Theoretical developments in heavy and light flavor energy loss

I Vitev

*Los Alamos National Laboratory, Theoretical Division, Mail Stop B283
Los Alamos, NM 87544, USA

Abstract. Recent developments in the many-body perturbative QCD theory of inelastic parton interactions in dense nuclear matter and the phenomenology of strongly-interacting hard probes in heavy ion collisions are reviewed. We highlight the progress that has been made toward consistent comparison between radiative and collisional energy loss, the exploration of novel heavy flavor suppression mechanisms in the quark-gluon plasma, and the determination of the stopping power of cold nuclear matter. Future directions and opportunities for jet physics in nuclear collisions, enabled by the unprecedentedly high center of mass energies at the LHC, are also discussed. We propose that the physics of jet shapes and a generalization of the well-understood inclusive particle suppression in the QGP will provide a new differential, and accurate test of the underlying QCD theory and a new precision tool for jet tomography at the LHC.

1. Introduction

Of the interactions that charged particles undergo, as they traverse dense matter, inelastic scattering is undoubtedly the most important and has, by far, the largest experimentally observable effect. The energy loss itself, dE/dx, is a fundamental probe of the matter properties. Following the pioneering work of H. Bethe on the stopping power of materials for electrons [1], precise theoretical calculations and experimental measurements of this quantity became one of the great early successes of the classical and quantum theories of electromagnetic interactions [2]. Simplified forms of the collisional and radiative energy loss in QED are given by:

\[
\frac{dE_{\text{col}}}{dx} = 4 \frac{2}{e^2} Z^2 Z^\frac{1}{2} \ln B_q ; \quad \frac{dE_{\text{rad}}}{dx} = 16 \frac{3}{e^3} Z^2 \frac{1}{M^2} E \ln();
\]

(1)

to illustrate their energy and path length dependence. It is the consistent treatment of the Fermi interactions with the medium that has enabled precise comparison between dE_{\text{col}}/dx and dE_{\text{rad}}/dx, see the left panel in Figure 1. It also ensures agreement between experimental data and the theory at the level of 1% [1] over six orders of magnitude in energy. One notes that at high energies radiative energy loss dominates over collisional and the Fermi ion mass dependence never vanishes.

In QCD, the basic results for quark and gluon stopping in matter have been known to exhibit the same qualitative behavior as in QED [3], E_{\text{col}} \sim \frac{1}{4} L \ln E = E_c, E_{\text{rad}} \sim \frac{1}{3} L E. However, only after the incorporation of the Landau-Pomeron-Migdal (LPM) type coherence effects in radiative energy loss calculations, for a brief overview of theoretical approaches see [4], and the clear prospects of hard physics at RHIC and the LHC significant progress in the field of jet tomography has been made.

2. Parton energy loss: heavy and light flavor suppression

Of the experimental discoveries in nucleus-nucleus collisions at RHIC, the dominance of final state interactions in modifying jet and hadron production, when these are not close to the projectile or target fragmentation regions, is the most reliably established. It finds both theoretical support and independent experimental confirmation [4].
2.1. Radiative and collisional energy loss

Jet quenching models, based on radiative energy loss, have been very successful in describing the observed light hadron attenuation in the QGP. In contrast, direct extrapolation of the same models to heavy D- and B-mesons cannot account for the measured large suppression, $R_{AA}^{D}(p_T) > 0.25$, of non-photon electrons at RHIC. The failure of the naive extensions to explain open heavy flavor dynamics in the QGP has lead to renewed interest in collisional energy loss. Indeed, in the limit of large LPM cancellation, for static plasma as we have [3,4]:

$$\frac{dE_{\text{coll}}}{dL} = \frac{2}{3} \frac{E}{L} \log \frac{E}{L}; \quad \frac{dE_{\text{rad}}}{dL} = \frac{2}{3} \frac{E}{L^{\frac{1}{2}}} \log \frac{E}{L^{\frac{1}{2}}}$$

(2)

Based on the very similar functional dependence on the parton E, early comparisons between collisional and radiative energy loss pointed that these can be comparable at high p_T and in the intermediate-p_T region $dE_{\text{coll}}/dL > dE_{\text{rad}}/dL$ [5], see e.g. the right panel of Figure 1. With the results in Eq. (2) derived under different approximations for the interaction of the parton with the medium, however, these conclusions had to be revised. It was first shown in a calculation of drag coefficients in the QGP [6] that for $E = m >$ few radiative energy loss dominates. Subsequent developments in most theoretical approaches to parton energy loss now appear to not have similar results [7]. Collisional energy loss should be included in a full description of parton propagation in matter, though at intermediate, except for b quarks, and high p_T (or E_T) its effects are small.

2.2. Heavy flavor suppression mechanisms: from the perturbative to the non-perturbative and back

Compelling alternatives to partonic energy loss have been proposed to explain the large suppression of non-photon electrons at RHIC [8,9]. Some of these models rely on non-perturbative mechanisms, such as quark coalescence. If charm baryon production, e.g. c, is significantly enhanced ($C \sim 12$), the small semi-leptonic decay
Theoritical developments in heavy and light flavor energy loss

Figure 2. Left panel: Effects of charm baryon enhancement on the non-photonic electron suppression from Ref. [8]. Comparison to RHIC data is shown. Right panel: Suppressions of D- and B-meson production via collisional dissociation in the QGP in central Au+Au and Cu+Cu reactions at RHIC and central Pb+Pb reactions at the LHC from Ref. [9]. Note \(R_{AA}^{B+D} \) at \(p_T = 10 \text{ GeV} \).

rate of \(c \) will result in fewer electrons. The left panel of Figure 2 shows that such a mechanism can largely account for \(R_{AA}^{B+D} \) at \(p_T \).

The heavy flavor "puzzle" has also rekindled interest in the space-time picture of hadronization. The short formation time of D- and B-mesons:

\[
y' + \frac{1}{p} = \frac{2z(1-z)\rho}{k^2 + (1-z)m_h^2 + z(1-z)m_m^2}; \quad \text{where} \quad m_m = \frac{y'}{1+q}
\]

where \(q = p_T - E_\rho \), strongly suggests that the competing mechanism of fragmentation and dissociation in the medium (inelastic processes) can emulate energy loss [6,9]. Theoretical advances in relating the dissociation rate heavy meson to the QGP properties have allowed for detailed predictions of the attenuated heavy flavor cross sections, see the right panel of Figure 2. A unique feature of this model is that the large beauty meson mass facilitates suppression similar to that of charm mesons at intermediate \(p_T \). The formation time approach, formulated in [9], can also be applied to evaluate the potential of strange-quark hadronic resonances, K \(^* \), to carry information for the existence of chiral symmetry restoration in the QGP state [10].

Finally, it is possible that the suppression of heavy flavor is smaller than the current non-photonic electron measurements suggest. Experimental upgrades at RHIC, aimed at direct and separate measurement of D- and B-meson \(R_{AA} \) at \(p_T \), and future measurement at the LHC will help clarify the mechanism of heavy flavor suppression in the QGP, see e.g. Table 1.

2.3. The stopping power of cold nuclear matter

In comparison to the extensive studies of final-state parton interactions in the QGP, the theory of cold nuclear matter energy loss is not as well developed. It was realized...
only recently that the stopping power of large nuclei has a sizable, possibly dominant, contribution to the suppression of particle production in p+A and e+ A reactions and its effects are always present in A+A reactions \cite{11,12}.

In proton-nucleus collisions, parametrizations or dynamical calculations of nuclear shadowing cannot explain the large attenuation of hadron cross sections at forward rapidity \cite{13}. Combined with the fact that similarly large suppression is observed as a function of Feynman x_T = 2p_T/p_s even at center of mass energies as low as p_s = 5 GeV, this is a strong indication that inelastic parton interactions play a dominant role in altering particle production in p+A reactions. In this context, the significance of E_rad was first emphasized in Ref. \cite{13} on the example of the observed J= suppression in rapidity experiments. The left panel of Figure 3 shows a comparison of a calculation that includes nuclear shadowing and parton energy loss to R_{dAu} (p_T) in the forward direction at RHIC. Such models and theoretical support in a recent derivation of the stopping power of large nuclei \cite{14}. The LPM effect for initial-state radiative energy only reduces its magnitude, E_{rad} (LPM 1=6)E_L, allowing for cold nuclear matter quenching for partons of very large energy E = m_T cosh(y_{target}).

Concurrent development of ideas related to heavy ion phenomenology in cold and hot nuclear matter is also illustrated by calculations of jet conversion \cite{15}. In
sem i-inclusive DIS this mechanism accounts qualitatively for the flavor dependence of the hadron suppression measured by the HERMES experiment. In the QGP jet conversion, via quark and gluon mixing, reduces the difference between \(E_q \) and \(E_g \). Even though the rate was found to be small for realistic temperatures and densities, when combined with \(E_q < (C_\Lambda = C_F) E_g \) at near energies, see the right panel of Figure 3, it could account for the apparent absence of strong flavor dependence of the high-p_T hadron quenching.

Details of the theoretical and phenomenological developments that pertain to strongly-interacting hard probes in high energy nuclear collisions are given elsewhere in these proceedings.

3. Jets in nuclear collisions

There is general agreement on the physics that controls inclusive particle suppression in the QGP and the experimental methodology of determining \(R_{AA} (p_T) \) is well established. Still, such measurements are not able, at present, to distinguish between competing theoretical models of energy loss. Experimental interest in multi-particle correlations has stimulated extensive phenomenological work to better constrain the mechanisms of jet-medium interactions. It appears that such modeling effort cannot be systematically improved due to the absence of factorization for the highly differential observables. It is, therefore, critical to find alternatives that accurately reflect the energy dependence in strongly-interacting systems, that have a more direct connection to the underlying QCD theory, and exhibit a larger discriminating power.

We propose that jet shapes in nuclear collisions and a natural generalization of leading hadron quenching to jets, \(R_{AA} (E_T \; \gamma \; p_T \; m_{in}) \), are precisely the tools needed to leverage the expertise acquired at RHIC.

The high rate of hard probes at the LHC and the large-acceptance calorimetry, see e.g., will enable precise jet measurements. Discussion of the merits of and recent improvements in jet-kinning algorithms goes beyond the scope of this overview.

Understanding the QGP-induced modification of jet shapes is most intuitive for the cone variety, where \(R = \left(\frac{\langle E_T \rangle_i (R_{jet})}{\langle E_T \rangle_i (R_{jet})} \right) \) is the Lorentz-invariant opening angle. The differential energy distribution is the central quantity of interest. For \(0 < R \) we have:

\[
(p;R) = \int \frac{d}{\pi} \left(\frac{E_T (r)}{E_T (R_{jet})} \right) \left(\frac{R_{jet}}{R} \right) ; \quad (r;R) = \frac{d}{dr} \left(\frac{r}{R} \right).
\]

3.1. Jet shapes in elementary p+p collisions

The essential features of a jet shape can be understood analytically and arise from the infrared-safe QCD splitting kernel, Sudakov resummation of large logarithms in \((r=R) \) that regulates the collinear divergences, initial-state radiation present in hadronic reactions, power corrections that reflect the non-perturbative effects of hadronization, and the specifics of a jet kinning algorithm:

\[
(p;R) = \frac{\text{soft} (r=R)}{\text{soft} (r=R)} + \left(\frac{\langle E_T \rangle_i (R_{jet})}{\langle E_T \rangle_i (R_{jet})} \right) \frac{\text{power} (r=R)}{\text{power} (r=R)}.
\]

Results at MLLA and next-to-MLLA have been compared to the Tevatron data on \((r=R) \), e.g., see left panel of Figure 3. Note that vacuum jets are very strongly peaked at \(r < R \). In elementary p+p collisions jet shapes at the LHC are very similar to the ones at the Tevatron, up to a different contribution of gluon jets, where \(hr=i_q > hr=R_{i_q} \).
The or et ical development in heavy and light flavor energy loss.

0.1

\[\rho(r/R) \]

LO+PC+RS (R_{sep}=1.3)

LO+PC+RS (R_{sep}=1.3)

\[E_T = 148-166 \text{ GeV} \]

\[E_T = 250-277 \text{ GeV} \]

Figure 4. Left panel: Jet shape calculations (R = 0.7) in p+p collisions at \(\sqrt{s} = 196 \text{ TeV} \) compared to the Tevatron data [20]. Right panel: Preliminary results for the shape of a \(E_T = 50 \text{ GeV} \) gluon jet in \(\sqrt{s} = 5.5 \text{ TeV} \) central Pb+Pb collisions at the LHC [20].

3.2. Medium-induced modification of jet shapes

Detailed derivation of the coherent inelastic parton scattering regimes in QCD was given in [14]. In all cases, the origin of the LPM suppression can be tracked to the suppression or full cancellation of collinear, \(k_T \) !, gluon bremsstrahlung. Heuristically, this can be understood as follows:

\[E_{\text{rad}}^{\text{LPM suppressed}} \frac{dI^g}{dk^g} (k_T) \]

\[E_{\text{vac}}^{\text{LPM suppressed}} \frac{dI^g}{dk^g} (k_T) \] (6)

and we indicate the parts of phase space where the attenuation is effective. The destructive quantum interference is most prominent for soft-state radiation, where the large-angle gluon bremsstrahlung was originally discussed [25]. The \(k_T \) ! 0 cancellation persists to all orders in opacity [20] and was verified numerically in Monte Carlo simulations of \(d^2 \sigma/dk^g \) [17,26]. Similar results for QGP-induced large-angle parton splitting are found in other approaches [27], albeit with somewhat different theoretical justification.

3.3. Tomography of jets and experimental observables

The ability to select the cone radius \(R \) and the minimum particle energy \(p_T \) will allow for the first time for a full 2D reconstruction of QGP-induced bremsstrahlung spectrum both in angle \(r \) and energy \(\theta^\text{rad} \). This approach relies on the fact that the shape functions \(\nu_{\text{vac}}(r=R) \) and \(\nu_{\text{med}}(r=R) \) are substantially different. The full medium-modified jet shape is given by:

\[\nu_{\text{tot}}(r=R) = \frac{1}{\text{Norm}} \int_0^{Z^\text{vac}} dP(\) \left(\frac{1}{(1 + \frac{d_{\text{vac}}^\text{PP}(R;\vec{p}_T = \vec{p}_{\text{min}}))}{d^2E_T^\text{vac}} dy} \right)_v \]

\[+ \left(\frac{1}{(1 + \frac{d_{\text{med}}^\text{PP}(R;\vec{p}_T = \vec{p}_{\text{min}}))}{d^2E_T^\text{med}} dy} \right)^{\nu_{\text{med}}(r=R)} \] (7)
Recent developments in many-body perturbative QCD at high energies have been aimed at creating a more consistent and detailed theory of parton and particle propagation in dense matter. Progress has been made in assessing the relative importance of radiative and collisional energy loss for hard probes and first steps have been taken in studying the space-time picture of hadronization in the medium on the example of massive quarks. Competing compelling models of perturbative and non-perturbative heavy flavor dynamics in the QGP have been proposed and will soon be confronted by experimental data. Parton propagation in large nuclei and the stopping power of cold dense matter have become an equal and integral part of the ongoing theoretical developments in light of their important implications for heavy ion phenomenology.
Theoretical developments in heavy and light flavor energy loss

To date, uncertainties remain in the treatment of jet-medium interactions that cannot be resolved by the currently available measurements of leading particles and particle correlations at RHIC. We expect that the growing effort to understand the physics of jet shapes, jet topologies, and jet cross sections at the LHC will provide the possibility for qualitatively better supported (by fundamental any-body QCD theory and numerical simulations) and quantitatively more precise tomography of nuclear matter in extreme $|k_T|$.

Acknowledgment: This work is supported by the US Department of Energy Office of Science under contract No. DE-AC52-06NA25396. Helpful discussions with S. Wicks and B.W. Zhang is gratefully acknowledged.

References

[17] S.W. Ikes, these proceedings; P. Roy, these proceedings; S.A. Basu, these proceedings, J. Cassedy Solana, these proceedings; G.B. Batz, these proceedings, B. Betz, these proceedings; B. Meueller, these proceedings; W. Horder, these proceedings; B. Ilukova, these proceedings.
[18] Poster proceedings, Indian Journal of Physics, to be published.