s)}(J; t) e^{i k q}; \quad (4.11a)
\]

\[
G^{(s)}(q; J; t) = \sum_{k \in \mathbb{Z}} G_k^{(s)}(J; t) e^{i k q}; \quad (4.11b)
\]

We also have the identities

\[
h f_i = h f_i = 0 \quad (4.12a)
\]

\[
h f g = h f g + h f h g \quad (4.12b)
\]

for any periodic functions \(f \), \(g \).

For any periodic function \(f \), we also define a particular anti-derivative \(I f \) of \(f \) by

\[
(I f)(q) = \int_{0}^{q} f(k) dk; \quad (4.13)
\]

where \(f_k = \int d q e^{i k q} f(q) = (2 \pi) \) are the Fourier coefficients of \(f \). This operator satisfies the identities

\[
(I f)_i = f; \quad (4.14a)
\]

\[
h(I f)_i = h f(I g)i; \quad (4.14b)
\]

\[
h f(I f)_i = 0; \quad (4.14c)
\]

C. Two-time scale ansatz for the solution

We now discuss the ansatz we use for the form of the solutions of the equations of motion. This ansatz will be justified a posteriori by order in \(t' \). The method used here is sometimes called the \(\eta \) method of strained coordinates [74].

We assume that \(q \) and \(J \) have asymptotic expansions in \(t' \) as functions of two different variables, the slow time parameter \(t = \eta t' \) and a phase variable (also called a \(\eta \) time parameter), the dependence on which is periodic with period 2. Thus we assume

\[
q(t; \eta) = \frac{1}{\cal Z} \sum_{s=0}^{\cal Z} q^{(s)}(s; t) \quad (4.15a)
\]

\[
J(t; \eta) = \frac{1}{\cal Z} \sum_{s=0}^{\cal Z} J^{(s)}(s; t) + O(\epsilon^2); \quad (4.15b)
\]

These asymptotic expansions are assumed to be uniform in \(t \). The expansion coefficients \(J^{(s)} \) are periodic in the phase variable with period 2:

\[
J^{(s)}(t + 2; \eta) = J^{(s)}(t; \eta); \quad (4.16)
\]

The phase variable is chosen so that angle variable \(q \) increases by 2 when \(J \) increases by 2; this implies that the expansion coefficients \(J^{(s)} \) satisfy

\[
q^{(s)}(t + 2; \eta) = q^{(s)}(t; \eta) + 2; \quad (4.17a)
\]

\[
q^{(s)}(t + 2; \eta) = q^{(s)}(t; \eta) + 2; \quad (4.17b)
\]

The angular velocity \(d = d t \) associated with the phase is assumed to depend only on the slow time variable \(t \) (so it can vary slowly with time), and on \(\eta \).
We assume that it has an asymptotic expansion in \(n \) as
\[
\frac{d}{dt} = (t^n) = \frac{n}{\alpha} \left(s \right)(t) \quad \text{(4.18)}
\]
\[
= (0)(t) + \frac{1}{n}(1)(t) + O\left(n^2\right) \quad \text{(4.19)}
\]
Equation (4.18) serves to de ne the phase variable in terms of the angular velocity variables \((s)(t) \), \(s = 0, 1, 2, \ldots \), up to constants of integration. One constant of integration arises at each order in \(n \). Without loss of generality we choose these constants of integration so that
\[
q(s)(0; t) = 0 \quad \text{(4.20)}
\]
for all \(s, t \). Note that this does not restrict the solutions \(q(t^n) \) and \(j(t^n) \), as we show explicitly below, because there are additional constants of integration that arise when solving for the functions \(q(s) \) and \(j(s) \).

Roughly speaking, the meaning of these assumptions is the following. The solution of the equations of motion consists of a mapping from \((t^n) \) to \((q^n) \). That mapping contains dynamics on two different time scales, the dynamical time scale \(1 \) and the slow time scale \(1^n \). Then mapping can be explicitly written in the form of mappings
\[
(\alpha)(t^n) = (q^n) \quad \text{(4.21)}
\]
such that the first mapping contains all the fast dynamics, and is characterized by the slowly evolving frequency \((t^n) \), and the second mapping contains dynamics only on the slow time scale.

D. Results of the two-time scale analysis

By substituting the ansatz (4.15b) into the equations of motion (4.1), we nd that all of the assumptions made in the ansatz can be satis ed, and that all of the expansion coe cients are uniquely determined, order by order in \(n \). This derivation is given in Sec. IV B below. Here we list the results obtained for the various expansion coe cients up to the leading and sub-leading orders.

1. Terminology for various orders of the approximation

We can combine the de nitions just summarized to obtain an explicit expansion for the quantity of interest, the angle variable \(q \) as a function of time. From the periodicity condition (4.15a) it follows that the function \(q^{(0)}(\cdot; t) \) can be written as
\[
q(t) = (J(0)(q^n); t) + \frac{n}{\alpha}(1)(q^n); t) + O\left(n^2\right) \quad \text{(4.22)}
\]
where the functions \((s)(t) \) are dened by
\[
Z = (s)(0) \quad \text{(4.23)}
\]
Inserting this into the expansion (4.15a) of \(q \) and using the above expression for \(q^{(0)} \) gives
\[
q(t) = \left((0)(t^n) + \frac{1}{n}(1)(t^n) + \frac{1}{n^2}(2)(t^n) + \frac{1}{n^3}(3)(t^n) + O\left(n^2\right) \right) \quad \text{(4.24)}
\]
We will call the leading order, \(0(1=n) \) term in Eq. (4.24) the adiabatic approximation, the sub-leading \(0(1) \) term the post-1-adiaatic term, the next \(0(2) \) term the post-2- adiaatic term, etc. This choice of terminology is motivated by the terminology used in post-Newtonian theory.

It is important to note that the expansion in powers of \(n \) in Eq. (4.24) is not a straightforward power series expansion at \(\alpha = 0 \), since the variable \(\alpha \) depends on \(n \). The precise de nition of the expansion of the solution which we are using is given by Eqs. (4.15a) (4.24). Nevertheless, the expansion (4.24) as written correctly captures the dependence of the secular pieces of the solution, since the functions \(q^{(0)} \) and \(q^{(1)} \) are periodic functions of \(n \) and so have no secular pieces.

2. Adiabatic order

First, the zeroth order action variable is given by
\[
J^{(0)}(\cdot; t) = J^{(0)}(0)(t^n) \quad \text{(4.25)}
\]
where \(J^{(0)} \) satisfies the di erential equation
\[
\frac{dJ^{(0)}(0)(t^n)}{dt} = G^{(0)}(0)(J^{(0)}(0)(t^n); t^n) \quad \text{(4.26)}
\]
Here the right hand side denotes the average over \(q \) of the forcing term \(G^{(1)}(q^n)(0)(t^n); t^n) \), cf. Eqs. (4.1) above. The zeroth order angle variable is given by
\[
q^{(0)}(\cdot; t) = \quad \text{(4.27)}
\]
and the angular velocity that de nes the phase variable is given to zeroth order by
\[
(0)(t) = \left(J^{(0)}(t^n); t^n) \right) \quad \text{(4.28)}
\]
Note that this approximation is equivalent to the following simple prescription: (i) Truncate the equations of motion (4.1) to the leading order in \(n \):
\[
q(t) = \quad \text{(4.29a)}
\]
\[
J(t) = \quad \text{(4.29b)}
\]
(ii) omit the driving term $g^{(1)}$ in the equation for the angle variable; and (iii) replace the driving term $G^{(1)}$ in the equation for the action variable with its average over q.

3. Post-1-adiabatic Order

Next, the first order action variable is given by

$$J^{(1)}(t; \tau) = \frac{IG^{(1)}[\mu J^{(0)}(t);t]}{G^{(0)}(t)} + J^{(1)}(t); (4.30)$$

where the symbol on the right hand side denotes the integration operator [4.1] with respect to τ. In Eq. (4.30) the quantity $J^{(1)}(t)$ satisfies the differential equation

$$\frac{dJ^{(1)}(t)}{dt} = \frac{\partial G^{(1)}(t)}{\partial J^{(0)}(t);t} J^{(1)}(t)$$

$$= i\frac{\partial G^{(1)}(t)}{\partial J^{(0)}(t)} \mu J^{(0)}(t); (4.31)$$

Here it is understood that the quantities on the right hand side are evaluated at $q = q^{(0)} = 0$ and $J = J^{(0)}(t)$. The sub-leading correction to the phase variable is given by

$$J^{(1)}(t) = \frac{\partial \mu J^{(0)}(t;\tau) J^{(1)}(t) + q^{(1)} J^{(0)}(t;\tau)}{\partial J^{(0)}(t)} (4.32)$$

Finally, the sub-leading term in the angle variable is

$$q^{(1)}(t; \tau) = q^{(1)}(t; \tau) + Q^{(1)}(t); (4.33)$$

where

$$q^{(1)}(t; \tau) = \frac{1}{G^{(0)}(t)} \frac{\partial g^{(1)}[\mu J^{(0)}(t);t]}{\partial J^{(0)}(t)} I^{2} G^{(1)}[\mu J^{(0)}(t);t]$$

$$+ \frac{1}{G^{(0)}(t)} I^{2} G^{(1)}[\mu J^{(0)}(t);t]$$

and

$$Q^{(1)}(t) = \frac{dJ^{(1)}(0;\tau)}{dt}; (4.35)$$

4. Discussion

One of the key results of the general analysis of this section is the identification of which pieces of the external forces are required to compute the adiabatic and post-1-adiabatic solutions. From Eqs. (4.25), (4.28), and (4.29), the adiabatic solution depends only on the averaged piece $G^{(1)}_{(0)}(J;\tau) = \mu G^{(1)}(q_{0};J;\tau)|_{i}$ of the leading order external force $G^{(1)}$. This quantity is purely dissipative, as can be seen in the Kerr inspiral context from Eqs. (2.23) and (2.24). More generally, if the perturbing forces g and G arise from a perturbation $H = P^{n} H^{(s)}$ to the Hamiltonian, then the forcing function $G^{(s)}$ is

$$G^{(s)}(q_{0};J;\tau) = \frac{\partial H^{(s)}(q_{0};J;\tau)}{\partial q_{0}}$$

and it follows that the average over q of $G^{(s)}$ vanishes.

At the next order, the post-1-adiabatic term $(J^{(1)}(t)$) depends on the averaged piece $G^{(2)}_{(0)}(J;\tau) = \mu G^{(2)}(q_{0};J;\tau)|_{i}$ of the sub-leading force $G^{(2)}$, again purely dissipative, as well as the remaining conservative and dissipative pieces of the leading order forces $G^{(1)}(q_{0};J;\tau)$ and $q^{(1)}(q_{0};J;\tau)$. This can be seen from Eqs. (4.28) and (4.29). These results have been previously discussed briefly in the EMRI context in Refs. [47, 63]. For circular, equatorial orbits, the fact that there is a post-1-adiabatic order contribution from the second order self-force was first argued by Burko [83].

5. Initial conditions and the generality of our ansatz

We will now show in the next subsection that our ansatz (4.15a) (4.20) is compatible with the one parameter family of differential equations (4.1). However, it does not necessarily follow that our ansatz is compatible with the most general one parameter family $[g(t);J(t)]$ of solutions, because of the possibility of choosing arbitrary, "dependent initial conditions $q(0);J(0)$" and $J(0);t$ at the initial time $t = 0$.

In general, the dependence of the solutions arises from both the dependence of the initial conditions and the dependence of the di erential equations. It is possible to choose initial conditions which are incompatible with our ansatz.

To see this explicitly, we evaluate the expansions (4.22) and (4.29) at $t = 0$.

This gives

$$q(0;";t) = "(0) + J(0) + O("); (4.36a)$$

$$J(0;";t) = J(0) + "(0); (4.36b)$$

Recalling that parameters $(0);(1);(0), J(0);(0)$ and $J(1);(0)$ are assumed to be independent of τ, we see that the conditions (4.28) strongly constrain the allowed dependence of the initial conditions. We note, however, that the choice of constant (" independent) initial conditions

$$q(0;") = q_{0}; J(0;") = J_{0}$$

21 More generally we could consider specifying initial conditions at some time $t = t_{0}$. In that case we would modify the definition of the rescaled time coordinate to $t = (t - t_{0})$.

can be accommodated, which is sufficient for most applications of the formalism. To achieve this one chooses

\[(0) (0) = 0; \quad (1) (0) = q_0; \quad J^{(0)} (0) = J_0; \]

(4.38)

and

\[J^{(1)} (0) = \frac{i G^{(1)} [J_0 J_0 J_0]}{[J_0 J_0 J_0]}; \]

(4.39)

E. Derivation

In this subsection we give the derivation of the results summarized above. At each order we introduce the notation \(J^{(s)} (t) \) for the average part of \(J^{(s)} (t) \):

\[J^{(s)} (t) = J^{(s)} (t) + J^{(s)} (t); \]

(4.40)

We denote by \(J^{(s)} \) the remaining part of \(J^{(s)} \), as in Eq. (4.3). This gives the decom position

\[J^{(s)} (t) = J^{(s)} (t) + J^{(s)} (t); \]

(4.41)

for all \(s \). Similarly for the angle variable we have the decom position

\[q^{(s)} (t) = q^{(s)} (t) + q^{(s)} (t); \]

(4.42)

for all \(s \). We do not use this notation for the \(s = 0 \) case for the angle variable, since \(q^{(0)} \) is not a periodic function of \(\tau \), by Eq. (4.14).

Using the expansions (4.15a) and (4.15b) of \(q \) and \(J \) together with the expansion (4.19) of \(d = dt \), we obtain

\[\frac{dq}{dt} = (0) \hat{q}^{(0)} + \frac{h}{(1) \hat{q}^{(1)} + (3) \hat{q}^{(1)} + q^{(1)}; + + \frac{h^2}{(2) \hat{q}^{(2)} + (1) \hat{q}^{(2)} + (1) \hat{q}^{(1)} + q^{(1)}; + O (m^3); \]

(4.43)

Here we use \(\hat{q} \) as to denote partial derivatives. We now insert this expansion together with a similar expansion for \(dJ = dt \) into the equations of motion (4.1) and use the expansions (4.2) and (4.3) of the external forces \(g \) and \(G \). Equating coe cient \(22 \) of powers of \(m \) then gives at zeroth order

\[(0) \hat{q}^{(1)} (t) = 0; \]

(4.44a)

\[(0) \hat{J}^{(1)} (t) = 0; \]

(4.44b)

at first order

\[(0) \hat{q}^{(2)} (t) = \frac{1}{2} \hat{q}^{(1)} (t) + (2) \hat{q}^{(2)} + (2) \hat{q}^{(1)} + q^{(2)}; \]

(4.45a)

\[(0) \hat{J}^{(1)} (t) + (1) \hat{J}^{(1)} (t) = 0; \]

(4.45b)

and at second order

\[(0) \hat{q}^{(2)} (t) = \frac{1}{2} \hat{q}^{(1)} (t) + (2) \hat{q}^{(2)} + (2) \hat{q}^{(1)} + q^{(2)}; \]

(4.46a)

\[(0) \hat{J}^{(2)} (t) = G (1) \hat{J}^{(1)} (t) + (1) \hat{J}^{(1)} (t) \]

(2) \hat{J}^{(1)} (t) + (0) \hat{J}^{(2)} (t) = 0; \]

(4.46b)

Here it is understood that all functions of \(q \) and \(J \) are evaluated at \(q^{(0)} \) and \(J^{(0)} \).

1. Zeroth order analysis

The zeroth order equations (4.44) can be written more explicitly as

\[(0) \hat{q}^{(0)} (t) = \frac{1}{2} \hat{q}^{(0)} (t) + G (1) \hat{J}^{(0)} (t); \]

(4.47a)

\[(0) \hat{J}^{(0)} (t) = 0; \]

(4.47b)

The second of these equations implies that \(J^{(0)} \) is independent of \(\tau \), so we obtain \(\hat{J}^{(0)} (t) = J^{(0)} (t) \). The first equation then implies that \(\hat{q}^{(0)} \) is independent of \(\tau \), and integrating with respect to \(\tau \) gives

\[q^{(0)} (t) = \frac{1}{2} \hat{q}^{(0)} (t) + G (1) \hat{J}^{(0)} (t); \]

(4.48)

where \(Q (0) \) is some function of \(\tau \). The periodicity condition (4.17a) now in plies that the coe cient \(h \) of \(\hat{q}^{(1)} \) in Eq. (4.48) must be unity, which gives the formula (4.23) for the angular velocity \(\hat{q}^{(1)} (t) \). Finally, the assumption (4.20) for the \(J^{(0)} \) forces \(\hat{q}^{(0)} (t) \) to vanish, and we recover the formula (4.27) for \(\hat{q}^{(0)} (t) \).

2. First order analysis

The first order equation (4.45b) can be written more explicitly as

\[(0) \hat{q}^{(1)} (t) = \frac{1}{2} \hat{q}^{(1)} (t) + G (1) \hat{J}^{(1)} (t); \]

(4.49)

where we have simplified using the zeroth order solutions (4.47) and (4.27). We now take the average with respect to of this equation. The left hand side vanishes since it is a total derivative, and we obtain using the definition

\[22 \) As is well known, this procedure is valid for asymptotic series as well as normal power series.
the differential equation (4.26) for \(J^{(0)}(t) \). Next, we subtract from Eq. (4.49) its averaged part, and use the decom position (4.41) of \(J^{(1)} \). This gives

\[
J^{(1)}_0(t; t) = \mathcal{G}^{(1)}_0 \{ \mu J^{(0)}(t; t) \}
\]

(4.50)

We solve this equation using the Fourier decom position (4.41) of \(\mathcal{G}^{(1)}_0 \) to obtain

\[
J^{(1)}(t; t) = \sum_{k \neq 0} \frac{G_{kl}^{(1)} [\mu J^{(0)}(t; t); t] \exp[ik]}{ik}
\]

(4.51)

This yields the 0th term in the result (4.38) for \(J^{(1)} \) when we use the notation (4.13).

Next, we simplify the 1st order equation (4.45a) using the zeroth order solutions (4.25) and (4.27), to obtain

\[
J^{(1)}_1(t; t) = J^{(1)}(t) + g^{(1)} [\mu J^{(0)}(t; t); t]
\]

Averaging with respect to \(J \) and using the decom positions (4.41) and (4.42) of \(J^{(1)} \) and \(g^{(1)} \) now gives the formula (4.33) for \(J^{(1)}(t) \). Note however that the function \(J^{(1)}(t) \) in that formula has not yet been determined; it will be necessary to go to one higher order to compute this function.

Finally, we subtract from Eq. (4.52) its average over using the decom positions (4.41) and (4.42) and then integrate with respect to \(t \) using the notation (4.13). This gives

\[
J^{(1)}(t; t) = \mathcal{G}^{(1)}_0 [\mu J^{(0)}(t; t); t] I^{(1)}(t; t)
\]

(4.53)

Using the result for \(J^{(1)} \) given by the 1st term in Eq. (4.38) now yields the formula (4.33) for \(J^{(1)}(t; t) \) and the result (4.33) for \(g^{(1)} \) then follows from the decom position (4.42) together with the initial condition (4.20).

3. Second order analysis

We simplify the second order equation (4.46a) using the zeroth order solutions (4.25) and (4.27), average over \(J \), and simplify using the decom positions (4.41) and (4.42) and the identities (4.12). The result is

\[
J^{(1)}_\mu(t) = G^{(1)}_0 [\mu J^{(0)}(t); t] J^{(1)}(t) + G^{(2)}_0 [J^{(0)}(t); t] E
\]

(4.54)

Using the expressions (4.39) and (4.36) for \(J^{(1)} \) and \(J^{(1)}_\mu(t) \) and simplifying using the identities (4.12) now gives the differential equation (4.33) for \(J^{(1)}_\mu(t) \).

4. Extension to arbitrary order

In this subsection we prove by induction that solutions are uniquely determined at each order in \(\mu \). Our inductive hypothesis is that, given the equations up to order \(s \), we can compute all of the expansion coefficients \(q^{(s)}(\mu; t) \), \(J^{(s)}(\mu; t) \), and \(\xi^{(s)}(\mu; t) \) for \(0 \leq s \) except for the averaged piece \(J^{(s)}(\mu; t) \) of \(J^{(s)}(\mu; t) \), and except for \(\xi^{(s)}(\mu; t) \), which is assumed to be determined by \(J^{(s)}(\mu; t) \). From the preceding subsections this hypothesis is true for \(s = 0 \) and for \(s = 1 \). We shall assume it is true at order \(s = 1 \) and prove it is true at order \(s \).

The equations of motion at order \(s \) when simplified using the zeroth order solution (4.25) and (4.27), can be written as

\[
q^{(s)}(\mu; \xi^{(s)}(\mu; t) + J^{(s)}(\mu; t) + \mathcal{T}^{(s)}(\mu; t) + \mathcal{S}(\mu; t)
\]

(4.55a)

Here \(S = S(\mu; t) \) and \(T = T(\mu; t) \) are expressions involving the forces \(G^{(s)}(\mu; t) \) and \(g^{(s)}(\mu; t) \) for \(0 \leq s \) evaluated at \(q = q^{(s)}(\mu; t) \) and \(J = J^{(s)}(\mu; t) \), and involving the coefficients \(q^{(s)}(\mu; t), J^{(s)}(\mu; t) \) and \(\mu \) for \(0 \leq s \leq 2 \) which by the inductive hypothesis are known. Therefore we can treat \(S \) and \(T \) as known functions.

Averaging Eq. (4.55a) over \(\mu \) yields the differential equation

\[
J^{(s)}(\mu; t) = \mathcal{G}^{(s)}(\mu) J^{(s)}(\mu; t) = \mathcal{H}^{(s)}(\mu) J^{(s)}(\mu; t) + \mathcal{S}(\mu; t)
\]

(4.56)

By the inductive hypothesis all the terms on the right hand side are known, so we can solve this differential equation to determine \(J^{(s)}(\mu; t) \).

Next, averaging Eq. (4.55a) yields

\[
q^{(s)}(\mu; t)
\]

(4.55b)

Since \(J^{(s)}(\mu; t) \) has already been determined, the right hand side of this equation is known and therefore the equation can be used to solve for \(q^{(s)}(\mu; t) \) once \(J^{(s)}(\mu; t) \) is specified, in accord with the inductive hypothesis. Next, Eq. (4.55b) with the average part subtracted can be used to solve for \(\mathcal{F}^{(s)}(\mu; t) \) and once \(\mathcal{F}^{(s)}(\mu; t) \) is known Eq. (4.55a) with the average part subtracted can be used to solve for \(q^{(s)}(\mu; t) \). Finally, the averaged piece \(Q^{(s)}(\mu; t) \) of \(q^{(s)}(\mu; t) \) can be
computed from \(g^{(s)} \) using the initial condition \((4.20)\) and the decom position \((4.22)\). Thus the inductive hypothesis is true at order \(s \) if it is true at order \(s - 1 \).

V. SYSTEMS WITH SEVERAL DEGREES OF FREEDOM SUBJECT TO NON-RESONANT FORCING

A. Overview

In this section we generalize the analysis of the preceding section to the general system of equations \((3.2)\) with several degrees of freedom. For convenience we reproduce those equations here:

\[
\begin{align*}
\frac{dq}{dt} &= (J; t) + \sum g^{(s)}(q; J; t) + \sum_2 g^{(2)}(q; J; t) \\
&\quad + O(n^1); \quad 1 \leq N \; (5.1a) \\
\frac{dJ}{dt} &= \sum g^{(s)}(q; J; t) + \sum_2 G^{(2)}(q; J; t) \\
&\quad + O(n^1); \quad 1 \leq M \; (5.1b)
\end{align*}
\]

For the remainder of this paper, unless otherwise specified, indices \(s; s'\)\;\(; k; k'\)\;... from the start of the Greek alphabet will run over \(1:::N\), and indices \(s; s'\)\;\(; k; k'\)\;... from the second half of the alphabet will run over \(1:::M\).

The generalization from one to several variables is straightforward except for the treatment of resonances \([74]\). The key new feature in the \(N\) variable case is that the asymptotic expansions now have additional terms proportional to \(n^0, n^1, n^2, \ldots\) as well as the integer powers of \(n\). The coefficients of these half-integer powers of \(n\) obey source-free differential equations, except at resonances. Therefore, in the absence of resonances, all of these coefficients can be set to zero without loss of generality. In this paper we develop the general theory with both types of terms present, but we specialize to the case where no resonances occur. Subsequent papers \([73, 79]\) will extend the treatment to include resonances, and derive the form of the source terms for the half-integer power core coefficients.

We start in Sec. V.B by defining our conventions and notations for Fourier decom positions of the disturbing forces. In Sec. V.C we discuss the assumptions we make that prevent the occurrence of resonances in the solutions. The heart of the method is the ansatz we make for the form of the solutions, which is given in Sec. V.D. Section V.E summarizes the results we obtain at each order in the expansion, and the derivations are given in Sec. V.F. The implications of the results are discussed in detail in Sec. V.I below.

B. Fourier expansions of perturbing forces

The periodicity condition \((3.6)\) applies at each order in the expansion in powers of \(n\), so we obtain

\[
\begin{align}
&g^{(s)}(q + 2k; J; t) = g^{(s)}(q; J; t); \quad (5.2a) \\
&G^{(s)}(q + 2k; J; t) = G^{(s)}(q; J; t); \quad (5.2b)
\end{align}
\]

for \(s = 1, 1 \leq N \), and \(k = (k_1, \ldots, k_N)\) can be an arbitrary \(N\)-tuple of integers. It follows from Eqs. \((5.2)\) that these functions can be expanded as multiple Fourier series:

\[
\begin{align}
g^{(s)}(q; J; t) &= \frac{1}{(2\pi)^N} \int Z e^{-i k \cdot q} g^{(s)}(q; J; t) \; dz, \quad (5.3a) \\
G^{(s)}(q; J; t) &= \frac{1}{(2\pi)^N} \int Z e^{-i k \cdot q} G^{(s)}(q; J; t) \; dz \; (5.3b)
\end{align}
\]

Here we adopt the usual notations

\[
\begin{align}
X &= X_1 \ldots X_N ; \\
k_1 &= 1 \quad k_N = 1
\end{align}
\]

and

\[
\begin{align}
Z_1 &= Z \quad Z_2 \quad \ldots \quad Z_N \\
d_0 &= d_q \ldots d_q
\end{align}
\]

for any multiple periodic function \(f = f(q)\), we introduce the notation

\[
\hat{f}(q) = \frac{1}{(2\pi)^N} \int Z e^{-i k \cdot q} f(q) \; dz \; (5.5)
\]

for the average part of \(f\), and

\[
\check{f}(q) = f(q) \cdot \hat{f}(q) \; (5.6)
\]

for the remaining part off. It follows from these definitions that

\[
\begin{align}
h^{(s)}(q; J; t) &= g^{(s)}(q; J; t); \quad (5.7a) \\
h^{(s)}(q; J; t) &= G^{(s)}(q; J; t); \quad (5.7b)
\end{align}
\]

and that

\[
\begin{align}
g^{(s)}(q; J; t) &= \frac{1}{(2\pi)^N} \int Z e^{-i k \cdot q} g^{(s)}(q; J; t) \; dz, \quad (5.11a) \\
G^{(s)}(q; J; t) &= \frac{1}{(2\pi)^N} \int Z e^{-i k \cdot q} G^{(s)}(q; J; t) \; dz \; (5.11b)
\end{align}
\]
We also have the identities

\[
\frac{\partial f}{\partial q} = hf^{i} = 0 \tag{5.12a}
\]

\[
hf^{ij} + hf^{ji} = 0 \tag{5.12b}
\]

for any multiply periodic functions \(f(q), g(q) \).

For any multiply periodic function \(f \) and for any vector \(v = (v_1, \ldots, v_N) \), we define the quantity \(I_v \hat{f} \) by

\[
(I_v \hat{f})(q) = \sum_{k=0}^{\infty} f_k e^{ikv} \tag{5.13}
\]

where \(f_k = \mathbb{R} q^i e^{ik} \mathbb{F}(q)(2\pi)^N \) are the Fourier coefficients of \(f \). The operator \(I_v \) satisfies the identities

\[
I_v(v \hat{f}) = \hat{f}; \tag{5.14a}
\]

\[
h(I_v \hat{f})g_i = \hat{f}(I_v g)_i; \tag{5.14b}
\]

\[
h^2(I_v \hat{f})l = 0; \tag{5.14c}
\]

C. The no-resonance assumption

For each set of action variables \(J \) and for each time \(t \), we will say that an \(N \)-tuple of integers \(k \in \mathbb{Z} \) is a resonant \(N \)-tuple if

\[
k ! (\mathbb{Z}) = 0 \tag{5.15}
\]

where \(! = (1, \ldots, N) \) are the frequencies that appear on the right-hand side of the equation of motion \(\dot{q} = \Pi \). This condition governs the occurrence of resonances in our perturbation expansion, as is well known in context of perturbations of multiply periodic Hamiltonian systems \(\mathcal{H} \). We will assume that for a given \(k \), the set of values of \(t \) at which the quantity

\[
k(t) = k ! (\mathcal{J}(t); t) \tag{5.16}
\]

vanishes (i.e., the resonant values) consists of isolated points. Here \(\mathcal{J}(t) \) is the leading order solution for \(J \) given by Eq. \(\mathcal{J}(t) = \mathcal{J}(x) \) below. This assumption excludes persistent resonances that last for a finite interval in \(t \). Generically, we expect this to be true because of the time dependence of \(\mathcal{J}(x) \).

Our no-resonance assumption is essentially that the Fourier components of the forcing term \(s \) vanish for resonant \(N \)-tuples. More precisely, for each \(\mathbb{Z} \) and for each time \(t \) for which \(k(t) = 0 \), we assume that

\[
g_{k}^{(s)} J^{(0)}(t); t = 0; \tag{5.17a}
\]

\[
g_{k}^{(s)} J^{(0)}(t); t = 0; \tag{5.17b}
\]

for \(s = 1 \) and for all \(t \) in a neighborhood of \(t \). Our no-resonance assumption will be relaxed in the forthcoming papers \(\cite{78,73} \).

In our application to inspirals in Kerr black holes, the no-resonance condition will be automatically satisfied for two classes of orbits: circular and equatorial orbits. This is because for these orbits there is either no radial motion, or no motion in \(q \), and so the two-dimensional resonant \((q, \tilde{q}) \) reduces to a one-dimensional circular. The resonance condition \(k \tilde{r} + k ! = 0 \) reduces to \(k \tilde{r} = 0 \) for equatorial orbits, or \(k ! = 0 \) for circular orbits, and these conditions can never be satisfied since the fundamental frequencies \(\tilde{r} \) and \(! \) are positive.

D. Two-time scale ansatz for the solution

We now discuss the two-time scale ansatz for the solution of the equations of motion. This ansatz will be justi ed by a posteriori order by order in \(\mathcal{H} \). Our ansatz essentially consists of the assumption that the mapping from \((\mathbb{J}^{(x)}(t); t) = (q(t); J(t)) \) can be written as an asymptotic expansion in \(\mathcal{H} \), each term of which is the composition of two maps, the first from \((q^{(x)}(t)) \) to an abstract \(N \)-torus with coordinates \(\mathcal{H} = (1, \ldots, N) \), and the second from \((J(t)) \) to \((q(t)) \). Here \(t = \tau \) is the slow time parameter. A very fast time scale dynamics is encapsulated in the fast mapping. More precisely, we assume that

\[
q(t; s) = \mathcal{J}^{(s)}(\tau; t; s) \tag{5.18a}
\]

\[
J(t; s) = \mathcal{J}^{(s)}(\tau; t; s) \tag{5.18b}
\]

These asymptotic expansions are assumed to be uniform in \(\tau \). The expansion of the fast \(q \) with period \(2 \) in each variable:

\[
\mathcal{J}^{(s)}(\tau; t; s) = \mathcal{J}^{(s)}(\tau; t; s) \tag{5.19}
\]

Here \(k = (k_1, \ldots, k_N) \) is an arbitrary \(N \)-tuple of integers. The mapping of the abstract \(N \)-torus \(\mathcal{H} \) into the torus in phase space parametrized by \(q \) is assumed to have a trivial mapping, so that the angle \(q \) increases by \(2 \pi \) when \(\tau \) increases by \(2 \tau \); this implies that the expansion coefficients \(q^{(s)}(\tau; t; s) \) satisfy

\[
q^{(s)}(\tau; t; s) = q^{(s)}(\tau; t) + 2 k \tag{5.20a}
\]

\[
q^{(s)}(\tau; t; s) = q^{(s)}(\tau; t; s) \tag{5.20b}
\]

for arbitrary \(k \). The variables \(\tau = \tau; \ldots, \tau \) are sometimes called fast-time paramet eters.
The angular velocity

\[\dot{\theta} = \frac{d\theta}{dt} \]

associated with the phase \(\theta \) is assumed to depend only on the slow time variable \(t \) (so it can vary slowly with time), and on \(n \). We assume that it has an asymptotic expansion in \(p^w \) as \(n \to 0 \) which is uniform in \(t \):

\[
(t; n) = \sum_{n=0}^{\infty} (n^2 - 1)(t) \]

\[
= \frac{1}{2}(t) + p^w (1-2)(t) + n\ (1)(t) + \nu(n^2)(t) + \mathcal{O}(n^3) \]

Equations (5.21) and (5.23) serve to define the phase variables \(q(s, t) \) in terms of the angular velocity variables \(q(s, t) \), where \(s = 0, 1, 2, 3, \ldots \), up to constants of integration. One constant of integration arises at each order in \(p^w \), for each \(s \) without loss of generality we choose these constants of integration so that

\[
q^{(s)}(0, t) = 0 \]

for all \(s \) and \(t \). Note that this does not restrict the formal solutions \(q(t; n) \) and \(J(t; n) \), as we show explicitly below, because there are additional constants of integration that arise when solving for the functions \(q^{(s)}(t) \) and \(J^{(s)}(t) \).

E. Results of the two-time scale analysis

By substituting the ansatz (5.18a) (5.24) into the equations of motion (3.2) we find that all of the assumptions made in the ansatz can be satisfied, and that all of the expansion coefficients are uniquely determined, order by order in \(p^w \). This derivation is given in Sec. V.I below. Here we list the results obtained for the various expansion coefficients up to the first three orders.

1. Terminology for various orders of the approximation

We can combine the notations just summarized to obtain an explicit expansion for the quantity of most interest, the angular velocity \(\dot{\theta} \) as a function of time. From the periodicity condition (4.1ma) it follows that the function \(q^{(1)}(t) \) can be written as

\[
q^{(1)}(t) = q^{(0)}(t) + \mathcal{O}(\nu) \]

where the functions \(q^{(s)}(t) \) are defined by

\[
q^{(s)}(t) = \int_0^t \frac{d\theta}{\nu} q^{(s-1)}(\theta) \]

Inserting this into the expansion (5.18a) of \(q \) gives

\[
q(t; n) = \frac{1}{n} q^{(0)}(t) + \frac{1}{n^2} q^{(1)}(t) + \cdots \]

where the functions \(q^{(s)}(t) \) are defined by

\[
q^{(s)}(t) = \int_0^t \frac{d\theta}{\nu} q^{(s-1)}(\theta) \]

Inserting this into the expansion (5.18a) of \(q \) gives

\[
q(t; n) = \frac{1}{n} q^{(0)}(t) + \frac{1}{n^2} q^{(1)}(t) + \cdots \]

We will call the leading order, \(O(1/n) \) term in Eq. (5.27) the adiabatic approximation, the sub-leading \(O(1/n^2) \) term the post-1/2-adiabatic term, the next \(O(1) \) term the post-1-adiabatic term, etc. Below we will see that the functions \(q^{(0)} \) and \(q^{(1)} \) in fact vanish identically, so the oscillatory, \(\nu \)-dependent term in the expansion (5.27) arise only at post-2/3-adiabatic and higher orders.

As before we note that the expansion in powers of \(\nu \) in Eq. (5.27) is not a straightforward power series expansion at \(t \), since the variable \(\nu \) depends on \(n \). If the precise de nition of the expansion of the solution which we are using is given by Eqs. (5.18a) (5.24). Nevertheless, the expansion (5.27) as written correctly captures the "dependence of the secular pieces of the solution, since the functions \(q^{(0)} \), \(q^{(1)} \), and \(q^{(2)} \) are multiple periodic functions of \(\nu \) and so have no secular pieces.

2. Adiabatic Order

The zeroth order action variables are given by

\[
J^{(0)}(t) = J^{(0)}(t) \]

where \(J^{(0)}(t) \) satisfies the set of coupled ordinary differential equations

\[
\frac{dJ^{(0)}}{dt} = G^{(1)}(t)J^{(1)}(t) \]

Here the right hand side denotes the average over \(q \) of the forcing term \(G^{(1)} \), \(J^{(0)}(t) \), \(J^{(1)}(t) \), cf. Eqs. (5.3) above. The zeroth order action equations are given by

\[
q^{(0)}(t) = \frac{\dot{\theta}}{\nu} \]

and the angular velocity that defines the phase variable is given to zeroth order by

\[
\dot{\theta}^{(0)}(t) = \frac{\dot{\theta}}{\nu} \]

Note that this approximation is equivalent to the following simple prescription: (i) Truncate the equations of motion (5.1) to the \(0(\nu) \) term; (ii) Om in the driving term \(q^{(1)} \) in the equations for the action variables; and (iii) Replace the driving term \(s \) \(G^{(1)} \) in the equations for the action variables with their averages over \(q \).
3. Post-1/2-adiabatic order

Next, the \(O(\mathcal{P} \mathcal{W}) \) action variables are given by

\[
J^{(1/2)}(t) = J^{(1/2)}(t),
\]

(5.32)

where \(J^{(1/2)}(t) = J_1^{(1/2)}(t); \ldots ; J_N^{(1/2)}(t) \) satisfies the set of coupled, source-free ordinary differential equations

\[
\frac{dJ^{(1/2)}(t)}{dt} = \frac{\partial G^{(1)}_0}{\partial J} [J^{(0)}(t); t] J^{(1/2)}(t); = 0;
\]

(5.33)

Equation (5.33) will acquire a source term in Ref. [79] where we include the effects of resonances. The \(O(\mathcal{P} \mathcal{W}) \) angle variables are given by

\[
\theta^{(1/2)}(t) = \frac{\partial J}{\partial \theta} \frac{dJ^{(1/2)}(t)}{dt}; = 0;
\]

(5.34)

and the angular velocity that denotes the phase variable is given to \(O(\mathcal{P} \mathcal{W}) \) by

\[
\theta^{(1/2)}(t) = \frac{\partial J}{\partial \theta} [J^{(0)}(t); t] J^{(1/2)}(t); = 0.
\]

(5.35)

Note that Eqs. (5.33) and (5.35) can be obtained simply by linearizing Eqs. (5.29) and (5.31) about the zeroth order solution. That is, \(J^{(0)} + \mathcal{P} \mathcal{W} J^{(1/2)} \) and \(J^{(0)} \) satisfy the zeroth order equations (5.29) and (5.31) to \(O(\mathcal{P} \mathcal{W}) \). This means that setting \(J^{(1/2)} \) and \(J^{(1/2)} \) to zero does not cause any loss of generality in the solutions (under the no-resonance assumption of this paper), as long as we allow initial conditions to have sufficiently general dependence on \(\theta \).

4. Post-1-adiabatic order

The first order action variable is given by

\[
J^{(1)}(t) = I^{(0)}(t) \hat{G}^{(1)}[J^{(0)}(t); t] J^{(1)}(t); + J^{(1)}(t); (5.36)
\]

where the symbol \(I \) on the right hand side denotes the integration operator \(\int d\theta \) with respect to \(\hat{G}^{(1)} \) is the non-constant piece of \(G^{(1)} \) as defined in Eq. (5.31), and \(I^{(0)} \) is given by Eq. (5.33). In Eq. (5.36) the quantity \(J^{(1)}(t) \) satisfies the differential equation

\[
\frac{dJ^{(1)}(t)}{dt} = \frac{\partial G^{(1)}_0}{\partial J} [J^{(0)}(t); t] J^{(1)}(t); + \frac{\partial G^{(1)}_0}{\partial t} [J^{(0)}(t); t] J^{(1)}(t); + \frac{\partial G^{(1)}_0}{\partial \theta} J^{(0)} J^{(1)}(t); + \frac{\partial G^{(1)}_0}{\partial \theta} J^{(1)}(t); + \frac{\partial G^{(1)}_0}{\partial \theta} J^{(1)}(t); + \frac{\partial G^{(1)}_0}{\partial \theta} J^{(1)}(t); = 0.
\]

(5.37)

Here it is understood that the quantities on the right hand side are evaluated at \(J = J^{(0)}(t) \) and \(q = q^{(0)}(t) \). The last three terms on the right hand side of Eq. (5.37) can be written more explicitly using the definitions of \(\mathcal{G}^{(1)} \) of \(I \) and the definition of \(\mathcal{G}^{(1)} \) of the averaging operator as

\[
\mathcal{G}^{(1)} = \int_0^t \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t); + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t); + \mathcal{J}^{(1)}(t); + \mathcal{J}^{(1)}(t); = 0.
\]

(5.38)

The \(O(\mathcal{W}) \) correction to the angular velocity \(\theta^{(1)} \) is given by

\[
\theta^{(1)}(t) = g^{(1)} \left\{ \frac{1}{2} [J^{(0)}(t); t] \right\} + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t); + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t);
\]

(5.39)

Finally, the sub-leading term in the angle variable is

\[
\theta^{(1)}(t) = \frac{d}{dt} \left\{ \frac{1}{2} [J^{(0)}(t); t] \right\} + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t); + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t);
\]

(5.40)

where

\[
\mathcal{G}^{(1)} = \frac{d}{dt} \left\{ \frac{1}{2} [J^{(0)}(t); t] \right\} + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t); + \frac{1}{2 \mathcal{J}} [J^{(0)}(t); t] J^{(1)}(t);
\]

(5.41)

and

\[
\mathcal{G}^{(1)}(t) = \frac{d^{(1)}(0; t)}{dt}; = 0.
\]

(5.42)

5. Discussion

One of the key results of the general analysis of this section is the identification of which pieces of the external forces are required to compute the adiabatic, post-1/2-adiabatic and post-1-adiabatic solutions. From Eqs. (5.29), (5.31) and (5.27), the adiabatic solution depends only on the averaged piece \(G^{(1)}(t) \) of \(q^{(0)}(t; t) \) of the leading order external force \(G^{(1)} \). Only the dissipative piece of the force \(G^{(1)} \) normally contributes to this average. For our application to inspirals in Kerr, this follows from the identity \(\mathcal{A}(27) \) which shows that the average of the conservative piece of \(G^{(1)} \) vanishes. For a Hamiltonian system with \(N = M \), if the perturbing forces \(g \) and \(\mathcal{G} \) arise from a perturbation \(H = \mathcal{A}(27) \) to the Hamiltonian, then the forcing function \(G^{(1)} \) is

\[
G^{(1)}(q; J; t) = \frac{\partial H}{\partial q} (q; J; t).
\]
and it follows that the average over q of $G^{(5)}$ vanishes.

At the next, post-1/2-adiabatic order, it follows from Eqs. (5.23) and (5.33) that the term $(1-2)$ \((t)\) depends again only on the averaged dissipative piece $G^{(1)}$ of the leading order force. However, we shall see in the forthcoming paper\cite{79} that when the effects of resonances are included, additional dependencies on the remaining (non-averaged) pieces of the rest order self forces will arise.

At the next, post-1-adiabatic order, the term (1) \((t)\) in Eq. (5.27) depends on the average piece $G^{(2)}$ \((J; t)\) = $G^{(2)}$ \((q; J; t)\) of the sub-leading force $G^{(2)}$, again normally purely dissipative, as well as the remainders conservative and dissipative pieces of the leading order forces $G^{(1)}$ \((q; J; t)\) and $G^{(1)}$ \((q; J; t)\). This can be seen from Eqs. (5.33) and (5.28). These results have been previously discussed briefly in the EMRI context in Refs.\cite{33,66}. For circular, equatorial orbits, the fact that there is a post-1-adiabatic order contribution from the second order self-force was first argued by [66].

Finally, we consider the choice of initial conditions for the approximate differential equations we have derived. The discussion and conclusions here parallel those in the single variable case, given in Sec. IV B 5 above, and the results are summarized in Sec. IV C below.

F. Derivation

We will denote by $R^{(t)}$ the set of resonant N-tuples k at time t, and by $R^{(c)}(t)$ the remaining non-resonant nonzero N-tuples. The set of all N-tuples can therefore be written as the disjoint union

$$Z^N = \cup_0 g \cup R^{(t)} \cup R^{(c)}(t):$$

At each order s we introduce the notation $J^{(s)}(t)$ for the average part of $J^{(s)}(t)$:

$$J^{(s)}(t) = J^{(s)}(t) + J^{(s)}(t)$$

$$J^{(s)}(t) = \frac{1}{Z^N} \sum_0 \cdots \sum_0 J^{(s)}(t):$$

We denote by $J^{(s)}$ the remaining part of $J^{(s)}$, as in Eq. (5.33). This gives the decomposition

$$J^{(s)}(t) = J^{(s)}(t) + J^{(s)}(t)$$

for all $s = 0$. Similarly for the angle variable we have the decomposition

$$q^{(s)}(t) = q^{(s)}(t) + q^{(s)}(t)$$

for all $s = 0$. For the case $s = 0$ we use the fact that $q^{(0)}(t)$ is a multiply periodic function of t, by Eq. (5.20a), to obtain the decomposition

$$q^{(0)}(t) = q^{(0)}(t) + q^{(0)}(t)$$

where $q^{(0)}(t)$ is multiply periodic in t with zero average.

Using the expansions (5.18a) and (5.18b) of q and J together with the expansion (5.29) of $d = dt$, we obtain

$$\frac{dq}{dt} = \left(\frac{q^{(0)}}{p} \right)^{50a} + \left(\frac{q^{(1)}}{p} \right)^{50b} + \left(\frac{q^{(2)}}{p} \right)^{50c} + \left(\frac{q^{(3)}}{p} \right)^{50d}$$

We now insert this expansion together with a similar expansion for $J = dt$ into the equations of motion (3.2), and use the expansions (5.24) and (5.25) of the external forces g and G. Equating the coefficients of powers 23 of t then gives at zeroth order:

$$q^{(0)}(t) = \mu_1 \mu_2 \mu_3$$

$$J^{(0)}(t) = 0$$

at order $O(\mu^1)$

$$q^{(1)}(t) + g^{(1)}$$

$$J^{(1)}(t) = 0$$

at order $O(\mu^1)$

$$q^{(2)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(2)}(t) = 0$$

at order $O(\mu^2)$

$$q^{(3)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(3)}(t) = 0$$

at order $O(\mu^3)$

$$q^{(4)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(4)}(t) = 0$$

at order $O(\mu^4)$

$$q^{(5)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(5)}(t) = 0$$

at order $O(\mu^5)$

$$q^{(6)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(6)}(t) = 0$$

at order $O(\mu^6)$

$$q^{(7)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(7)}(t) = 0$$

at order $O(\mu^7)$

$$q^{(8)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(8)}(t) = 0$$

at order $O(\mu^8)$

$$q^{(9)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(9)}(t) = 0$$

at order $O(\mu^9)$

$$q^{(10)}(t) + g^{(1)} + g^{(2)} + g^{(1)} + g^{(2)}$$

$$J^{(10)}(t) = 0$$

at order $O(\mu^{10})$
and at order $0 (m^2)$

$^{(2)}q_{i j} = \begin{pmatrix} (1-2)q_{i j}^{(3-2)} & (1)q_{i j}^{(1)} & (3)q_{i j}^{(2)} \\ (2)q_{i i}^{(0)} & q_{\mu j}^{(1)} + g_{\mu j}^{(2)} + g_{\mu j}^{(1)} & q_{i j}^{(2)} \\ (2)q_{j i}^{(0)} & g_{\mu j}^{(1)} + \frac{1}{2}q_{\mu j}^{(1)} & q_{j i}^{(2)} \\ (2)q_{j i}^{(0)} & q_{\mu j}^{(1)} & q_{i j}^{(2)} \end{pmatrix}$

$\begin{align*}
q_{i i}^{(0)} &= 0 \\
q_{j i}^{(0)} &= G_{j i}^{(2)} + G_{j i}^{(1)} \\
q_{j i}^{(0)} &= \frac{1}{2}G_{j i}^{(1)} + \frac{1}{2}q_{j i}^{(2)} \\
q_{i j}^{(0)} &= 0
\end{align*}$

(5.53a)

(5.53b)

Here it is understood that all functions of q and J are evaluated at $q^{(2)}$ and $J^{(0)}$.

1. Zeroth order analysis

The zeroth order equations (5.45) can be written more explicitly as

\begin{align*}
^{(0)}(t)q_{i j}^{(0)} (\tau) &= -J^{(0)}(\tau)q_{i j}^{(0)} (\tau); & (5.54a) \\
^{(0)}(t)J_{i i}^{(0)} (\tau) &= 0; & (5.54b)
\end{align*}

Since $J^{(0)}$ is a multiply periodic function of τ, we can rewrite Eq. (5.54b) in terms of the Fourier components $q_{k}^{(0)}(t)$ of $q^{(0)}$ as

\begin{equation}
X \int_{-\infty}^{\infty} h^{(0)}(\tau) \frac{j_k}{i} e^{ik} = 0; \quad (5.55)
\end{equation}

For non-resonant N-tuples k we have

\begin{equation}
^{(0)}(t)q_{k}^{(1-2)} = 0 \quad (5.56)
\end{equation}

by Eqs. (5.15) and (5.31), unless $k = 0$. This implies that $J_{k}^{(1)}(t)$ must vanish except at those values of t at which k is resonant. Since we assume that $J_{k}^{(0)}(t)$ is a continuous function of t, and since the set of resonant values of t for a given k consists of isolated points (cf. Sec. V C above), it follows that $J_{k}^{(1)}(t)$ vanishes for all nonzero k. The formula (5.29) now follows from the decoupling property (5.44).

Next, substituting the formula (5.29) for $J^{(0)}$ and the decoupling property (5.44) of $q^{(0)}$ into Eq. (5.54a) gives

\begin{equation}
^{(0)}(t)q_{i j}^{(2)} (\tau) + \frac{j_k}{i} k^{(0)} q_{k}^{(1-2)} e^{ik} = -J^{(0)}(\tau)q_{i j}^{(0)} (\tau); \quad (5.57)
\end{equation}

where $q_{k}^{(0)}(t)$ are the Fourier components of $q^{(0)}(\tau)$. The $k = 0$ Fourier component of this equation gives the formula (5.31) for the zeroth order angular velocity $^{(0)}(\tau)$. The $k = 0$ Fourier components in previous work using an argument similar to that just given for Eq. (5.54a), that $q_{k}^{(0)}(t) = 0$ for all nonzero k. The decoupling property (5.44) then gives

\begin{equation}
^{(0)}(t)q_{i j}^{(2)} (\tau) + q_{i j}^{(0)} (\tau); \quad (5.58)
\end{equation}

Finally, the assumption (5.24) forces $Q^{(0)}(t)$ to vanish, and we recover the formula (5.30) for $q^{(0)}(\tau)$.

2. Order $0 (P \tau)$ analysis

The $O (P \tau)$ equation (5.50a) can be written more explicitly as

\begin{equation}
^{(0)}(t)J_{i i}^{(1-2)} (\tau) = 0; \quad (5.59)
\end{equation}

where we have substituted the zeroth order solution (5.29). An argument similar to that given in Sec. V F now forces the dependent piece of $J_{i i}^{(1)}(t)$ to vanish, and so we obtain the formula (5.32).

Next, we simplify the order $O (P \tau)$ equation (5.50a) using the solutions (5.28), (5.30) and (5.32) to obtain

\begin{equation}
^{(0)}(t)q_{i j}^{(2)} (\tau) + q_{i j}^{(0)} (\tau); \quad (5.59)
\end{equation}

After averaging with respect to τ, the term on the left sides vanishes since it is a total derivative, and we obtain the formula (5.34) for $^{(1-2)}(t)$. Note however that the function $J_{i i}^{(1)}(t)$ in that formula has not yet been determined; it will be necessary to go to two higher orders in $P \tau$ to compute this function.

Next, we subtract from Eq. (5.50a) its averaged part and use the decoupling property (5.44) of $q^{(1)}$ to obtain

\begin{equation}
^{(0)}(t)q_{i j}^{(1-2)} (\tau) = 0; \quad (5.61)
\end{equation}

An argument similar to that given in Sec. V F now shows that $q^{(1-2)} = 0$, and the result (5.34) then follows from the decoupling property (5.44) together with the initial condition condition (5.29).
3. Order $O(\cdot)$ analysis

The $O(\cdot)$ equation can be written more explicitly as

$$\begin{align*}
(0)\left(t \right) J^{(0)}(t; t) &= J^{(0)}(t; t) + G^{(1)} \left[J^{(0)}(t; t) ; \right] \quad (5.62)
\end{align*}$$

where we have simplified using the zeroth order solutions 5.28 and 5.30 and the $O(\cdot)$ solution 5.33. We now take the average with respect to of this equation. The left hand side vanishes since it is a derivative, and we obtain using the definition 5.24 the differential equation 5.29 for $J^{(0)}(t; t)$. Next, we subtract from Eq. 5.29 its averaged part, and use the decom position 5.49 of $J^{(1)}$.

This gives

$$\begin{align*}
(0)\left(t \right) J^{(1)}(t; t) &= G^{(1)} \left[J^{(0)}(t; t) ; \right] \quad (5.63)
\end{align*}$$

We solve this equation using the Fourier decom position $5.11b$ of $G^{(1)}$ to obtain

$$\begin{align*}
J^{(1)}(t; t) &= \sum_{k \neq 0} \frac{G^{(1)} \left[J^{(0)}(t; t) ; \right]}{i k} e^{i k} + \sum_{k \neq 0} J^{(1)}(t) e^{i k} \quad (5.64)
\end{align*}$$

Here the first term is a sum over non-resonant k's, and the second term is a sum over resonant k's, for which the coefficients are constrained by Eq. 5.63. However, for each fixed k, the values of t that correspond to resonances are isolated, and furthermore by the non-resonance assumption 5.59 we have $G^{(1)} \left[J^{(0)}(t; t) ; \right] = 0$ in the vicinity of those values of t. Therefore using the assumed continuity of $J^{(1)}(k; t)$ in t we can simplify Eq. 5.64 to

$$\begin{align*}
J^{(1)}(t; t) &= \sum_{k \neq 0} \frac{G^{(1)} \left[J^{(0)}(t; t) ; \right]}{i k} e^{i k} \quad (5.65)
\end{align*}$$

where any terms s of the form $0=0$ that appear in the coefficients are interpreted to be 0. This yields the first term in the result 5.36 for $J^{(1)}$ when we use the notation 5.54.

Next, we simplify the order $O(\cdot)$ equation $5.51a$ using the zeroth order solutions 5.28 and 5.30 and the $O(\cdot)$ solutions 5.32 and 5.34, to obtain

$$\begin{align*}
(0)\left(t \right) \dot{q}^{(1)}(t; t) &= g^{(1)} \left[J^{(0)}(t; t) ; \right] ^{(1)}(t) + \frac{1}{i} \mu J^{(0)}(t; t) + \frac{1}{2} \mu J^{(0)}(t; t) J^{(1)}(t; t) \quad (5.66)
\end{align*}$$

Averaging with respect to and using the decom positions 5.49 and 5.46 of $J^{(1)}$ and $q^{(1)}$ now gives the formula 5.33 for $^{(1)}(t)$. Note however that the function $J^{(1)}(t)$ in that formula has not yet been determined, it will be necessary to go to two higher orders in ∂ to compute this function.

Finally, we subtract from Eq. 5.66 its average over using the decom positions 5.49 and 5.46, and then solve the resulting partial differential equation using the notation 5.13 and the convention described after Eq. 5.65. This gives

$$\begin{align*}
\dot{q}^{(1)}(t; t) &= \frac{\partial}{\partial t} \left[J^{(0)}(t; t) ; t \right] \quad (5.67)
\end{align*}$$

Using the result for $\dot{q}^{(1)}$ given by the first term in Eq. 5.53 now yields the formula 5.41 for $q^{(1)}$ and the result 5.40 for $q^{(1)}$ then follows from the decom position 5.49 together with the initial condition 5.24.

4. Order $O(\cdot^{n-2})$ analysis

The $O(\cdot^{n-2})$ equation can be written more explicitly as

$$\begin{align*}
(0)\left(t \right) J^{(1)}(t; t) &= \frac{1}{i} \mu J^{(0)}(t; t) \quad (5.68)
\end{align*}$$

where we have simplified using the lower order solutions 5.28, 5.30, 5.32 and 5.34. We now take the average with respect to of this equation. Two terms vanish since they are total derivatives, and we obtain using the definition 5.24 the differential equation 5.33 for $J^{(1)}(t)$. The remaining non-zero Fourier components of Eq. 5.59 can be used to solve for $J^{(3-2)}$, which we will not need in what follows.

Next, we simplify the $O(\cdot^{n-2})$ equation $5.52a$ using the lower order solutions 5.32, 5.34, 5.52 and 5.54 to obtain

$$\begin{align*}
(0)\left(t \right) \dot{q}^{(3-2)}(t; t) &= g^{(1)} \left[J^{(0)}(t; t) ; t \right] ^{(3-2)}(t) + \frac{1}{i} \mu J^{(0)}(t; t) + \frac{1}{2} \mu J^{(0)}(t; t) J^{(1)}(t; t) \quad (5.69)
\end{align*}$$

The $k = 0$ component of this equation yields a formula for $^{(3-2)}(t)$ in terms of $J^{(1)}(t)$ and $J^{(3-2)}(t)$, and the Fourier components with $k \neq 0$ yield a formula for $q^{(3-2)}$ which we shall not need.
5. Order O (m) analysis

We simplify the second order equation (5.33b) using the lower order solutions (5.29), (5.30), (5.32) and (5.34), average over, and simplify using the decompositions (5.43) and (5.46) and the identities (5.12). The result is

$$\frac{d}{dt} J^{(1)}(t) = \frac{\partial G^{(1)}(0)}{\partial J} J^{(0)}(t) J^{(1)}(t) + G^{(2)}(0) J^{(0)}(t) J^{(2)}(t) + \frac{1}{2} \frac{\partial^2 G^{(1)}(0)}{\partial J^2} J^{(0)}(t) J^{(1)}(t) J^{(1)}(t) + \frac{1}{2} \frac{\partial^2 G^{(1)}(0)}{\partial J^2} J^{(0)}(t) J^{(1)}(t) J^{(1)}(t) + q^{(1)}(t) \frac{\partial G^{(1)}(0)}{\partial J} J^{(0)}(t) J^{(1)}(t) + \frac{1}{2} \frac{\partial^2 G^{(1)}(0)}{\partial J^2} J^{(0)}(t) J^{(1)}(t) J^{(1)}(t)$$

Using the expressions (5.41) and (5.46) for $q^{(1)}$ and $J^{(1)}$ now gives the differential equations (5.37) for $J^{(1)}$.

VI. NUMERICAL INTEGRATION OF AN ILLUSTRATIVE EXAMPLE

In this section we present a numerical integration of a particular example of a dynamical system, in order to illustrate and validate the general theory of Secs. X and Y.

Consider the system of equations

$$q = ! (J) + q^{(1)}(q; J) \quad (6.1a)$$

$$J = G^{(1)}(q; J); \quad (6.1b)$$

We remark that a slight inconsistency arises in our solution ansatz (5.18) at this order, O (m). Consider the $k \in 0$ Fourier components of the second order equations (5.53). For resonant n-tuples k, the left hand sides of these two equations vanish by definition, but the right hand sides are generically nonzero, due to the effects of subleading resonances. A similar inconsistency would arise in the O (m) equations (5.51), but for the fact that our no-resonance assumption (5.28) forces the right hand sides of those equations to vanish for resonant n-tuples. However, the no-resonance assumption (5.28) is insufficient to make the right hand sides of the O (m) equations (5.53) vanish, because of the occurrence of quadratic cross terms such as

$$g^{(1)}_k g^{(1)}_k e^{i(k^* k^*)}$$

It can be shown by an analysis similar to that given in Ref. [79], that the effect of these subleading resonances is to (i) restrict the domain of validity of the expansion (5.18) to exclude times at which subleading resonances occur, and (ii) to add source terms to the differential equation for $J^{(1)}(t)$ which encode the effect of passing through a subleading resonance. These modifications do not affect any of the conclusions in the present paper.

To order, the initial conditions on $(q_{ad}; J_{ad})$ are the same as those for $(q; J)$, which gives (6.3) and (6.4) and (6.5) and (6.6) and (6.7) and (6.8) and (6.9) and (6.10). We expect to find that after a time $t = t^{\ast}$ the errors are of order 1 for $q_{ad}(t)$ and of order m for $J_{ad}(t)$. This is confirmed by the two upper panels in Fig. 3, which show the differences q_{ad} and J_{ad}.

24 Strictly speaking, our derivations assume that (5.1) is independent of t, and so it is inconsistent to use this initial condition for (5.1). Instead we should set (5.1) = 0, and take account of the nonzero initial phase $q(0)$ at the next order, in the variable (5.1). However, ignoring a constant from (5.1) to t^{\ast}, (5.1) does not affect the solution, and we are free to choose the initial data as done here.
Consider next the post-adiabatic approximation. From Eqs. (6.31) and (6.32) this approximation is given by the system of equations

\[
\frac{d J(t)}{dt} = \frac{J^{(1)}}{2} \left(J^{(0)} + \frac{1}{J^{(0)}} \right) + \frac{1}{2 J^{(0)}} \left(J^{(0)} + \frac{1}{J^{(0)}} \right) \quad (6.5a)
\]

\[
\frac{d J^{(1)}(t)}{dt} = \left(1 + J^{(0)} \right) J^{(1)} - \frac{J^{(0)}}{2} J^{(0)} \quad (6.5b)
\]

together with the adiabatic system (6.2). From Eqs. (4.24) and (4.30) the post-adiabatic solution \(q_{\text{pla}}(t) \) is given by

\[
q_{\text{pla}}(t) = \left(J^{(0)} t + J^{(1)} t^2 \right) \quad (6.6a)
\]

\[
J_{\text{pla}}(t) = J^{(0)} t + J^{(1)} t^2 + H \left(J^{(0)} t; q_{\text{pla}}(t) \right) \quad (6.6b)
\]

where the function \(H \) is given by

\[
H(J; q) = \frac{J^2 \cos q}{J \sin q} \quad (6.7)
\]

Consider next the choice of initial conditions \(q(0), J^{(0)}(0), J^{(1)}(0) \) for the system of equations (6.2). From Eqs. (6.6) these choices are constrained by, to \(O(\varepsilon^2) \),

\[
q(0) = 0, J^{(0)}(0) = J(0) = 1, J^{(1)}(0) = 0 \quad (6.8a)
\]

and \(J(t) = J^{(0)}(0) + \frac{1}{J^{(0)}(0)} \) and \(J^{(1)}(0) = 0 \) for \(q_{\text{pla}}(t) \). This is composed by the two lower panels in Fig. 3 which show the differences \(q_{\text{pla}} \) and \(J \).

VII. DISCUSSION

In Sec. II above we derived the set of equations (2.4.3) describing the radiation-reaction driven inspiral of a particle into a spinning black hole, in terms of generalized action variables. A through those equations contain some functions which are currently unknown, it is possible to give a general analysis of the dependence of the solutions on the mass ratio \(m = \frac{m'}{M} \) using two-tim scales expansions. That analysis was presented in Secs. III and IV above, for the general class of equation system (6.2) of which the Kerr inspiral example (2.4.1) is a special case. In this final section we combine these various results and discuss the implications for our understanding of inspirals into black holes.

A. Consistency and uniqueness of approximation scheme

Our analysis has demonstrated that the adiabatic approximation method gives a simple and unique prescription for computing successive approximations to the exact solution, order by order, which is free of ambiguities. In this sense it is similar to the post-Newtonian approximation method,\(^{26}\) which is shown explicitly in Sec. V E 4 which shows that the adiabatic method can be extended to all orders for the case of a single degree of freedom, and in Sec. V I which shows how the method works in practice in a numerical example. In particular there is no ambiguity in the assignment of initial conditions when computing adiabatic or post-adiabatic approximations.

This conclusion appears to be at odds with a recent analysis of Pound and Poisson (PP)\(^{76}\). These authors conclude that an adiabatic approximation to the exact differential equations and initial conditions, designed to capture the secular changes in the orbital elements and to discard the oscillations, would be very difficult to formulate without prior knowledge of the exact solution.\(^{77}\) The reason for the disagreement is in part a matter of terminology: PP's definition of "adiabatic approximation" is different from ours.\(^{27}\) They take it to mean an approximation which (i) discards all the pieces of the true solutions that vary on the rapid timescale 1, and so...

\(^{26}\) The analogy is closer when the two-tim scales expansion is extended to include the full equations and wave generation as well as the inspiral action.\(^{84}\)

\(^{27}\) In a later version of their paper they call it instead a "secular approximation."
The difference in the termology used here and in PP is not the only reason for the different conclusions. Our formalism shows that PP’s ‘adiabatic approximation’ is actually straightforward to formulate, and that prior knowledge of the exact solution is not required. The reason for the different conclusions is as follows. By ‘exact solution’ PP in fact meant any approximation which includes the rapidly oscillating pieces at post-1-adiabatic order. Their intended meaning was that, since the secular and rapidly oscillating pieces are coupled together at post-1-adiabatic order, any approximation which completely neglects the oscillations cannot be accurate to post-1-adiabatic order. We agree with this conclusion.

On the other hand, we disagree with the overall pessimism of PP’s conclusion, because we disagree with their premise. Since the qualitative arguments that were originally presented for the radiative approximation involved discarding oscillatory effects, PP chose to examine general approximation schemes that neglect oscillatory effects and correctly concluded that such schemes cannot be accurate beyond the leading order. However, our viewpoint is that there is no need to restrict attention to schemes that neglect all oscillatory effects. The two-time-scale scheme presented here yields leading order solutions which are not in general by oscillatory effects, and higher order solutions whose secular pieces are the development of a systematic approximation scheme that exploits the disparity in orbital and radiation reaction timescales need not be synonymous with neglecting all oscillatory effects.

C. The radiative approximation

So far in this paper we have treated the self force as fixed, and have focused on how to compute successive approximations to the inspissating motion. However, as explained in the introduction, the post-1 order self force is currently not yet known explicitly. The time-averaged, dissipative piece is known from work of Miller and others [27, 37, 61, 63, 69, 70]. The remaining, uncoupled piece of the dissipative post-1 order self force has not been computed but will be straightforward to compute. The conservative piece of the post-1 order self force will be much more difficult to compute, and is the subject of much current research [46, 48, 50, 51, 52].

29 This corresponds to adding to the frequency \(\omega \) in Eq. (5.18) the average over \(q \) of the term \(\omega^{(1)} \).

30 We use the term ‘radiative and dissipative interchangeably; both denote the time-odd piece of the self force, as defined by Ref. [61] above.

31 For example, by evaluating \(J_{m,kn} \) from Eq. (8.21) of Ref. [61] at \(\epsilon = i \omega \text{th} \) instead of \(\epsilon = i \omega \text{th} \).
It is natural therefore to consider the radiative approximation obtained by using only the currently available, radiative piece of the \textit{rst} order self force, as suggested by Mino \cite{Mino:2009rn}, and by integrating the orbital equations exactly (eg numerically). How well will this approximation perform?

From our analysis it follows that the motion as computed in this approximation will agree with the true motion to adiabatic order, and will diverge at post-1-adiabatic order. At post-1-adiabatic order, it will contain effects due to the conservative \textit{rst} order forces, and also effects due to the dissipative second order self force. It will include post-1-adiabatic effects due to the oscillating pieces of the \textit{rst} order, dissipative self force, and so would be expected to be more accurate than the adiabatic approximation. The error in this function will be an error in the source term S in Eq. \ref{sec:adiabatic_approximation}, and the initial conditions \ref{init}. There are thus two distinct types of errors that occur in the radiative approximation.\cite{footnote2}

The second type of error could in principle be removed by adjusting the initial conditions appropriately. For fixed initial conditions $q(0)$ and $J(0)$, such an adjustment would require knowledge of the conservative piece of the self force, and so is currently impossible. However, in the context of searches for gravitational wave signals, matched filtering searches will automatically vary over a wide range of initial conditions. Therefore the second type of error will not be an impediment in detecting gravitational wave signals. It will, however, cause errors in parameter extraction.

This fact that the error in the radiative approximation can be reduced by adjusting the initial conditions was discovered by Pound and Poisson \cite{Pound:1988}, who numerically integrated inspiral orbits in Schwarzschild using post-Newtonian self-force expressions. Their "timed-averaged" initial conditions, which they found to give the highest accuracy, correspond to removing the second type of error discussed above, that is, using the initial conditions \ref{init} with the exact function H rather than the radiative approximation to H.

Finally, we note that given the radiative approximation to the self force, one can compute waveform \mathcal{S} using the radiative approximation as described above, or compute waveform \tilde{S} in the adiabatic approximation by solving equations \ref{adiabatic_approximation} using the replacement \ref{adiabatic_solution}. This second option would be easier although somewhat less accurate.

In terms of these quantities, the radiative approximation is equivalent to the replacement

\begin{equation}
\begin{aligned}
q^{(1)}(q,J) & \rightarrow q^{(0)}_{\text{adi}}(q,J) ;\quad (7.4a) \\
G^{(1)}(q,J) & \rightarrow G^{(0)}_{\text{adi}}(q,J) ;\quad (7.4b) \\
G^{(2)}(q,J) & \rightarrow 0 .\quad (7.4c)
\end{aligned}
\end{equation}

These replacement terms have two effects: (i) they give rise to an error in the source term S in Eq. \ref{source_term}, and (ii) they give rise to an error in the function H and hence in the initial conditions \ref{init}. There are thus two distinct types of errors that occur in the radiative approximation.\cite{footnote3}

The first error is that the term $G^{(3)}$ is not equal to $G^{(0)}$. The second error is that the term $q^{(1)}$ is not equal to $q^{(0)}$. These two errors are both secular, varying on long time scales. There is in addition a rapidly oscillating error caused by the correction to the \textit{rst} term in the expression \ref{adiabatic_solution} for $J^{(1)}$.

\[D_{\text{adi}}(t) = S ;\quad (7.1)\]

where D is a linear differential operator and S is a source term. The appropriate initial conditions are [see Sec. IV.D.5.]

\begin{equation}
\begin{aligned}
j^{(0)}(0) &= 0 ;\quad J^{(0)}(0) = J(0) ; \quad (7.2a) \\
j^{(1)}(0) &= q(0);\quad J^{(1)}(0) = H [q(0);J(0)] ; \quad (7.2b)
\end{aligned}
\end{equation}

where $q(0)$ and $J(0)$ are the exact initial conditions and the function H is given by, from Eq. \ref{adiabatic_solution},

\begin{equation}
H(q,J) = I^{(0)}(0) G^{(1)}(q,J;0) .\quad (7.3)
\end{equation}

\[\text{footnote2}\] It is of course possible that, due to an accidental near-cancellation of di erent post-1-adiabatic terms, the adiabatic approximation may be closer to the true solution than the radiative approximation.

\[\text{footnote3}\] These two errors are both secular, varying on long time scales.
are largely consistent with one another, despite differences in emphasis and interpretation that can be found in the literature. We restrict attention to inspirals in Schwarzschild, and to circular or equatorial inspirals in Kerr; fully general orbits present additional features that will be discussed elsewhere [73,74].

First, we note that in this paper we have focused on how the post-1-adiabatic error in phase scales with the mass ratio $\nu = M/r$. However, one can also ask how the error scales with the post-Newtonian expansion parameter $v = c$. From Eq. (A10) of Ref. [68], it follows that the post-1-adiabatic phase error scales as

$$M = c^3 \nu \frac{V}{M} i$$

this scaling is consistent with the more recent analysis of Ref. [104]. This scaling does imply that the error gets large in the weak-field regime, as correctly argued in Ref. [104]. However, it does not necessarily imply large errors in the relativistic regime $v = c$ relevant to LISA observations.

The first order of magnitude estimate of the e-e of the conservative piece of the self-force were made by Burko in Refs. [105,106], Refs. [3,68] computed the post-1-adiabatic phase error within the post-Newtonian approximation for circular orbits, e minimized over some of the ten plate param eters, and evaluated at frequencies relevant for LISA. The results indicated a total phase error of order one cycle, not enough to impede detection given that maximum coherent integration times are computationally limited to 3 weeks [16]. This result was extended to eccentric orbits with eccentricities 0.4 in Refs. [107,108], with similar results. Similar computations were performed by Burko in Refs. [23,103], although with M minimized over ten plate parameters.

These analyses all focused on extreme mass ratio inspirals for LISA. For intermediate mass ratio inspirals, potential sources for LIGO, the post-1-adiabatic corrections were studied in the post-Newtonian approximation in Refs. [4,110]. Ref. [4] computed fitting factors in addition to phase errors, found that the associated loss of signal-to-noise ratio would be less than 10% in about half the most rapidly spinning cases, and concluded that it would be worthwhile but not essential to go beyond adiabatic order for detection ten plates.

This most definitive study to date of post-1-adiabatic errors for LISA in the Schwarzschild case was performed by Pound and Poisson (PP1) [104]. PP1 numerically integrated the geodesic equations with post-Newtonian expressions for the self-force, w and w without conservative terms. PP1 found large phase errors, $\& 100$, in the weak-field regime. However, the regime relevant to LISA observations is $p \leq 0.3$ [34], where p is the dimensionless semi-latus rectum parameter defined by PP1, and PP1’s results are focused mostly on values of p larger than this [35]. It is therefore desired to compare the results of PP1 with earlier estimates or to use them directly to make inferences about signal detection with LISA. PP1’s results do show clearly that the errors increase rapidly with increasing eccentricity.

We have repeated PP1’s calculations, reproducing the results of their Fig. 6, and extended their calculations to more relativistic systems at lower values of p. More specifically, we perform the following computation: (i) Select values of the mass parameter M and e, and the initial eccentricity e_0; (ii) Choose the initial value of semi-latus rectum p to correspond to one year before the last stable orbit, which occurs on the separatrix $p = 5 + 2e$ [11]; (iii) Choose the radiative evolution and the exact evolution to line up at some matching time t, during the last year of inspiral; (iv) Start the radiative and exact evolutions with slightly different initial conditions in order that the secular pieces of the evolutions initially coincide (this is the \textit{time-averaged} initial data prescription of PP1; (v) Compute the maximum of the absolute value of the phase error incurred during the last year; (vi) M in ize over the matching time t_{max}; and (vii) Repeat for different values of M, and e. As an example, for $M = 10^4M_\odot$ and $e = 0.1$, an inspiral starting at $(p,e) = (10.77,0.300)$ ends up at $(6.31,0.153)$ after one year. We match the two evolutions at 0.2427 years before plunge, with the exact evolution starting at $(p,e) = (8.1933,0.210700)$ and the radiative evolution starting at $(p,e) = (8.1928,0.210681)$. The maximum phase error incurred in the last year is then 0.91 cycles.

The phase error incurred during an inspiral from some initial values of e to the plunge is independent of the masses M and, in the small mass ratio limit. However the phase error incurred during the last year of inspiral is not, since the initial value of p depends on the inspiral timescale $M^{1/2}$. The results is that the phase error depends on the combination of masses $M^{1/2}$ to a good approximation.

Our results are shown in Fig. [4]. This figure shows, for the first time, that the computational method of PP1 gives results for low eccentricity systems that are roughly consistent with earlier, crude, estimates, with total phase errors of less than one cycle over most of the param eter space. It also shows that for large eccentricity systems the total phase error can be as large as two or three cycles.

How much will the phase errors grow in Fig. [4] in pede...
Phase errors in Radiative Approximation

FIG. 4: The maximum orbital phase error in cycles, $N = -(2)$, incurred in the radiative approximation during the last year of inspiral, as a function of the mass $\frac{M_6}{M}$ of the central black hole in units of 10^6M_6, the mass M of the small object in units of 10^6M_6, and the eccentricity e of the system at the start of the final year of inspiral. The exact and radiative inspirals are chosen to line up at some time t_w during the final year, and the value of t_w is chosen to minimize the phase error. The initial data at time t_w for the radiative evolution is slightly different from that used for the exact evolution in order that the secular pieces of the two evolutions initially coincide. This is the “time-averaged” initial data prescription of Pound and Poisson. All evolutions are computed using the hybrid equations of motion of E. Kidder, W. Illi and W. Zinnan [112] in the oscillating-element form given by Pound and Poisson.

Thus, there is a considerable amount of uncertainty as to whether the radiative approximation will be sufficiently accurate for signal detection. A detailed study would require computation of tipping factors and optimizing over all template parameters, and modeling the hierarchical detection algorithm discussed in Ref. [10]. Such a study is beyond the scope of this paper. Based on the results shown in Fig. 4, we agree with the conclusions of FP1 that the early estimates based on circular orbits [57, 69] were too optimistic, and that it is not clear that the radiative approximation is sufficiently accurate. (More recent parameter extraction will clearly require going beyond the radiative approximation.)

For gravitational wave searches, it might therefore be advisable to use hybrid waveform s, computed using the fully relativistic dissipative piece of the self-force, and using post-Newtonian expressions for the conservative piece. Although the post-Newtonian expressions are not expected to be very accurate in the relativistic regime, in proved versions have been obtained recently based on comparisons between post-Newtonian and fully numerical waveforms from binary black hole mergers; see, for example, the effective one body approximation of Refs. [111, 112, 113, 114, 115, 116, 117]. It seems likely that hybrid EMRI waveforms incorporating such in proved post-Newtonian expressions for the conservative self-force will be more accurate than radiative waveforms. Hybrid waveforms may be the best that can be done until the fully relativistic conservative self-force is computed.

VIII. CONCLUSIONS

In this paper we have developed a systematic two-ecean approximation method for computing the inspirals of particles into spinning black holes. Future papers in this series will deal with the effects of transient resonances [78, 79], and will give one due to the two-ecean expansion of the Einstein equations [80] that the meshes consistently with the approximation method for orbital motion discussed here.

Acknowledgments

We thank Steve Drasco, Marc Favata, John Friedman, Scott Hughes, Yasushi Inomoto, Eric Poisson, Adam Pound and Evan Rosenfield for helpful conversations. This research was supported in part by NSF grant PHY-0457200 and NASA grant NAGW-12906. TH was supported in part by the John and David Booscher Prize Fellowship in Theoretical Physics at Cornell.
From the formulae (2.27) for the action variables together with the definitions (2.28) of the potentials \(V \) and \(V' \) we can compute the partial derivatives \(\partial J = \partial \theta \). The non-trivial derivatives are

\[
\begin{align*}
\partial J &= Y; \\
\partial \theta &= W; \\
\partial E &= Z; \\
\partial Q &= X; \\
\partial J &= \frac{2D}{2z, a^2} [K(k) E(k)]; \\
\partial J &= \frac{2D}{z, a^2} [K(k) E(k)]; \\
\partial J &= \frac{2L_z}{K(k)} [K(k) \ (z); k); \\
\partial J &= \frac{1}{L_z} K(k); \\
\end{align*}
\]

Here the quantities \(W, X, Y \) and \(Z \) are the radial integrals defined by Schmidt 37 as [23].

\[
\begin{align*}
W &= \int_{r_1}^{r_2} e^{2(E(r^2 + a^2))} 2M \frac{r a(E r) \ aE}{V_r} dr; \\
X &= \int_{r_1}^{r_2} \frac{dr}{V_r}; \\
Y &= \int_{r_1}^{r_2} \frac{dr}{V_r}; \\
Z &= \int_{r_1}^{r_2} \frac{[L_z r] 2M \ aE}{V_r} dr; \\
\end{align*}
\]

where \(r_1 \) and \(r_2 \) are the turning points of the radial motion, i.e., the two largest roots of \(V_r(r) = 0 \). In these equations \(K(k) \) is the complete elliptic integral of the first kind, \(E(k) \) is the complete elliptic integral of the second kind, and \(\ (n;k) \) is the Legendre elliptic integral of the third kind 113:

\[
\begin{align*}
K(k) &= \frac{d}{1 - k^2 \sin^2 \theta}; \\
E(k) &= \frac{d}{1 - k^2 \sin^2 \theta}; \\
\end{align*}
\]

Also we have defined \(a = a^2 \, E^2 \) and \(k = \frac{P}{z} \), where \(z = \cos^2 \) and \(z \) and \(z_1 \) are the two roots of \(V(z) = 0 \) with \(0 < z < < 1 < z_1 \).

Combining the derivatives [A1] with the chain rule in the form

\[
\begin{align*}
\partial P &= \partial J \partial J - \partial J \partial P; \\
\end{align*}
\]

yields the following expression for the frequencies (2.14) as functions of \(P \):

\[
\begin{align*}
\epsilon &= \frac{K(k) W + a^2 z, E(k) X}{K(k) Y + a^2 z}; \\
\gamma &= \frac{K(k) Y + a^2 z}{K(k) E(k) X}; \\
\delta &= \frac{K(k) Z + L_z \ (z); k}{K(k) E(k) X}; \\
\end{align*}
\]

Appendix B: Comparison with Treatment of Kevorkian and Cole

As explained in Sec. II above, our two-time scale analysis of the general system of equations (3.2) follows closely that of the textbook [74] by Kevorkian and Cole (KC), which is a standard reference on asymptotic methods. In this appendix we explain the m m on new ways in which our treatment of Secs. IV and V extends and corrects that of KC. Section 4.4 of KC covers the one variable case. We simulate this treatment by using action angle variables, and also extend it by showing that the method works to all orders in \(\). Our general system of equations (3.2) is studied by KC in their section 4.5. We generalize this analysis by including the half-integer powers of \(\), which are required for the treatment of resonances, a m on correction is that their solution (4.554a) is not generally valid, since it requires \(L \) and \(\hat{L} \) to be collinear, which will not always be the case. However it is easy to repair this error by replacing the expression with one constructed...

37 There is a typo in the definition of \(W \) given in Eq. (44) of Schmidt [23].

38 Here we follow Dasco and Hughes [33] rather than Schmidt, who use \(z = \cos \)
using Fourier methods, cf. Eq. (5.65) above. Finally, our treatment of resonances \ref{5.70,71} will closely follow KC’s section 5.4, except that our analysis will apply to the general system (32), generalizing KC’s treatment of special cases.

[33] C. Cutler, D. Kennecke, and E. Poisson, \textit{Gravitational radiation reaction for bound motion around a...

56. Y.M. Ino, "Adiabatic expansion of the metric perturbation and the condition to solve the gauge problem in the gravitational radiation reaction problem", Progress of Theoretical Physics 115, 43 (2006).

63. C.F. Sopuerta, P. Sun, P. Laguna, and J.Xu, "A toy model for testing the extreme mass ratio inspiral system", Class. Quantum Grav. 23, 251 (2006).

