A Fresh Look into the Neutron EDM and Magnetic Susceptibility

Stephan Narison

1. Introduction

The Lagrangian of Yang-Mills theory contains, in addition to the usual term, also a topological term:

$$\mathcal{L} = \frac{1}{4} F^a F^a$$

(1)

where \(q(x) \) is the topological charge density given by:

$$q(x) = \frac{g^2}{32 \pi^2} F^a F^a$$

(2)

The additional term violates the invariance under CP. This is called the strong CP violation \[1\] to distinguish it from the CP violation present in the weak and electromagnetic sector of the Standard Model. Experiments, however, do not show any violation of strong CP and require a very small value for \(j \ll 10^9 \) as we shall see later on. In this paper, we shall determine the dependence of physical quantities on and study the processes that violate strong CP. For this purpose, we reevaluate the neutron electric dipole moment (NEDM) which depends on the NN coupling which violates CP.

2. Improved chiral estimate of the NEDM

An elegant way of doing this is to use the low energy effective Lagrangian of QCD that contains the eikos of the pseudoscalar mesons and baryons instead of the original quarks and gluons. This is due to the fact that in the effective Lagrangian the eect of the axial U(1) anomaly is explicitly displayed and because of this the amplitudes for the hadronic processes can be easily computed. This Lagrangian cannot be explicitly derived from the fundamental QCD Lagrangian as in the CP\(^N-1\) model (see e.g. Ref. \[23\] and references therein), but can only be constructed requiring that it has the same anomaly and non-anomaly symmetry as some of the fundamental QCD Lagrangian. The expressions of the QCD effective Lagrangian describing pseudoscalar mesons and including the U(1) anomaly are given in \[3\] and the review referred in Ref. \[23\].

Estimate of the NN couplings

The NN couplings are defined as:

$$\mathcal{L}_{NN} = \frac{g_{NN}}{2} (s g_{NN} + d_{NN}) N$$

(3)

where are isospin Pauli matrices.

The CP-conserving coupling is well measured:

$$g_{NN} = 134$$

(4)

The CP-violating coupling \(g_{NN} \) can be obtained using an effective Lagrangian approach, though this approach for estimating the coupling can be questionable. It reads \[23\]:

$$g_{NN} = \frac{m_u m_d}{2 (m_u + m_d) m^3} (m \quad m)$$

(5)

with: 2m \(m_u + m_d \). We shall use the ChPT mass ratio \[13\]:

$$r_3 = \frac{2m_d}{m_u + m_d} = 24 \pm 15$$

(6)

which is computed by the QSSR estimates of the quark mass absolute values in units of MeV \[24, 25\]:

$$m_u(2) = 2(8 \quad 0.2) \quad m_d(2) = (51 \quad 0.4)$$

(7)

and:

$$m_s(2) = (96 \pm 15)$$

(8)

Using \(E = 92 \pm 6 \text{ MeV} \), one can deduce:

$$g_{NN} = (0.0282 \quad 0.0071)$$

(9)

which is relatively small compared to \(g_{NN} \). One can also note that the chiral correction is about 0.5% of the leading order expression given in Ref. \[7\]. We

\[\text{Email: snarison@yahoo.fr}\]

We follow the notation of \[1\] but adding an overall \(PZ \) factor for charged pion eikos.
have added an error of about 25% as a guess of the
systematics of the method based on its deviation for
predicting the value of the measured CP-conserving
coupling.

The NEDM from chiral and ChPT approaches
To 1st order in , the neutron electric dipole mo-
ment (NEDM) \(D_N \) is given by:

\[
Z \quad T \ln(p_i) j^0(0) i \quad d^3x \quad L_C(p)(x) j^0(p_i) i
\]

\[
= (iD_N) u(p) \quad k \quad s u(p) + o(k^2); \quad (10)
\]

where: \(k \quad p \quad p_i \) is the photon momentum and:

\[
L_C(p)(x) = q[i] \delta \quad q; \quad (11)
\]

with \(A \) a 3-dimension hermitian matrix acting on the
momentum space \((u, d, s)\) and \((1 = 2) \).

In order to extract \(D_N \), we use the G ordor de
position for the axial current:

\[
u(p+k) s_k \quad u(p) = \cdots + u(p+k) s_5 (2p+k) u(p); \quad (12)
\]

The lowest order contribution to \(D_N \) comes from the
diagram(s in Figs. 1 and 2. Using the expression of the
vertex:

\[
h(p+k) j^0 j(p)i = (2p+k) + o(k^2); \quad (13)
\]

the evaluation of the previous diagram(s can be ex-
pressed as:

\[
D_N = (1) \frac{3}{N_N} \frac{g_{NN}}{g_{NN}} \frac{2M_N}{M_N} \frac{1}{16 \pi^2}
\]

\[
\times I^{(1)} + I^{(2)} \quad (14)
\]

where \(I^{(n)} \) are integrals over Feynman parameters
coming from Figs. 1 and 2. Fig. 1 gives:

\[
I^{(1)} = \frac{Z_1}{x^2} + \frac{Z_1}{y^2} \quad x(1, \quad y)
\]

\[
= 1 + \frac{\log a}{2} + f(a) \quad (15)
\]

with:

\[
f(a) = \frac{a}{a(4 \pi)} \quad \arctan \quad \frac{x}{a(4 \pi)} + \frac{y}{a(4 \pi)}
\]

\[
\arctan \quad \frac{3}{4} \quad p \quad a \quad + \quad \frac{5}{32} a^{3/2} + \cdots \quad ; \quad (16)
\]

and where:

\[
a \quad (M_N)^2 \quad ; \quad (17)
\]

One can notice that the term \(\log a \) appears naturally
in the unexpanded full expression without an arbitrary

\[
^* \text{See however Ref. 13.}
\]
any arbitrary cut-oﬀ scale, because this term appears before the expansion in a [see Eq. (15)]. This leads to the prediction:

\[
D_N \sim (20) \times 10^3 \, \text{GeV}^{-1} ;
\]

\[
= (40) \times 10^{17} \, \text{cm} ;
\]

(20)

However, within Chiral Perturbation Theory (ChPT), the addition of counterterms in the effective Lagrangian induces a log(M_N = \tilde{Q})-term and leads to the (renormalized) NEDM expression (18):

\[
D_N (\text{ChPT}) = \frac{g_{NN} g_{NN}}{M_N} \left(\frac{1}{4} \log_m + k \right)
\]

(21)

where \(g \) is an arbitrary hadronic scale and \(k \) an unknown constant. This result indicates that only, the coefﬁcient of the \(g^2 \) term is model independent.

For a conservative estimate and for a model independent result, we keep only the \(b^2 \) term and move, like in (19), the scale above from the value of the constituent quark mass, which we take to be about \(M_N = 3 \) (within a 30% error), to \(M_N = 940 \, \text{MeV} \). Using the values of the parameters in Eqs. (4) and (5), one obtains, in units of the electric charge:

\[
D_N (\text{ChPT}) = (2.7) \times 10^3 \, \text{GeV}^{-1} ;
\]

\[
= (5.4) \times 10^{17} \, \text{cm} ;
\]

(22)

where the range takes into account the assumed 25% systematic uncertainties for estimating \(g_{NN} \) and the assumed 30% one for the value of the quark constituent mass. The value in Eq. (22) corresponds to the value = \(M_N \) and where the small chiral mass corrections have been included. One can notice that the width of the range depends strongly on the unknown value of \(\alpha \), and where a new tuning is obtained for its low values.

3. NEDM and Magnetic Susceptibility from QSSR

A quantitative estimate of the NEDM have been done using QCD spectral sum rules (17). We shall reexamine these results in this section and present some alternative new sum rules. The analysis is based on the baryon two-point correlator put in a background with nonzero and electromagnetic fields:

\[
S (Q^2) \to i \ G^a \ h \ F \ N (x) N (0) \delta ij \ F \]

\[
\]

(23)

\[
N \quad (x) \quad 2 \quad C \quad 5 \quad + \quad b \quad (\quad C \quad) \quad 5 ;
\]

(24)

where \(C \) is the charge conjugate; \(b \) the quark field; \(b \) is (a priori) an arbitrary mixing between the two operators: \(b = 0 \) in the non-relativistic limit, which is the choice used in diﬀerent lattice calculations (16). Originally, to e (19) has used the choice \(b = 1 \) in the 1st QSSR applications to the nucleon channel, which has just edi for a better convergence of the QCD series in the OPE. In (20,21), a more general analysis has been performed by letting \(b \) as a free parameter and then looking for the \(b \)-value where the result is less sensitive to the variation of \(b \). From the overall tuning of the sum rules, the optimal result for the nucleon mass and residue have been obtained for \(b = 1 \), which can be qualitatively understood by taking the zero of the derivative in \(b \) when retaining only the lowest order contribution.

For the analysis of the NEDM, Ref. (17) has used a value \(b = 1 \), which diﬀers completely from the previous choices. Within this choice, the authors impose the zero coeﬃcient of an non-analytic mass-Log, i.e., in the next \(\Omega = Q^2 \)-corrections \((Q^2 \to Q^2) \) to the lowest order contribution. However, the vanishing of the mass-Log, to leading order does not (a priori) guarantee the absence of this contribution to higher orders. In the following, we shall test the stability of the existing results versus the variation of \(b \).

Expression of the two-point correlator

For the forthcoming analysis we shall keep the coeﬃcient of the \(\Omega = \Omega^2 \) and \(\Omega \); in the Lorentz decom position of the nucleon two-point correlator given in Eq. (3) (some alternative choices are also possible). The QCD expression reads (17):

\[
S (Q^2) f_{ij} \to Q^2 \left(\frac{1}{2} \right) + \frac{1}{4} \quad (25)
\]

and correspond to an UV and a small mass arbitrar y subtraction; \(Q^2 \) is the quark condensate. The coeﬃcient functions are:

\[
C_0 = (b + 1) \quad (26)
\]

\[
C_{2a} = 4 \quad (b + 1) \quad e_u \quad 1 \quad + \quad \frac{1}{4} \quad (2 +) \quad (26)
\]

\[
C_{2b} = 4 \quad (b + 2) \quad e_u \quad + \quad (3b^2 \quad + \quad 2b + 1) \quad e_u \quad (26)
\]

where \(e_u \); \(e_d \) are the electric charge of the u and d quarks in units of e. ; are the magnetic susceptibilities of the QCD condensates which encode the electromagnetic \(c \) dependence of the two-point correlator. In units of e, they are deﬁned as (22):

\[
\]

(25)
where g is the QCD coupling and G^a the gluon field strength. The size of these magnetic susceptibilities have been estimated in the literature using different methods. The values $^{[23]}$

\begin{align}
\text{with the one obtained in } &^{[22]} ;
\end{align}

induce (a posteriori) small numerical corrections in the present analysis and will not be reconsidered. On the contrary, the dominant contribution comes from

\begin{align}
\text{which is not known with a good accuracy:}
\end{align}

\begin{align}
(\text{GeV}^2) = 8 = \frac{N_c}{4 \pi^2} \text{ : Triangle anomaly } ^{[24]} \\
8; 6 \text{ Laplace SR (LSR) } ^{[22, 23]} \\
33 \text{ Light cone SR } ^{[28]} ;
\end{align}

which we shall reconsider later on. Our analysis gives the value in Eq. (43), which is in better agreement with the one obtained in $^{[22, 24]}$. The phenomenological part of the correlator can be parametrized in the zero width approximation by:

\begin{align}
S(Q^2)_{\text{exp}} = \frac{2}{N_c} \frac{M \Delta N}{Q^2} \frac{M^2}{4 \pi^2} \frac{M}{N} + \text{QCD continuum } ^{[23]} ;
\end{align}

where N is the nucleon coupling to its corresponding current; A_3 is an arbitrary coupling which parameterizes the single pole contributions; "QCD continuum" stands from the QCD smearing of excited state contributions and comes from the discontinuity of the QCD expression.

Estimate of the Magnetic Susceptibility

Considering the nucleon two-point correlator in Eq. (5) in presence of an external electromagnetic field, one can derive the following LSR (neglecting anomalous dimensions) for each invariant related to the structure (p^+p^-) and $I(p^+p^-)$ [22] (hereafter referred as IS):

\begin{align}
L_p &= a_p M^2 (\frac{1}{2}) + \frac{a^2}{M^2} (\frac{2}{3} \epsilon_p + \frac{2}{3} \epsilon_p) + \\
&\frac{1}{3} \epsilon_p (2) 2 \epsilon_p (M^2 \frac{1}{8} M^2) \\
&= \frac{1}{4} \frac{N_c}{N} \frac{M^2}{M} \frac{M^2}{2} + A_p ;
\end{align}

\begin{align}
\text{for } 1 \text{ } M^2 / N^2 :\n\end{align}

\begin{align}
|p| &= \frac{8}{3} 1 + \frac{8}{3} \frac{a}{M^2} \frac{2}{3} 296 ;
\end{align}

\begin{align}
\epsilon_p = 2.79 ; \quad \epsilon_p = 191 ;
\end{align}

\begin{align}
\text{despite the crude LO approximation used for getting these predictions. Including the OPE and anomalous dimension corrections, IS deduce, from Eq. (35), the predictions}\n\end{align}

\begin{align}
\text{for } 1 \text{ } M^2 / N^2 :\n\end{align}

\begin{align}
|p| &= 3 \frac{2}{3} ; \quad |n| = 2 \frac{2}{3} ;
\end{align}

\begin{align}
\text{Som e relations between the neutron anomalous magnetic and its electric dipole moments have been also derived using light-front QCD approach } ^{[34]} , \text{which will be interesting to check from some other methods.}
\end{align}
and the correlated value:
\[8 \text{ GeV}^2; \] \hspace{1cm} \text{(41)}

for \(b = 0 \). However, by examining the LSR used by the authors, we notice that these sum rules do not satisfy -stability criteria such that (a priori) there is no good argument for extracting an optimal result. In order to check the previous result, we solve the two equations:
\[\frac{d}{d t} L_1 = \frac{d}{d t} L_2; \] \hspace{1cm} \text{(42)}

for each given value of \(t_c \). The functions \(L_1 \) and \(L_2 \) have been defined in Eqs. (31) and (32). We use the values of \(\text{and} \) given in Eq. (28) but they do not affect the conclusions like in the case of IS. The analysis is shown in Fig. 3a, where a common solution is reached at \(= 0.4 \text{ GeV}^2 \), though the curves do not exhibit -stability region.

Figure 3. Analysis of using LSR for \(b = -1 \): a) \text{-dependence for} \(t_c = 3 \text{ GeV}^2 \); b) \text{-dependence of the common solution in (a) for} \(= 0.4 \text{ GeV}^2 \).

Again, like in the proton mass sum rule, the \(t_c \)-stability is reached around \(t_c = 3 \text{ GeV}^2 \) [24]. Taking as a conservative estimate the range of values \(t_c = 1 \pm 3 \text{ GeV}^2 \), where the lowest value corresponds to the beginning of -stability for the determination of the proton mass, we deduce the optimal estimate:
\[(8.5 \pm 1.0) \text{ GeV}^2; \] \hspace{1cm} \text{(43)}

in good agreement with the IS previous value [22] and the one in [24] using the quark triangle anomaly. At \(= 0.4 \text{ GeV}^2 \), where a common solution has been obtained, one expects a good convergence of the OPE and smaller effects of radiative corrections. We have used the choice \(b = 1 \) which we expect to give a reliable result like in the previous cases of the proton mass and \(D_N \) discussed in the next section where the results are almost unchanged (within the errors) from \(b = 1 \) to the optimal value \(-1/5 \) obtained in the case of the proton mass [20,21].

Test of the LSR results of Ref. [17] for NEDM

From the previous QCD and phenomenological expressions of the two-point correlators, one can deduce the Borel/Laplace sum rule (LSR):
\[L(\tau) \frac{r(\tau)}{t} \frac{1}{m^4} \left(\frac{A}{N^2} \right)^1 = \frac{2}{32} \hbar \text{e}^{-h^2/2} C_0 (1) + C_2 \]
\[= \frac{1}{2} \hbar \text{e}^{-h^2/2} \left(1 + C_2 \right); \] \hspace{1cm} \text{(44)}

where \(^\text{1}M^\text{2} \) is the LSR variable. Ref. [17] uses either the value [19,20,21]:
\[\frac{2}{32} \hbar \text{e}^{-h^2/2} \left(1.95 \pm 0.1 \right) \text{ GeV}^2; \] \hspace{1cm} \text{(45)}

or its LSR expression [19,20,21] from the \(p \) part of the correlator:
\[(2)^{3/2} \hbar \text{e}^{-h^2/2} \left(\frac{5 + 2b + 5b^2}{64} \right) \hbar = 1 + C_2 \text{ GeV}^2; \] \hspace{1cm} \text{(46)}

However, due to its high-dependence on \(b \), this sum rule is much affected by the form of the continuum such that we shall not consider it. Instead, we shall consider either the value in Eq. (45), or the expression of the residue from the \(\text{LSR} \) part of the correlator:
\[(2)^{3/2} \hbar \text{e}^{-h^2/2} \left(\frac{5 + 2b + 5b^2}{64} \right) \hbar = 1 + C_2 \text{ GeV}^2; \] \hspace{1cm} \text{(47)}

which has a lesser dependence in \(b \).

We show the results in Fig. 4a for the previous value of \(b \) and using, as in Ref. [17], \(b = 0 \pm 0.225 \text{ GeV}^2 \) for a better comparison.

For the choice \(b = 1 \) used in [17], one can see from Fig. 4b, that the optimal value is obtained at \(M = 0.5 \text{ GeV}^2 \), which is relatively low for justifying the convergence of both the OPE and the PT series in \(s \). Fig. 4b shows, like in the case of the analysis of the proton mass, that the \(t_c \)-stability is reached at high-value of \(3 \text{ GeV}^2 \) but the estimate does not move much from the optimal value \(t_c = 1.6 \text{ GeV}^2 \) obtained in the proton mass sum rule [19,20,21]. In this case, one can deduce:
\[\text{Ref.} = (0.34 \pm 0.36) \text{ GeV}^2; \] \hspace{1cm} \text{(48)}

which reproduces the result of [17]. Assuming, like in Ref. [17], that the single pole contribution can be neglected (which we shall test in the next section), and using the value of \(= 5.7 \text{ GeV}^2 \) used in [17], one can deduce from Eqs. (44) and (45):
\[D_N \text{ Ref.} = 9 \pm 10^{-3} \text{ GeV}; \] \hspace{1cm} \text{(49)}

Though (in an opt) trivial, the previous test is necessary for calibrating our sum rule and for checking our inputs in the next analysis.
Figure 4. Analysis of \(r = \) using LSR for \(b = 1 \): a) \(M^2 \)-dependence for \(t_c = 1 \times 10^{-4} \text{ GeV}^2 \); b) \(t_c \)-dependence for \(M^2 = \pm 1.5 \text{ GeV}^2 \).

New estimate of \(A \) and choice of the nucleon currents

We shall reconsider the previous analysis by abandoning the choice \(b = 1 \) for the nucleon current and by giving a new estimate of:

\[
\Delta \frac{1}{2} \frac{A}{m} N M_N : (50)
\]

This analysis is summarized in Fig. 5 where we have used the value of \(N \) in Eq. (45) and the running condensate value (54-56):

\[
\Delta \text{Di}(M) = 0.266 \text{ GeV}^3 \ln^{4.9} (M =) ; (51)
\]

with \(\chi = 350 \text{ MeV} \) for 3-flavours.

One can notice that the result is optimal in \(b \) for:

\[
1 \leq b \leq 0 ; (52)
\]

and more conservatively in the range:

\[
1 \leq b \leq 0 ; (53)
\]

which does not favour the choice \(b = 1 \) used in (17).

The previous range includes the conventional choices: \(1 \leq 0.5 \) in (19), \(-1/5 \leq 0.3 \) in [20, 21] and the non-relativistic limit \(b = 0 \) used in lattice calculations [18].

Direct extraction of \(D_N \) from a new LSR

One can notice that the sum rule stabilizes at \(0.75 \text{ GeV}^2 \), which is smaller than in the previous analysis, showing a better convergence of the OPE.

We also study the dependence of the result on the value of the IR scale \(\Lambda \). The optimal value corresponds to:

\[
\Delta \Lambda = (80 \pm 200) \text{ MeV} ; (58)
\]

which has the size of a typical IR chiral scale (pion or constituent quark mass).

Therefore, we deduce the optimal value:

\[
\Delta D_N = (0.10 \pm 0.03 \pm 0.03) \text{ m} ; (59)
\]

where the 1st (resp. 2nd) error comes from the localization of the extremum in (resp.) of the \(t_c \) values which we take to be \(t_c = (1 \pm 0.2) \text{ GeV}^2 \).

The results from the LSR are in good agreement and lead to the nll estimate:

\[
\Delta D_N = (2.15 \pm 0.10) \text{ GeV}^{-1} ; (60)
\]

which agrees with the range spanned by the chiral and ChPT estimate in Eq. (20).

In order to analyze the systematic errors in the approach, we estimate using vertex sum rules the well measured coupling \(g_{NN} = 13.4 \). We use the symmetry constraint on the hadronic vertex in [23] from which, one obtains the LSR:

\[
\Delta g_{NN} \left(\frac{2}{N M_N} (f m^2)^3 e^{-\frac{2}{N M_N}} \right) \frac{1}{16} \frac{2}{M_N} \left(m_u + m_d \right) h i 2 + 8b + 8b^2 ; (61)
\]

Using the expression of \(\frac{2}{N M_N} \) in Eq. (45), one can deduce the LO sum rule:

\[
\Delta g_{NN} \left(\frac{2}{M_N} \frac{2 + 8b + 8b^2}{5 + 2b + 5b^2} \right) ; (62)
\]

while the one in Eq. (47) gives:

\[
\Delta g_{NN} \left(\frac{(m_u + m_d)}{f m^2} \right) \frac{1}{7} \frac{2 + 8b + 8b^2}{2b + 5b^2} ; (63)
\]

Using a double pole dominance and neglecting the QCD continuum, Ref. [24] gives: the nucleon operator mixing to be \(b = 1 = t = 0.307 \) for the 1st sum rule to reproduce the experimental value of
Figure 5. LSR analysis of r_1 (red: dash-dotted curve) and r_2 (blue: continuous curve): a) $1M^2$ dependence for $b = 0.5, c = 1.6$ GeV2; b) t_c dependence for $b = 0.5, c = 2$ GeV2; c) b dependence for $t_c = 1.6$ GeV$^2, = 2$ GeV2

Figure 6. Analysis of D_N using LSR a) $1M^2$ in GeV2 dependence for $b = 0.5, c = 1.6$ GeV2; b) b dependence for $c = 0.75$ GeV$^2, t_c = 1.6$ GeV2; c) b dependence of the optimal value in units of M eV.

g_{NN}. One can notice that this sum rule is not accurate due to its dependence. For $'1$ GeV$^2'$, the previous value of the quark mass evaluated at 1 GeV is $(m_u + m_d) (1)'10.9$ M eV. Including the QCD continuum contribution with $t_c = 1.6$ GeV2, the second sum rule gives:

\[g_{NN} = 89 \]

(64)

We consider its deviation by 33% from the data as the systematic error of QSSR for this estimate. Therefore, we consider as a conservative estimate of D_N from QSSR:

\[D_N \approx 2.15 \times 10^{-3} \text{ GeV}^{-1} \]

(424) 1.40 \times 10^{-17} \text{ cm} : (65)

4. Constituent quark results

For a qualitative comparison of the results from the chiral and QSSR approaches, we use a simple model where the constituent quark interacts with electromagnetic fields. Then, one can write:

\[h_{ij} \tilde{D}_{ij} = e^2_{\text{F}} h_{ij} \tilde{D}_{ij} = \frac{d^4p \text{Tr}_S(p;M_q)}{g; (66) \text{ where } S(p;M_q) \text{ is the quark propagator in presence of an electromagnetic field:}}

\[S(p;M_q) = \frac{i}{2} \frac{1}{\beta(p;M_q)} \frac{1}{2} \frac{1}{h_{ij} \tilde{D}_{ij}} \frac{1}{p;M_q} \frac{1}{M_q} \frac{1}{M_q} \frac{1}{i} \]

(67)

where M_q is the quark constituent mass and a_q is its anomalous magnetic moment. Then, one can derive the relation:

\[h_{ij} \tilde{D}_{ij} = \frac{3}{2} \frac{M_q}{M_q} \ln \frac{M_q}{M_q} \left(1 + \frac{a_q}{M_q} \right) \]

(68)

Using this relation into the LSR expression of D_N, one can deduce in units of e:\n
\[D_N = 3M_q \ln \frac{M_q}{M_q} \frac{e^{M_q^2}}{2 \pi^2} \left(1 + \frac{a_q}{2} \right) \]

(69)

where we have taken $b = 0$ in the non-relativistic limit, $M_q^2 = \frac{1}{2} M_{\text{hadron}}^2$, and we have used M_q (200–300) MeV. We assume that this crude non-relativistic approximation is known with an accuracy of about 50%, which gives the estimate:

\[D_N \approx \frac{1}{8.7} (44) \times 10^{-17} \text{ cm} : (70) \]

\[^{\text{Note that a more precise estimate of } g_{NN} \text{ including the contribution of the two lowest quark and gluon condensate contributions is claimed in Ref. 22 from the 1st sum rule using a different configuration of the hadronic vertex.}} \]
This value can be compared with the one from a na"{i}ve quark constituent model in Eq. (20). The comparison of the chiral and ChPT estimate requires a better control of the value of the renormalization scale and an improved estimate of the CP violating NN coupling. Also, search for some other contributions beyond the standard OPE of Q SSR like e.g. one of the D = 2 dimension operator discussed [32], may be required.

Combining these previous results with the present experimental upper limit (in units of e) [33]:

\[D_N^{\text{exp}} = 6 \times 10^{26} \text{ cm} ; \]

one can deduce in units of 10^{-10}:

\[\begin{align*}
1 & \lesssim 0.04 \text{ [chiral]} : M_N \\
1 & \sim 11.9 \text{ [ChPT]} : M_N = 3 M_N \\
6.9 & \sim 3.5 \quad \text{[constituent quark]} \\
14.9 & \sim 4.9 \quad \text{[Q SSR]} ;
\end{align*} \]

These results indicate that the weakest upper bound comes from Q SSR, while the strongest upper bound comes from the chiral estimate evaluated at the scale \(M_N \). Present lattice calculations are at an early stage [32] and may narrow the previous range of values in the future.

Acknowledgement

It is a pleasure to thank S. Fritio, P. Di Vecchia and G. Veneziano for collaboration in deriving some of the results in Section 2 and for multiple e-mail exchanges. Communication with E. de Rafael and V. I. Zakharov are also appreciated. This work has been initiated when the author has visited the CERN Theory Group in autumn 2006, which we wishes to thank for its hospitality.

REFERENCES

2. P. Di Vecchia, Lectures given at the Schladming W Inter School, Austria. Published in Schladming School 1980,0341 (QCD 1618B 1980).