Optimizing the regimes of Advanced LIGO gravitational wave detector for multiple source types

1Physics Faculty, Moscow State University, Moscow 119992, Russia
2Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Golm-D-14482, Germany

(Dated: April 19, 2013)

We develop here algorithms which allow to nd regimes of signal-recycled Fabry-Perot-Michelson interferometers (for example, Advanced LIGO), optimized concurrently for two (binary inspirals + bursts) and three (binary inspirals + bursts + millisecond pulsars) types of gravitational wave sources. We show that there exists a relatively large area in the interferometer parameter space where the detector sensitivity to the rst two kinds of sources does only by a few percent from the maximal ones for each kind of source. In particular, there exists a speci c regime where this difference is 0.5% for both of them. Furthermore, we show that even more multipurpose regimes are also possible, that provide signi cant sensitivity gain for millisecond pulsars with only m inor sensitivity degradation for binary inspirals and bursts.

I. INTRODUCTION

Within the last decade we have witnessed a very signi cant progress in experimental gravitational wave (GW) astronomy. All the ground-based interferometric GW antennas such as LIGO [1] in the USA, VIRGO [2] in Italy, GEO 600 [3] in Germany and TAMA 300 [4] in Japan have been commissioned to operation and started to record scienti c data. Nevertheless, no signs of gravitational waves were found thus far in this data which, as we understand now, is quite reasonable as it agrees with the moderate optimistic predictions of the astrophysics on the rate of measurable events within the limits of antenna detection range. This possibility was realized by GW communities, and work on design of the next, second generation of GW antennas went on in parallel with eorts in enhancement of the rst generation ones. A pioneer among the second generation GW detectors will become an American Advanced LIGO project whose construction should start in 2010 [5]. It is planned to have sensitivity more than an order of magnitude higher than its predecessor. Such a dramatic increase will be provided by signi cantly lower seismic noise levels due to new active antiseismic isolation, use of higher quality optics and lower level of quantum noise.

The main di erence between the Initial LIGO and Advanced LIGO designs is that crucial for lowering this noise is the use of signal-recycling (SR) technique. Its implementation in contumary detector setup is relatively easy as it requires to install only one additional mirror in the interferometer output port. This mirror re ects sideband signal e eld coming out of the interferometer back to the arm cavities or "recycles" it. However, the dynam ics and quantum noise properties of the interferometer become much richer and thus provide more freedom in adjusting its sensitivity curve to the current research goals. In particular, it was stressed by A. Buonanno and Y. Chen [6] that the optical system composed of the SR cavity and the arm cavities from a common resonant cavity whose eigenfrequencies and quality factors can be controlled by the position and re ection activity of the SR mirror, thus increasing or decreasing the storage time of the signal inside the cavity. Moreover, as in Advanced LIGO it is planned to increase the optical power, circulating in the arm cavities approximately 80 times with respect to Initial LIGO, an optimized mechanical interaction between laser eld and mirror will signi cantly in uence the dynamics of the test masses turning them from free bodies (within the detection frequency band: 10 15 Hz) into oscillators with eigenfrequency falling into the detection band. This effect, known as ponderomotive rigidity [6, 7, 8, 9, 10] arises when a resonant optical eld creates an effective restoring force originating from radiation pressure, which occurs to be a function of mirror displacement. In this situation one can say that the elastic eld creates a frequency dependent mechanical rigidity [6, 9, 11, 12, 13, 14].

As a result, the quantum noise spectral density of signal-recycled interferometer (SR I) can be tuned to provide the best sensitivity for di erent gravitational wave sources. So far, it was supposed that in order to reach good sensitivity for each of the source types, totally dierent strategies should be used, which correspond to dierent optical parameter sets. Detection of gravitational waves from inspiraling neutron star binaries (NSNS) requires, for example, that the noise spectral density have to be as small as possible at low and medium frequencies, f = 100 Hz. If one is interested in narrow-band detection of GWs from the source with well de ned center frequency fpul, such as high frequency pulsars, the optimal regime of the interferometer will be absolutely di erent: evidently, one should choose such set of optical parameters that provides minimum noise at frequency fpul. Searches of GWs from supernovae bursts or stochastic relic gravitational radiation, which analytical waveform are not

electronic address: fird@hbar.phys.msu.ru
7Electronic address: Stefan.Danilishin@aei.mpg.de
Extensive studies of optimal modes of operation of Advanced LIGO interferometer most suitable for different kinds of sources of GWs were carried out in Advanced LIGO Lab in extensive details [18]. However, in this paper we focus on finding multipurpose regimes of signal recycled interferometers which might provide good (sub-optimal) sensitivity simultaneously for different gravitational wave source types. The possibility to do this originates from the fact that classical noise budget for currently operating and future GW detectors masks low and medium frequency features of the quantum noise (see Fig. 5) that are mostly susceptible to variation of optical parameters of the interferometer. This fact, although being quite unpleasant for tunability of GW detector for specific sources is surprisingly advantageous for tuning the antenna to have high enough sensitivity to GWs from various types of astrophysical sources simultaneously. As will be shown in subsequent sections the sensitivity changes relatively slowly within quite a wide range of main SR1 optical parameters for different types of signals (GWs from inspiraling compact binaries, GW bursts, high-frequency pulsars etc.) and these areas for different sources signally overlap that allows to nd quasi-optimal regime for two or even three different GW sources simultaneously. It is shown by the example of Advanced LIGO SR1 that rather significant improvement in sensitivity to GW bursts and GWs from high frequency sources is possible at the cost of quite moderate deterioration of signal strength for compact binary system. This is illustrated in Figs. 1 and 2 where the relative improvement in Signal-to-Noise-Ratio (SNR) for GW bursts and high frequency pulsars, correspondingly, are plotted with respect to relative deterioration of SNR for NSN S, provided that one diverts optical parameters of SR I from the optimum ones for NSNS. It should be also emphasized here that in spite Advanced LIGO is used as an example for which we perform calculations, the results we obtain are general and applicable to all SR I limited by classical noise at low and medium frequencies. It is also instructive to mention that our optimization includes only the most basic parameters and the results can be considered only as some preliminary guidelines for designing future generation of GW interferometers while some specific optimization of real device much larger parameter space should be considered and optimization over parameters that should be set before the device is built and the one, that can be easily tuned in already operating detector should be performed separately. The above issues will be considered in future works.

The paper is organized as follows. In Section II the brief consideration of quantum noise of signal recycled Fabry-Perot Michelson interferometer is performed. In Section III expressions for Signal-to-Noise Ratio and detection range for the gravitational-wave radiation from the inspiraling binary system are given and the numerical optimization procedure with respect to interferometer optical parameters is described. The quantitative and qualitative analysis of the obtained results of optimization against GWs from neutron star binaries is performed. In Section IV the sensitivity of interferometer to GW bursts is analyzed and regimes for simultaneous detection of these two types of sources are investigated. In Section V this analysis extended also to high-frequency
II. QUANTUM NOISE OF SIGNAL RECYCLED INTERFEROMETERS

In Fig. 3 the schematic drawing of a signal-recycled interferometer is presented. Here the additional signal recycling mirror (SRM) forms, together with the input test masses (ITM s) of arm cavities, an additional SR cavity which properties are defined by two parameters of SRM, namely its amplitude reflectivity and detuning phase $\phi_{\text{src}} = [1 - \cos \gamma_{\text{src}}] \odot$ gained by carrier light travelling one-way in the SR cavity (L is the length of SR cavity).

As demonstrated by A. Buonanno and Y. Chen [12], there exists one-to-one transformation (scaling law*) between the parameters of a single detuned Fabry-Perot (FP) cavity with one movable mirror and ones of SR that allows to describe the optical behavior of it in terms of much more simple equivalent system such as FP cavity. According to *scaling law* for any SR there exists a unique FP cavity with bandwidth and detuning defined by formulae:

$$\phi_{\text{src}} = \left[\frac{1}{2} \cos^2 \gamma_{\text{src}} + \frac{2}{1 + 2 \cos^2 \gamma_{\text{src}}} \right]; \quad (1a)$$

$$\phi_{\text{src}} = \left[\frac{2}{1 + 2 \cos^2 \gamma_{\text{src}}} \right]; \quad (1b)$$

where $\phi_{\text{src}} = c\Delta f = 4L$ is the half-bandwidth of arm FP cavities, that has the same optical features and therefore the same sensitivity as the initial SR. The effective optical power circulating in the equivalent FP cavity should be twice as large as real optical power W circulating in a single arm cavity. The same is referred to masses of input (ITM) and end (ETM) test masses of effective cavity: $m_e = 2m$.

Below we will use extensively the following convenient parameters: generalized bandwidth

$$\phi_{\text{src}} = \left[\frac{P}{2 + 2} \right] = \left[\frac{1}{2} \cos^2 \gamma_{\text{src}} + \frac{2}{1 + 2 \cos^2 \gamma_{\text{src}}} \right]; \quad (2a)$$

and detuning phase

$$\phi_{\text{src}} = \left[\frac{2}{1 + 2 \cos^2 \gamma_{\text{src}}} \right]; \quad (2b)$$

The above expressions can be also easily reverted to obtain the SR cavity parameters:

$$S = \left[\frac{2}{1 + 2 \cos^2 \gamma_{\text{src}}} \right]; \quad (3a)$$

$$\phi_{\text{src}} = \left[\frac{1}{2} \arcsin \frac{1}{2} \tan \gamma_{\text{src}} \right]; \quad < \phi_{\text{src}}; \quad (3b)$$

Using the *scaling law* approach, consider FP cavity with movable mirrors pumped by laser light with frequency ν_0. A small increment of gravitational wave on such a system can be effectively described by means of effective forces acting on them and therefore changing dynamically the phase shift of outgoing light with respect to ingoing one.

TABLE I: Notations used for characterizing quantum noise of SR

<table>
<thead>
<tr>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Test bodies reduced mass</td>
</tr>
<tr>
<td>c</td>
<td>Speed of light</td>
</tr>
<tr>
<td>L</td>
<td>SR I arm's length</td>
</tr>
<tr>
<td>γ_{src}</td>
<td>Laser frequency</td>
</tr>
<tr>
<td>δ_{eff}</td>
<td>Mechanical frequency</td>
</tr>
<tr>
<td>W</td>
<td>Circulating optical power</td>
</tr>
<tr>
<td>E</td>
<td>Effective SR I half-bandwidth</td>
</tr>
<tr>
<td>L</td>
<td>Laser frequency</td>
</tr>
<tr>
<td>ϕ_{src}</td>
<td>Homodyne angle</td>
</tr>
<tr>
<td>η_{readout}</td>
<td>Total readout quantum efficiency (incl. losses)</td>
</tr>
</tbody>
</table>

Fig. 3: Principle optical scheme of signal-recycled interferometer of Advanced LIGO GW detector
noise (SN) and radiation pressure noise (RPN). The rest one originates from quantum fluctuations of electromagnetic wave phase which prevents from exact phase shift m measured and is, in essence, m measured accuracy. The second one, being a consequence of fluctuations of light amplitudes, causes random radiation pressure force to m over the m mirrors and m acts the m measured signal force. As far as this noise is the direct consequence of measurement, it is also known as back action noise because of the back action of the m measured device (laser light) on m measured quantity (phase shift).

It is convenient to describe this system in terms of linear quantum measurement theory from all developed in [19] and thoroughly elaborated for use in gravitational-wave interferometers in [6]. Following this formalism, we can represent our meter as two linearly coupled systems, probe (mass and laser light) and detector (laser light and photodetectors). The schematic drawing of this equivalent linear system is presented in Fig. 4. Here X stands for some measured observable of the probe (m mirrors relative displacement in our case), F^0 is some observable of the detector through which it is coupled to the probe (radiation pressure force in our case), G is classical signal force acting on the detector (GW action on the detector) and Z is the m measured observable of the detector (output light quadrature in our case). Following [12] we write down the Hamiltonian of our system as:

\[H = (H_F^0 \otimes G) + H_D + \mathcal{F}^0 + \mathcal{F}^0(0) + \mathcal{F}, \]

where \(H^0 \) is considered as zeroth order Hamiltonian for both detector (m marked by D) and probe (m marked by P) subsystems and linear coupling between them \(\mathcal{F} \) is \(\otimes \) considered as a perturbative Hamiltonian. Using this approach, one can write down all of the observables of the system as a sum of unper- turbated zeroth order terms (m marked by subscript (0)) and perturbations (m marked by subscript (1)) (see Eqs. (2.12–2.14) of [12]). In frequency domain all of these observables are read as:

\[\mathcal{F}^{(1)}(0) = \mathcal{G}^{(0)}(0) + R_{ZF}(\mathcal{R}^{(1)}(0)) ; \]
\[\mathcal{F}^{(1)}(0) = \mathcal{F}^{(0)}(0) + R_{FF}(\mathcal{R}^{(1)}(0)) ; \]
\[\mathcal{R}^{(1)}(0) = \mathcal{R}^{(0)}(0) + Lh(=2 + R_{xx}(0) \mathcal{F}^{(1)}(0)) ; \]

Here \(Lh(=2 + R_{xx}(0) \mathcal{F}^{(1)}(0)) \) is the GW signal proportional to metric variation spectrum \(h(0) \). Quantities \(R_{AB}(0) \) are frequency-dependent susceptibilities, in particular, \(R_{ZF}(0) \) is the optical mechanical coupling factor,

\[R_{xx}(0) = \frac{1}{Mz^2} \]

is mechanical susceptibility of the SR I and

\[R_{FF}(0) = \frac{M Jz^2}{2 21} ; \]

is the optical rigidity. \(\mathcal{G}^{(0)} \) corresponds to shot noise of the laser light, \(\mathcal{R}^{(0)} \) \(\otimes \) stands for any displacement noise sources associated with the test mass reflecting surface with respect to its center of mass position, namely, them elastic and Brownian noise of the m mirrors and substrate, and

\[\mathcal{F}^{(0)}(0) = \mathcal{F}^{RPN}(0) + \mathcal{F}_{tech}(0) ; \]

where \(\mathcal{F}^{RPN}(0) \) is the radiation pressure noise and \(\mathcal{F}_{tech}(0) \) is describing all the classical force noise, most notably suspension them elasticity, gravity gradient, and seismic noises.

Using these definitions one can now write down the output of the SR I reduced to metric variation units as:

\[\mathcal{F}_{out}(h) = h(0) + \frac{2n L}{M} R_{xx}(0)[\mathcal{F}^{RPN}(0) + \mathcal{F}_{tech}(0)] + [R_{xx}(0) R_{FF}(0) + 1]\mathcal{R}_{SN}(0) + \mathcal{X}_{tech}(0) ; \]

where

\[\mathcal{R}_{SN}(0) = \frac{\mathcal{L}^{(0)}}{R_{ZF}(0)} \]

is the normalized shot noise.

Accounting for these definitions, one can write down now spectral density of the interferometer output noise as:

\[S^h(h) = S^{quant}(h) + S^{tech}(h) ; \]

Here

\[S^{quant}(h) = \frac{4}{L^2} \int R_{xx}(0) R_{FF}(0) + 1 j^2 \mathcal{R}_{SN}^2(0) + 2c \mathcal{F}^{RPN}(0) \]

is the sum quantum noise spectral density,

\[\mathcal{S}_{SN}^2(0) = \frac{1}{2M} \frac{4 + 2}{2^2 2^2 \cos^2 + 4} \]

is the shot noise spectral density,
is radiation pressure noise \(F_{R \circ P N}(\cdot) \) spectral density,

\[
S_{x F}(\cdot) = \sim \frac{\sin(\theta) + i \sin(\phi)}{\cos(\theta) + i \cos(\phi)}
\]
(15)

is their spectral cross-correlation function,

\[
S_{tech}(\cdot) = \frac{4}{L^2} \sum_{j} R_{x F}(\cdot) R_{FF}(\cdot) + 4 \tilde{S}_{x F}(\cdot) + \tilde{R}_{xx}(\cdot)
\]
(16)

is the sum technical noise spectral density, and \(S_{tech}(\cdot) \) and \(S_{x F}(\cdot) \) are spectral densities of non-quantum noise sources \(F_{tech}(\cdot) \) and \(x_{tech}(\cdot) \). Optical losses in vacuum, as shown in [14], can be accounted for by introducing effective quantum efficiency of the readout photodetector, which appears in Eq. (13).

III. BINARY SOURCES

The most popular and easy to implement criteria used to determine the optimal regime of GW detectors relates to evaluation of detection range for inspiraling binary systems of compact objects such as neutron stars and/or black holes. This method is based on estimation of Signal-to-Noise-Ratio (SNR) using well-known analytical expression for spectral density of GWs emitted by system of two gravitationally bound inspiraling astrophysical objects (See Sec. 3.1.3 of [20]):

\[
S(f) = \frac{G^2}{c^3} \frac{M^5}{f^2} \left(f_{m,ax}^4 f \right)^{-3}
\]
(17)

where \(M = 3 \) is the so-called "chirp mass" of the binary system constructed from reduced mass \(M = M_1 M_2 / (M_1 + M_2) \) and total mass \(M = M_1 + M_2 \) of the binary system with components masses \(M_1 \) and \(M_2 \) corresponding. One can readily see the indicative frequency dependence \(S(f) \propto f^{-3} \) and inverse dependence on distance to the system squared \(r^2 \). The upper cut off frequency \(f_{m,ax} \) corresponds to the period of binary system rotation in innermost stable circular orbit (ISCO) when the system goes from quasi-stationary rotation phase to non-stationary merger phase. This frequency can be estimated as:

\[
f_{m,ax} = 4400 \quad (M = M_1) \quad Hz;
\]
(18)

Given GW signal shape (17) and the noise spectral density (11), it is possible to write down the optimal SNR which can be obtained on a given detector. As demonstrated by E. Flanagan and S. Hughes [21], SNR averaged over all mutual orientations between the detector and source and over both polarizations of GWs is equal to:

\[
2 N_{SN} = \frac{4}{5} \frac{f_{m,ax}^4 f^{1/2}}{S^4(2 f)}
\]
(19)

where \(f_{m,ax} \) is the lower cut off frequency at which binary system motion cannot be considered as stationary. In our calculations we will take \(f_{m,ax} \) in 10 Hz.

In order to estimate detection range \(r \) one should set a threshold SNR \(N_{SN} \) which depends on the level of confidence in detection of GWs from binary system. Then detection range can be written as

\[
r = \frac{2}{15} \frac{G^2}{c^3} \frac{M^5}{f_{m,ax}^2} \left(f_{m,ax}^4 f \right)^{-1}
\]
(20)

Of course, all formulae we use here are obtained in the lowest Post-Newtonian order of general relativity [22] that define limits their application area to stellar mass systems and asymptotically at space-time background. However, for our purposes it is enough and the most significant for us feature of the above expressions is their relative simplicity.

We calculated the detection range for standard (\(M = 2 M_0 \)) neutron stars binary system numerically considering it as a function of 3 parameters: 2 \([500;12500] \) s, \([2; \infty] \) and \([2; \infty] \). The numer of values for each of the parameter was 193, giving in total 193^3 = 72 optical configurations. Distribution of points in parameter space was taken uniform over angle variables and , and logarithmic over variable . For other paramaters, we used the values planned for Advanced LIGO, see Table 1. To account for technical noises, we used the noise budget also planned for Advanced LIGO and generated by bench software [23], see in Fig. 5.

For each pair of ; we have an axialized SNR with respect to , thus obtaining a function of only two parameters . The result of this calculation is presented in Fig. 6 as contour plots of normalized SNR \(N_{SN} = \frac{N_{SN}}{N_{SN}} \). Contours act in this plot as margins for regions in parameter space where SNR is higher than the certain percentage of maximum SNR \(N_{SN} \), being indicated in plot by point marked as \(MAX \). The parameter values for this maximum sensitivity point are listed in Table II.

It is easy to note at behaviour of SNR within a spacious range of parameters , . It arises due to two reasons. The rst one is technical noises. It can be shown that in the absence of them, it is possible, in principle, to obtain arbitrary high values of SNR using deep and narrow well in quantum noise spectral density created by means of the second-order-pole regime of the optical rigidity [9, 14] which corresponds to \(= (3 \pi)^3 \) and ! 0. Technical noise which has at and smooth spectral dependence makes such excesses in the quantum
The next type of possible GW sources are supernovae explosions and stellar cores collapses, compact binary systems mergers [24] and other sources with not well modeled properties which are usually called GW bursts [15, 16, 17]. For these sources, we use the simple model of logarithm $\log f$ of signal spectrum over the range of frequencies from f_1 to f_2. By logarithm $\log f$ at spectrum we mean that spectrum of GW signal $h(f)$ is proportional
TABLE III: Optical parameters for the SNR having quantum noise plotted in Fig. 6 and Fig. 9.

<table>
<thead>
<tr>
<th>Burst</th>
<th>NSNS</th>
<th>Bursts</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>3161</td>
<td>7559</td>
<td>1487</td>
</tr>
<tr>
<td>-0.47</td>
<td>0.75</td>
<td>1.41</td>
</tr>
<tr>
<td>0.91</td>
<td>0.40</td>
<td>1.24</td>
</tr>
<tr>
<td>1.24</td>
<td>0.34</td>
<td>0.73</td>
</tr>
<tr>
<td>SRC</td>
<td>3.56</td>
<td>1.20</td>
</tr>
</tbody>
</table>

FIG. 8: Contour plot of bursts sensitivity $\text{burst} \rightarrow \text{SNR}$ as a function of θ. Point MAX^* corresponds to the sensitivity maximum S_{MAX} of SNR noise at f_{burst}. The main parameters for θ are listed in Table III: A, B, C, D, E, λ, η, α, β, γ, δ, ϵ, ζ, η, θ, ϕ, ψ, ω. The main difference between the NSNS and burst cases, visible in Figs. 6 and 8, stems from the existence of cut-off frequency (18) and from more steep frequency dependence of the NSNS signal. As a result, the NSNS optimization procedure leads to smaller values of θ and ϕ, that reduces quantum noise at low frequencies, while the optimization with respect to GW burst requires smaller values of θ and ϕ, that reduces quantum noise at high frequencies (compare Figs. 7, 9 and the corresponding columns in Table III).

It follows from Fig. 8, that function $\text{burst}(\theta)$ also has at behavior $\theta = 0$ in a region of $\theta = 0$. The main difference between the NSNS and burst cases, invisible in Figs. 6 and 8, stems from the existence of cut-off frequency (18) and from more steep frequency dependence of the NSNS signal. As a result, the NSNS optimization procedure leads to smaller values of θ and ϕ, that reduces quantum noise at low frequencies, while the optimization with respect to GW burst requires smaller values of θ and ϕ, that reduces quantum noise at high frequencies (compare Figs. 7, 9 and the corresponding columns in Table III).

However, this difference is quite subtle, and it is evident that the same region $\theta = 0$ exists for both types of GW sources simultaneously. In order to find them, we calculate values of θ, ϕ, which maximize the combined normalized sensitivity

$$G_{\text{NS+burs}}(\theta, \phi) := \frac{\text{NS}}{\text{NS+burs}} \times \left(\frac{\text{burst}}{\text{MAX}} \right)^2 + \left(1 - \frac{\text{burst}}{\text{MAX}} \right)^2,$$

where λ is a Lagrange multiplier which varies in the range $[0, 1]$.

The result is shown in Fig. 10, where each $\text{burst}(\theta)$ against $\text{NS}(\theta) = \text{MAX}$ is presented. The leftmost point on this plot corresponds to $\theta = 0$, and the rightmost one is $\theta = 0$. It follows from this calculation, that the tuning exists where values of NS and burst decrease only by 0.5% compared to their maximum values:

$$\frac{\text{NS}}{\text{MAX}} \times \frac{\text{burst}}{\text{MAX}} = 0.995$$

The corresponding values of parameters θ, ϕ, are listed in the column θ of Table III. This point on the
V. HIGH-FREQUENCY PERIODICAL SOURCES OF GWS

High frequency periodical sources of GWS, namely milisecond pulsars, can be treated as very narrow-band almost monochromatic sources with well defined central frequency $2f_{\text{puls}}$ [25]. For these sources, the detection range and the SNR are simply proportional to inverted square root of the noise spectral density at given frequency $2f_{\text{puls}}$,

$$\frac{x_{\text{puls}}}{f_{\text{puls}}} = \frac{1}{S^b(4f_{\text{puls}})} :$$ (23)

Direct optimization of quantum noise in this case gives spectral density with very narrow and deep minimum at frequency $2f_{\text{puls}}$, which is evidently non-optimal for the NSNS and burst sources considered above. Moreover, technical noise makes it useless to have very deep minimum in quantum noise spectral density, limiting f_{puls} by the value

$$\frac{x_{\text{puls}}}{f_{\text{puls}}} = \frac{1}{S^b(4f_{\text{puls}})} :$$ (24)

Therefore, we optimize the following "triple-purpose" function:

$$G_{\text{NS+burst+puls}}(f) = \frac{1}{G_{\text{NS+burst}}(f)} + \frac{\max_{\text{puls}}}{\text{puls}}^2 \#1 ;$$ (25)

where 0 and >0 are Lagrange multipliers. We took pulsar J0034-0534 [26] as an example of milisecond pulsars, presuming the emitting narrow-band high frequency GWs. Its barycentric rotational frequency is equal to $f_0 = 5327\,\text{Hz}$ and frequency of emitted GWs should be then $f_{\text{GW}} = 2f_0 = 10654\,\text{Hz}$. Among the high-frequency pulsars, the distance to this one is significantly smaller compared to others (0.98 kpc) and therefore is one of the most probable candidates for GW detection.

The calculation results are presented in Fig. 10 as parametric plots of $G_{\text{NS}}(f = \frac{\max_{\text{NS}}}{\text{NS}}$ and $G_{\text{burst}}(f = \frac{\max_{\text{burst}}}{\text{burst}}$ against $x_{\text{puls}}(f = \frac{\max_{\text{puls}}}{\text{puls}}$. It follows from these plots, that despite of two-dimensional character (two Lagrange parameters) of the optimization procedure, the results are virtually one-dimensional, because only very small trade-off between values of NS and burst is possible (lines in both planes of Fig. 12 almost coincide).

In Fig. 13 quantum noises for four characteristic regimes with optimal $G_{\text{NS+burst+puls}}$ are plotted. These plots demonstrate how the optimization algorithm increases the sensitivity at the given frequency $2f_{\text{puls}}$. The starting point $\#1$ corresponds to obtained in Sec. V parameters set, optimized for NSNS and bursts signals, see Figs. 6, 8. First, the optimization algorithm tries to suppress the quantum noise in all high-frequency range ($f < 10^3\,\text{Hz}$) by increasing and decreasing f, see point
The main result of this paper is not these values, but the conclusion that regimes of the signal-recycled interferometer exist which can provide good sensitivity for both binary inspiraling and burst gravitational wave sources. Moreover, "triple-purposes" regimes are also possible, which provide significant sensitivity gain for high-frequency periodic sources (millisecond pulsar) with only minor sensitivity degradation for binary inspiraling and bursts GW sources.

Calculations presented in this paper show that in order to obtain good sensitivity for binary, burst and, to some extent, high-frequency periodic sources, it is necessary to use large values of interferometer band with \(2 \times 10^4 \) s \(^{-1} \) for NSNS and burst sources (see Table II). The tunings give smooth broadband shape of quantum noise curves, dictated by the technical noises, especially by the m inor them al noise which has very at frequency dependence in GW signals spectral range.

\[P \text{ in these plots. At this stage, noticeable gain in pulsars sensitivity (15) can be obtained with negligibly small (1%) sensitivity loss for NSNS and bursts sources (see Table II). Then, the optimization algorithm starts to grow in local minimum at frequency } 2f_{\text{puls}}, \text{ by increasing back in such a way that } = \sin^{-1} 4f_{\text{puls}}, \text{ see points Q and R. At this stage NSNS and bursts start to decrease noticeably (by tens of percents). However, pulsa increases several times at this stage.} \]

\[\text{VI. CONCLUSION} \]

The results of this paper rely heavily on the estimates of the technical noise predicted for Advanced LIGO. These estimates are not definitely will be subject to changes during the next few years, however, it is improbable that technical noise estimates will change sign-
invaluable knowledge of specific features of real interferometers and many useful comments and suggestions that allowed us to improve this paper dramatically. Authors also would like to thank MPI für Gravitation Physik (AEI) both in Golm and in Hannover represented by directors Prof. Dr. B. Schutz and Prof. Dr. K. Danzmann for outstanding hospitality and cordial reception.

The paper has been assigned LIGO document number P080007-00-Z.

[2] F. Acernese et al., Class. Quantum Grav. 23, S635 (2006).