The Power Spectrum in de Sitter Inflation, Revisited

Ivan Agullo and Jose Navarro-Salas
Departamento de Física Teorica and IFFE, Centro M. de la Materia, Universidad de Valencia-CSIC, Facultad de Física, Universidad de Valencia, B-46100 Valencia, Spain.

Gonzalo J. Olmo
Perimeter Institute for Theoretical Physics, Waterlo, Ontario, N2L 2Y5 Canada and Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain

Leonard Parker
Physics Department, University of W. Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 USA
(Dated: May 30, 2008)

We find that the amplitude of quantum fluctuations of the invariant de Sitter vacuum coincides exactly with that of the vacuum of a comoving observer for a massless scalar field. We propose redefining the actual physical power spectrum as the difference between the amplitudes of the above vacua. An inertial particle detector continues to observe the Gibbons-Hawking temperature. However, although the resulting power spectrum is still scale-free, its amplitude can be drastically reduced since now, instead of the Hubble’s scale at the inflationary period, it is determined by the square of the mass of the in-ationary vacuum.

PACS numbers: 98.80.Cq

The prediction of a nearly \(\text{scale-free}\) spectrum of density perturbations is commonly considered as a crucial prediction of inflationary cosmology \([1]\). Departures from homogeneity arise then as quantum fluctuations, \(\delta\), of the scalar field that drives inflation \([2]\) (see also \([3]\)). This prediction explains the power spectrum of the galaxy distribution and has also been successfully confirmed by high precision measurements \([4]\) of the anisotropies in the cosmic microwave background. The amplitude of the spectrum was predicted to be proportional to the square of the Hubble constant during inflation

\[\langle \delta^2 \rangle \sim H^2 \quad \text{(1)} \]

although the precise estimate depends on the details of particular models. The resulting amplitude for GUT-scale inflation turned out to be several orders of magnitude too large, or required re-tuning of model parameters, to account for the observed \(\Omega = 10^6 \cdot 10^5\) and is still a rather elusive problem.

A simple argument that gives the above amplitude estimate comes from the Gibbons-Hawking radiation effect. As measured by a particle detector on a geodesic, the invariant vacuum state \(\text{J}_0\) in de Sitter space \(\mathbb{R}^\infty\) has a non-zero temperature, the Gibbons-Hawking temperature \(T_{\text{GH}} = \frac{2}{3} \frac{\pi}{H}\), where \(H\) is the Hubble constant of the exponentially expanding de Sitter universe

\[ds^2 = dt^2 + a^2(t)dx^2 ; \quad (2) \]

with \(a(t) = e^{H t}\). A comoving observer detects a thermal bath of radiation at temperature \(T_{\text{GH}}\) and the associated amplitude of quantal fluctuations accounts for \(\delta\).

However, in deriving the Gibbons-Hawking effect one implicitly considers two vacuum states. In addition to the globally defined de Sitter vacuum, \(\text{J}_0\), we have the local vacuum \(\text{J}_i\) associated with a freely falling, or comoving, observer at a given spatial point \(x\). The comoving observer perceives the de Sitter vacuum as a thermal bath of particles, with respect to the \(\text{J}_i\) vacuum. The fundamental argument underlying this result, as explained for a general \(t\) in \(\mathbb{R}^\infty\) (see also \([6,7]\)), is that the modes de defined in the two different vacua are related by a superposition of positive and negative frequencies and the corresponding creation and annihilation operators by a Bogoliubov transformation. In the present case, the positive-frequency modes de ning the comoving vacuum \(\psi_+^\text{J}_i\) cannot be expressed in terms of the purely positive-frequency modes \(\psi_+^\text{J}_0\) de ning the de Sitter vacuum. It is just the com parison of one set of modes with respect to the other that precludes the physical equivalence of both vacua, and the existence of an horizon for the comoving observer is then responsible for the exact thermal behavior of \(\text{J}_0\) in the Fock space of \(\text{J}_i\). The fundamental role of both vacua can be nicely displayed in terms of two-point functions. The standard formula for the expectation value of the particle number operator in terms of the Bogoliubov coefficients \([11]\) can be rewritten, when particularized to de Sitter space and the inhomogeneities.
where is a Cauchy hypersurface. Explicit evaluation of the above expressions, either by Bogoliubov coefficients [13] or two-point functions, reproduces the Planckian spectrum. The physical idea in the latter method is that it is just the difference between the correlations of the de Sitter vacuum and those of the comoving vacuum that produces the relevant observables. Similarly, in black hole emission [12], the difference between the two-point function for the in vacuum, defined at late time before gravitational collapse, and that for the out vacuum, defined at future infinity, is at the heart of Hawking radiation [12]. This idea can be reinforced by deriving the Gibbons-Hawking effect in terms of the Unruh particle detector [13].

The rate of the response function of an inertial detector in de Sitter space, with trajectory \(x = x(\tau) \), is given by

\[
\mathcal{E}(\omega) = \int \frac{d\tau}{\tau} \mathcal{D}_{\text{in}} \left[x(\tau) \right] \left[x(\tau + \tau) \right] \mathcal{D}_{\text{in}} \left[x(\tau + \tau) \right] ;
\]

(4)

which reproduces, via a detailed balance argument, the expected result at the temperature \(T_{\text{H}} \). Since the response function of the comoving detector vanishes in the comoving vacuum, using \(\mathcal{D}_{\text{in}} \) prescription,

\[
\int \frac{d\tau}{\tau} \mathcal{D}_{\text{in}} \left[x(\tau) \right] \left[x(\tau + \tau) \right] \mathcal{D}_{\text{in}} \left[x(\tau + \tau) \right] = 0 ;
\]

(5)

one can, equivalently, compute the rate [4] by subtracting the corresponding two-point function of the comoving observer [14].

\[
\mathcal{E}(\omega) = \int \frac{d\tau}{\tau} \mathcal{D}_{\text{in}} \left[x(\tau) \right] \left[x(\tau + \tau) \right] \mathcal{D}_{\text{in}} \left[x(\tau + \tau) \right] ;
\]

(6)

The regularization prescription of the Wightman function in [4] can be replaced, as a mathematical identity, by the subtraction of the two-point function for the comoving vacuum. Note that the integral in [4] is now a smooth function as a consequence of the Hadamard condition for the two-point functions [14] and there is no need for the \(\mathcal{D}_{\text{in}} \) prescription. Expression [5] shows again that the detector responds to the relative corrections between the quantum state and the vacuum of the comoving observer.

Having in mind all the above, we need it natural to propose that, to properly quantify the amplitude of quantum fluctuations, one should compare the pure amplitude of the modes \(u_{\mathcal{D}}^{\mathcal{D}} \) of the invariant de Sitter vacuum with respect to the amplitude of the modes \(u_{\mathcal{C}}^{\mathcal{C}} \) of a comoving observer. This leads us to replace the standard definition of the power spectrum [3,14,15,16,17]

\[
\begin{align*}
Z_1 \int \frac{dk}{k} 2 (k; t, \tau) & = \mathcal{D}_{\mathcal{D}} \left[x(t) \right] \left[x(t + \tau) \right] \mathcal{D}_{\mathcal{D}} \left[x(t + \tau) \right] ; & (7)
\end{align*}
\]

by the following

\[
\begin{align*}
Z_1 \int \frac{dk}{k} 2 (k; t) & = \mathcal{D}_{\mathcal{D}} \left[x(t) \right] \left[x(t) \right] \mathcal{D}_{\mathcal{D}} \left[x(t) \right] ; & (8)
\end{align*}
\]

In this letter we explore the consequences of this proposal. An advantage of the new definition [8] is that its right-hand side is again a smooth function as a consequence of the Hadamard condition. If we expand the right-hand side of [8] in modes, the integrand is finite and no further renormalization is needed for \(2 (k; t) \). With the standard definition [7] the right-hand side is formally divergent, implying that renormalization may play an important role in the evaluation of the physical power spectrum, as suggested and studied in [16,17]. Nevertheless, it should be clear that the reason for subtracting the amplitude of the comoving observer is not fundamental than simply to bypass the divergence of the two-point functions at the coincident point. The subtraction would be natural even if there were no divergences.

Let us consider a minimally coupled scalar \(\mathcal{E}_{\mathcal{D}} \) in de Sitter space with [4] \(m = \frac{\omega}{2} \), where one can think of as the quantum fluctuation of the in atom \(\mathcal{E}_{\mathcal{D}} \) at \(\mathcal{D} \). For the comoving observer, the amplitude of the modes \(u_{\mathcal{D}}^{\mathcal{D}} \) for the invariant de Sitter vacuum are

\[
u_{\mathcal{D}}^{\mathcal{D}} \left(x, t \right) = \frac{1}{2(2\pi)^3} \mathcal{D}_{\mathcal{D}} \left[x \right]^2 \exp \left(\frac{1}{2} H t \right) ;
\]

(9)

\[
\mathcal{D}_{\mathcal{D}} \left[x \right]^2 = \frac{1}{2H} \mathcal{D}_{\mathcal{D}} \left[x^2 \right] \exp \left(\frac{1}{2} H t \right) ;
\]

(10)

where \(n = \frac{9}{4} m^2 = \frac{2}{2} \). The index of the Hankel function. Therefore, the amplitude of quantum fluctuations is given as a sum in modes

\[
\begin{align*}
\mathcal{D}_{\mathcal{D}} \left[x \right]^2 & = \frac{1}{8} \mathcal{D}_{\mathcal{D}} \left[x^2 \right] \exp \left(\frac{1}{2} H t \right) ; & (11)
\end{align*}
\]

and the standard power spectrum is given by

\[
\begin{align*}
Z_1 \int \frac{dk}{k} 2 \left(k; t, \tau \right) & = \frac{n}{8} \mathcal{D}_{\mathcal{D}} \left[x \right]^2 \exp \left(\frac{1}{2} H t \right) ; & (12)
\end{align*}
\]

Evaluated in terms of the physical comoving wavevector \(k = \frac{a(t)}{c} \) the amplitude behaves as in Minkowski space for very large \(k \), but around the exit from the Hubble horizon \(k \approx H \), and for \(k \sim H \), one gets the usual nearly scale-free spectrum

\[
\begin{align*}
2 \left(k; t, \tau \right) & = \frac{1}{8} n \mathcal{D}_{\mathcal{D}} \left[x \right]^2 \exp \left(\frac{1}{2} H t \right) ; & (13)
\end{align*}
\]
Let us now study the amplitude of the comoving modes at a given spatial point \(\mathbf{x} \). To this end it is convenient to introduce static spherical coordinates

\[
ds^2 = (1 - \frac{\rho}{2}) \frac{dr^2}{1 - \frac{\rho}{2}} + \frac{d\rho^2}{1 - \frac{\rho}{2}} + r^2 d\Omega^2 ;
\]

where, as usual, \(dx^2 = dr^2 + r^2 d\Omega^2 \), and \(\tau = (2H)^{-1} \ln(e^{2Ht} - r^2H) \), \(r = e^{Ht} \). We locate the origin of radial coordinates \(r = 0 \) at the location \(\mathbf{x} \) of the arbitrary comoving observer. Note that, at \(r = 0 \), the new time \(\tau \) coincides with the comoving time \(t \), the metric takes the Minkowski form, and the deviations from it are quadratic in \(r \). In evaluating the amplitude of fluctuations \(h_0 \), \(t_0 \) at the origin of coordinates only the \(s \)-wave sector contributes, due to the regularity condition at \(r = 0 \). The \(s \)-modes are found to be

\[
u_n^s = e^{iw \tau} \frac{N_n(w)}{w} P_{l=n-1}^+ (H \tau) \; n(w) Q_{l=n-1}^+ (H \tau);
\]

where \(P \) (z) and \(Q \) (z) are generalized Legendre functions, \(N_n(w) \) is a normalization constant and \(n(w) \) is a constant ensuring the regularity at \(\tau = 0 \).

\[
n(w) = \frac{1}{2i} + \frac{4}{i} + i + e^{i \pi n} e^{wH} \quad (16)
\]

A major technical point is to compute the exact form of the normalization constant. Evaluating the scalar product at the horizon, \(w \) with the coordinate \(x = H^{-1} \tanh^{-1} (e^{H} \tau) \), and taking into account the asymptotic oscillatory behavior of the functions \(P \) and \(Q \) at the horizon \((\kappa \neq 1) \)

\[
P_{l=n}^s (w) = \frac{1}{4} \left(\frac{1}{w} \right)^l \left(\coth \frac{w}{2H} + \tanh \frac{w}{2H} \right) ;
\]

\[
Q_{l=n}^s (w) = \frac{1}{4} \left(\frac{1}{w} \right)^l \left(\coth \frac{w}{2H} \right) \sinh^2 \frac{w}{2H} ;
\]

we find that \(\mathcal{N}_n^s (w) \) is the dimensionless function

\[
\mathcal{N}_n^s (w) = \frac{1}{4} \left(\frac{1}{w} \right)^l \left(\coth \frac{w}{2H} + \tanh \frac{w}{2H} \right) ;
\]

where \(\mathcal{N}_n^s (w) \) is the dimensionless function

\[
\mathcal{N}_n^s (w) = \frac{1}{4} \left(\frac{1}{w} \right)^l \left(\coth \frac{w}{2H} \right) \sinh^2 \frac{w}{2H} ;
\]

Therefore, the form of the modes at the physically relevant point \(\tau = 0 \), can be written as

\[
u_n^s (\tau = 0) = e^{iw} \frac{i \mathcal{N}_n^s (w)}{4} H \; n(w) H \; (n(w) H) ;
\]

Table I: Ratio of the proposed power spectrum \(2(k) \) by the standard value \(2(k;D) \) at \(k = H \).

<table>
<thead>
<tr>
<th>(k)</th>
<th>(2(k))</th>
<th>(2(k;D))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>0.2212</td>
<td>1.0000</td>
</tr>
<tr>
<td>(3)</td>
<td>0.02529</td>
<td>0.02529</td>
</tr>
<tr>
<td>(5)</td>
<td>0.02529</td>
<td>0.02529</td>
</tr>
</tbody>
</table>

\[
\mathcal{N}_n^s (w) = \frac{1}{4} \left(\frac{1}{w} \right)^l \left(\coth \frac{w}{2H} \right) \sinh^2 \frac{w}{2H} ;
\]

where \(n(w=H) \) is a dimensionless function given in the appendix. With this we obtain

\[
h_0^s (\tau) (t; \mathbf{x}) = \mathcal{N}_n^s (w) \frac{4}{w} \mathcal{N}_n^s (w) (kH)^{-1} f_n (kH)^{-1} f_n \quad (23)
\]

Taking into account the relation, \(w^2 = k^2 + m^2 \), one gets the following spectrum of fluctuations

\[
t^2 (k;C) = \mathcal{N}_n^s (w) \frac{4}{w} \mathcal{N}_n^s (w) \frac{1}{k^2 + m^2} \mathcal{N}_n^s (w) (kH)^{-1} f_n (kH)^{-1} f_n \quad (24)
\]

The amplitude of these fluctuations depends only on the physical comoving scale \(k \). The difference \(t^2 (k;D) - t^2 (k;C) \), which is the proposed spectrum of this paper, seems to be driven, at first sight, by \(H^2 \). However, explicit evaluation of the above formulas reveals a crucial simplification of the right-hand side of (24), when the mass \(m \) goes to zero. In this case, \(n = 3=2, \tilde{z}_{12} = \frac{1}{4} \left(\frac{1}{w} \right)^l \left(\coth \frac{w}{2H} \right) \sinh^2 \frac{w}{2H} \), and the normalization factor is

\[
\mathcal{N}_n^s (w) \frac{4}{w} \mathcal{N}_n^s (w) \frac{1}{k^2 + m^2} \mathcal{N}_n^s (w) (kH)^{-1} f_n (kH)^{-1} f_n \quad (25)
\]

We nd that, irrespective of the scale \(k \), the amplitude of fluctuations is identical for both quantum states

\[
t^2 (k;D) = \mathcal{N}_n^s (w) \frac{4}{w} \mathcal{N}_n^s (w) \frac{1}{k^2 + m^2} \mathcal{N}_n^s (w) (kH)^{-1} f_n (kH)^{-1} f_n \quad (26)
\]

This result has a major consequence, since it implies that the proposed power spectrum

\[
t^2 (k) \quad t^2 (k;D) \quad t^2 (k;C) \quad (27)
\]

is now driven by a direct physical scale, namely, the mass of the scalar (in a text) instead of the Hubble constant: \(t^2 (k) / m^2 \) for small \(m^2 \).

Let us now estimate the behavior of the proposed power spectrum for the nonzero mass case. One immediately obtains that

\[
t^2 (k) = \mathcal{N}_n^s (w) \frac{4}{w} \mathcal{N}_n^s (w) \frac{1}{k^2 + m^2} \mathcal{N}_n^s (w) (kH)^{-1} f_n (kH)^{-1} f_n \quad (28)
\]

This spectrum is still nearly scale-free for \(m^2 = H^2 \) 1, and \(k \). In Table I we compare the proposed power spectrum \(t^2 (k) \) with the standard spectrum \(t^2 (k;D) \).
at $k = H$ for different values of the in a ton mass. We observe that the amplitude of the proposed power spectrum scales with m^2 and the ratio with the conventional spectrum for $m^2 = (H \sim 2)^{-2} 10^2$ can be approximated by

$$\left. \frac{2}{2} (k) \right|_{k \to H} \approx 0.25 \frac{m^2}{H^2}.$$ \hspace{1cm} (29)

This shows that our proposal for subtracting the amplitude of the comoving vacuum to denote the power spectrum produces a drastic reduction of its amplitude provided that m^2 is chosen sufficiently small. It is worth noting that one of us [9] already found a similar behavior for the power spectrum on grounds of adiabatic regularization of the two-point function. The fact of getting similar numerical estimates from different approaches supports the robustness of this result.

In this paper we have explored an alternative definition for the power spectrum of quantum fluctuations in an inflationary de Sitter universe. An important point is that the amplitude of quantum fluctuations for the de Sitter invariant and the comoving vacuum states in de Sitter space coincide exactly in the massless case. This has major physical consequences. The proposed spectrum is no longer driven by the Hubble constant, but instead by the effective mass of the scalar field. This provides a natural way out of the problem of getting too large amplitudes for the amplitude of in a ton fluctuations, since the amplitude can be automatically reduced by several orders of magnitude, and it merits further exploration.

Furthermore, as pointed out by one of us in [13], the vanishing amplitude for the case of $m = 0$ implies that the tensor perturbations of the gravitational field during exponential inflation may be small. This is because in the Lifshitz gauge, the two polarization components of the gravitational tensor perturbations each satisfy the same equation as a minimally-coupled scalar field with $m = 0$. It is believed that the amplitude of the tensor perturbations is a gauge-invariant quantity. Then, our proposal, and the one in [19], would imply that the tensor to scalar ratio may be much smaller than previously predicted. The standard predictions for this ratio may soon come within the range of measurement.

This work has been partially supported by grants FIS2005-05736-C03-03 and EU netwok MRTN-CT-2004-005104. L. Parker has been partially supported by NSF grants PHY-0701044 and PHY-0503366. I.A. and G.D. thank M.I. NN for a JDF grant and a JDC contract, respectively. G.D. has also been supported by Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported by the Government of Canada through Industry Canada and by the Province of Ontario through the Ministry of Research & Innovation.

Appendix. Defining $n = 2 + n + i z$ we have

$$n(z) = \frac{iz}{2} n + \frac{1}{\cosh z} \left[\frac{1}{2} \left(\frac{2}{n} \right)^2 \right] (n) +$$

$$+ 2 \left(\frac{m^2}{H^2} \right) \left[\frac{1}{\cosh z} n + \frac{1}{(2 + i z)} \right] (n)$$

$$F_1(z) = n; n_1 = 2, n + i z; 2 + i z; 1) +$$

$$+ \frac{\cosh \left(\frac{1}{2} \right)}{\cosh z} \left[\frac{1}{\cosh z} \left(\frac{2}{n} \right) \right]$$

$$F_1(z) = n; n_1 = 2, n + i z; 2 + i z; 1) \left[\cos \left(\frac{n + i z}{2} \right) + \sin \left(\frac{n + i z}{2} \right) \right].$$

References:

