Leptogenesis in the extension of the Zee-Babu model

Chian-Shu Chen, Chao-Qiang Geng and Dmitry V. Zhuridov

Department of Physics, National Tsing Hua University, Hsinchu, Taiwan 300

(Dated: April 20, 2013)

Abstract

We demonstrate that the extension of the Zee-Babu model can generate not only the small neutrino masses but also the baryon number asymmetry in the universe. In particular, we show that the scale of the singlet scalar responsible for the leptogenesis can be of order 1 TeV, that can be tested at the LHC and ILC. We also considered the possible minimal extension of this model to generate the dark matter.

e-mail: chianshu@gmail.com

\(^{1}\) e-mail: geng@physnthu.edu.tw

\(^{2}\) e-mail: zhurdov@physnthu.edu.tw
The zero neutrino masses predicted in the standard model (SM) turn out to be inconsistent with the experimental data \[1\]. The problem can be solved by including right-handed neutrinos ν_R to the particle content \[2\]. On the other hand, without ν_R, many theories have been proposed to explain the small active neutrino masses by using extended scalar fields \[3,4,5,6\]. For example, in the Zee-Babu (ZB) model \[4\], it contains only one singly and one doubly charged SU(2) singlet scalars beside the SM Higgs doublet. The Majorana neutrino masses arise radiatively at two-loop level. However, it is clear that the original ZB model cannot accomplish the leptogenesis \[7,8\].

In this paper, we would like to extend the ZB model slightly by including two additional doubly charged and one neutral singlet scalars in order to generate a possible lepton number asymmetry in the early universe, which can be converted by the usual sphaleron mechanism into the present baryon number asymmetry \[3,10\]. In this model we will demonstrate that the CP asymmetry can be induced by the interference of tree and one-loop contributions in the three body decays of the neutral scalars to dileptons and doubly charged Higgs (DCH). Moreover, we show that the experimental constraints on the parameters \[11\] leave a window for the TeV scale leptogenesis that gives the opportunity to test the model at the Large Hadron Collider (LHC) and International Linear Collider (ILC) \[3,4,12,13\]. The degeneracy of the DCH masses is not required. This is an attractive feature of three-body decay mechanisms of the leptogenesis \[14\]. Note that in the absence of the singlet scalar, the asymmetry generated in the decays of the DCHs is washed out by the gauge scattering processes \[14,15\]. While the presence of neutral singlet scalars can in prove a radiative stability of Higgs potential \[16\].

The scalar sector content and quantum numbers in our extension of the ZB model are listed in Table \(1\), where s, h, and k represent the Higgs doublet, neutral singlet, singly charged singlet and doubly charged singlet scalars, respectively. The most general scalar potential is written as

\[
V = \frac{1}{2} j \bar{f} f + \frac{1}{2} j \bar{f} f + M_s^2 s^2 + s s^4 + M_h^{02} h \bar{j} f + h \bar{j} f
\]

\[
+ M_{k1}^2 k1 \bar{f} f + k1 j k1 \bar{f} f + k1 j k1 \bar{f} f
\]

\[
+ M_{k_{12}}^2 k_{12} \bar{f} f + h \bar{j} f + k1 j k1 \bar{f} f + a s h s^2 \bar{j} f + s h s^2 \bar{j} f + s k1 s^2 k1 \bar{f} f + h k1 \bar{j} f k1 \bar{f} f
\]

\[
+ 12 j \bar{f} k_2 k_2 + h_{12} \bar{j} f k_2 k_2 + a s k_2^2 k_2 + h_n (h^+) \bar{f} k_n + H \cdots
\]

(1)
TABLE I: The scalar fields, its electro-weak charges and Z_2 parity; $i = 1; 2$.

<table>
<thead>
<tr>
<th>Scalar</th>
<th>SU(2)$_L$</th>
<th>U(1)$_Y$</th>
<th>Z_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td>(2, 1)</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>h</td>
<td>(1, 0)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>h_1</td>
<td>(1, 2)</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>k_3</td>
<td>(1, 2)</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

where we assume summation over the repeated indexes, $i; j = 1; 2$, $i \neq j$ and $n = 1; 2$.

After the SU(2)$_L$ U(1)$_Y$ symmetry breaking by the SM Higgs VEV of v, the doubly charged Higgs mass matrix is given by

$$M^2 = \begin{pmatrix} 0 & \frac{1}{2} k_1 v^2 & \frac{1}{2} k_2 v^2 \\ \frac{1}{2} k_1 v^2 & M^2_{k_1} + \frac{1}{2} k_1 v^2 \\ \frac{1}{2} k_2 v^2 & M^2_{k_2} + \frac{1}{2} k_2 v^2 \end{pmatrix} A;$$

(2)

which can be diagonalized by the orthogonal transformation

$$Q^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} A$$

(3)

to form the mass eigenstates $P = k$ with the masses

$$M_{1;2} = (Q P) \begin{pmatrix} Q^2 \\ R \end{pmatrix} = 2;$$

(4)

where

$$Q = \begin{pmatrix} X \end{pmatrix} \begin{pmatrix} (M^2_{k_i} + k_i v^2 = 2); R = 4 (M^2_{k_i} + k_i v^2 = 2) (M^2_{k_j} + k_j v^2 = 2) \end{pmatrix} j 12 v^4$$

(5)

with the requirement of $Q^2 R = 0$.

The third doubly charged P_3, singly charged h and neutral S scalar mass eigenstates have squared masses $M^2_3 = M^2_{k_3} + k_3 v^2$, $M^2_h = M^2_{k_1} + k_1 v^2$ and $M^2_S = M^2_{k_2} + k_2 v^2$, correspondingly.

The two-loop Majorana neutrino mass generation, shown in Fig.1, takes place due to the simultaneous presence of the four couplings: the SM Yukawa $LY \sim R$, the non-SM scalar $h^2 P_i$ ($i = h, h_1, k_1$) in Eq. (11), and the two non-SM scalar (lepton

$$L_Y = f_{ab} L_a L_b h^+ + h_{ab} E_R \ '_{IR} P_{1+}^+ + H \Psi;$$

(6)
where L is the SU(2)$_L$ lepton doublet with $L = i_2 L^c = i_2 C L^T$, ν_R denotes the right-handed charged lepton singlet, and $a;b = e;\mu;\tau$. Without loss of generality, the Yukawa matrix Y can be chosen to be diagonal with real and positive elements \([11,17]\). The matrix f_{ab} is antisymmetric due to the Fermi statistics of the lepton doublets, while h_{ab} is symmetric under the indexes of a and b.

\[
\begin{align*}
\text{FIG. 1: Majorana masses of neutrinos at the two-loop level.}
\end{align*}
\]

The neutrino mass matrix, defined as an effective term in the Lagrangian L

\[
\frac{1}{2} a_i^{\alpha \beta} M_{\alpha \beta} c_i^{\alpha \beta} + H \nu; c_i^{\alpha \beta}, \text{is given by } [3,18,19]
\]

\[
M_{\alpha \beta} = 16 \sum_{\text{cd}} f_{\alpha \beta} m_c \left(h_{1cd} I_{1cd} + h_{2cd} I_{2cd} \right) m_d f_{\alpha \beta};
\]

where $m_a = Y_{aa} = Z$ is the charged lepton mass, $a;b;c;d = e;\mu;\tau$, and

\[
I_{\text{cd}} = \frac{Z}{(2 \pi)^4} \frac{d^4 k}{(2 \pi)^4} \frac{d^4 q}{(2 \pi)^4} \frac{1}{m^2_k} \frac{1}{m^2_k} \frac{1}{M^2_h} \frac{1}{q^2} \frac{1}{q^2} \frac{1}{M^2_h} (k \cdot q)^2 \frac{1}{M^2_i}:
\]

We remark that $M_{\alpha \beta}$ in Eq. (7) has enough freedom to fit the normal or inverted neutrino mass hierarchy like the original ZB model \([18,20]\).

To study the leptonogenesis, the relevant terms in the Lagrangian are given by

\[
M^2_i P^+_i P^+_i + L_a Y_{aa} \sim Y_{aa} \sim a_R \sum_S P^+_i P^+_3 \sim n (h^+)^2 P^+_n \sim h_{ab} c_R \sim a_R \sim b_R \sim P^+_n + H \nu; c_i^{\alpha \beta}; \]

with $i = 1; \mu;\tau; j = 3, n = 1, 2$.

As shown in Fig. 2, CP violation occurs in the interference of tree and one-loop contributions to the decays of $S! P_3 \sim a \sim b$. The lepton asymmetry generated in the right-handed leptons is transferred to the left-handed ones since the left-right equilibrium for the SM charged leptons occurs before the sphaleron freezeout \([21,22]\). Our result applies so long as the interactions involving ν_R, which would wash out the lepton asymmetry before the electroweak phase transition (EW PT), are strongly suppressed.
For the successful leptogenesis at temperatures $T < M_S$, we require the mass relations $M_3 < M_S < M_i$ ($i = 1, 2$) since most of P_1 have to be decayed away. Hence their scattering can not wash out the lepton asymmetry. On the other hand, we have introduced a Z_2 symmetry to forbid the lepton number violated P_3 interactions.

The S decay width at the leading order in $M_S^2 - M_1^2$ is written as

$$ s' = \frac{1}{(2 \pi)^3} \frac{1}{964} \frac{1}{\lambda_{ijab}} h_{ijab} h_{ijab} \frac{M_S^2}{M_1^2 M_2^2 (M_S^2 + 5M_3^2)} \quad (10) $$

and at the leading order in $M_3 = M_S^2$ \cite{14}

$$ s = \frac{1}{(2 \pi)^3} \frac{1}{964} \frac{1}{\lambda_{ijab}} h_{ijab} h_{ijab} \frac{M_3^2}{M_1^2 M_2^3} \quad (11) $$

where $ab = 2$, $M_S < M_3 + 2M_h$. The out-of-equilibrium condition $s < H$ ($T = M_S$) is satisfied for

$$ j_{ijab} < 640M \quad M_j = \frac{p_{ab} M_S M_{\text{Planck}}}{10^2} \quad (12) $$

where $H = 1.66g^{1/2}T^2 M_{\text{Planck}}$ is the Hubble constant with $g' \approx 10^2$ and $M_{\text{Planck}} = 10^{19}$ GeV.

The reduced lepton asymmetry

$$ n_3 = n_S = 2[B (S ! 'P_3^{++}) - B (S ! 'P_3^{--})] \quad (13) $$
where \(n_L = n_1 \) \(n_2 \) with \(n_1, n_2 \) and \(n_S \) being the number densities of leptons, antileptons and \(S \), can be rewritten as \([14] \)

\[
\begin{align*}
\frac{X}{2} & \left(\frac{M_1^2}{2} \right)^{-1} \left[\frac{j_1^f_{ab}}{M_1^2} + \frac{j_2^f_{ab}}{M_2^2} \right] + \text{Im} \left[s_1 s_2 h_{1ab} h_{2ab} \right] + \text{Im} \left[s_1 s_2 h_{1ab} h_{2ab} \right]
\end{align*}
\]

\[(14) \]

with

\[
A = \frac{1}{2} \left(\frac{M_1^2}{2} \right)^{-1} \left[\frac{j_1^f_{ab}}{M_1^2} + \frac{j_2^f_{ab}}{M_2^2} \right] + \text{Im} \left[s_1 s_2 h_{1ab} h_{2ab} \right]
\]

\[(15) \]

The time evolution of \(\frac{X}{2} \) depends on \(M_S \) and the temperatures \(T^a \) \((a = e; \mu; \tau) \) of the left-right equilibriums for the corresponding charged leptons. These temperatures are determined by the equilibrium condition \(H [23] \) where \(\delta \) denotes the width of the SM Higgs boson decay of \(\mu \) \(L_{a} \). One finds that \(T^e \approx 10^6 \text{ GeV} \) \(T^\mu \approx T^\tau \). The Boltzmann equation for the lepton asymmetry \([23, 24, 25, 26, 27] \) is given by

\[
\frac{dn_L}{dt} + 3H n_L = \frac{1}{2} h_s i(n_S \ n_S^{eq}) h_s i \left(\frac{n_{eq}}{n} \right) n_L 2h_s j_{ij} n_{ij} n_L
\]

\[(16) \]

which is the same as that with the initial left-handed lepton asymmetry, where \(n_S^{eq} \) is the equilibrium number density of \(S \), \(n \) is the photon density, \(h_s \) represents the thermal average, \(v \) is the relative velocity of the incoming particles, and \(= \left(\left(\left(\left(\left(\frac{1}{2} \left(\frac{M_1^2}{2} \right)^{-1} \left[\frac{j_1^f_{ab}}{M_1^2} + \frac{j_2^f_{ab}}{M_2^2} \right] + \text{Im} \left[s_1 s_2 h_{1ab} h_{2ab} \right] + \text{Im} \left[s_1 s_2 h_{1ab} h_{2ab} \right] \right) \right) \right) \right) \). Here, we have assumed \(T < 2M_h \) and the CPT invariance. The density of \(S \) satisfies

\[
\frac{dn_S}{dt} + 3H n_S = h_s i(n_S \ n_S^{eq}) h_s j_{ij} (n_{eq}^2 \ n_S^{eq})
\]

\[(17) \]

where \(s \) is the cross section of the scattering processes \(SS \) all, shown in Fig.3. In the terms of the dimensionless variable \(x = \frac{M_S}{T} \), the particle densities per entropy density
of $L = s$ and $Y = s$ with $s' \geq 7n$ in the present epoch, using the relation $t = x^2 = (2H(x = 1))$, the Boltzmann equations in Eqs. (16) and (17) can be rewritten as

$$\frac{dL}{dx} = -K(Y - Y_{eq})x \frac{s}{K L x}; \tag{18}$$

$$\frac{dY}{dx} = K(Y - Y_{eq})x \frac{s}{sH(x = 1)}(Y^2 - Y_{eq}^2); \tag{19}$$

respectively, where $K = 1 = H(x = 1)$ is the effectiveness of the decays in the crucial epoch ($T = M_S$), $gY_{eq} + 2h \gamma \in = h_s i$ and the reaction density for the scattering processes $[14, 15]$.

$$s = \frac{T}{64} \frac{Z^2}{4M_s^2} ds(s) \frac{p}{p_{K_1}} \frac{p_{K_1}}{p_{sT}} \tag{20}$$

with the reduced cross section s given by $2(s - 4M_s^2) s(s)$ and the modified Bessel function of K_1. Since the dependence of the lepton asymmetry on the magnitude of the scattering is much slower than the linear one, we make the following estimate

$$s = \frac{1}{p_s} \frac{1}{s} \frac{1}{4M_s^2} \frac{sV^2}{M_z^2} \tag{21}$$

with the SM Higgs vev $v = 246$ GeV. The scattering term is negligible for small (large) values of s (M_S). By requiring that the effect of this term on the evolution of the lepton asymmetry is small we have the bounds

$$s < 10^5 \text{ for } M_S < 1 \text{ TeV} ;$$

$$s < 10^4 \text{ for } M_S < 10^2 \text{ TeV} ; \tag{22}$$

In the range of $K = 1$, one obtains $L = (2g) [24]$. In the EW PT, the lepton asymmetry in our model is converted to the net baryon asymmetry per entropy density

$$B = \frac{n_B}{s} \frac{n_b}{s} \frac{n_{L}}{s} \tag{23}$$

due to the relation $[3, 16, 28]$

$$B_f = \frac{28}{79} (B - L); \tag{24}$$

where the index f represents the present value and there is no initial baryon asymmetry. Note that we have ignored the temperature dependence of the n_B vs. n_L for $T \geq v [6, 29]$. From Eq. (14), without loss of generality we obtain

$$n_B = n = 10^2 ; \tag{25}$$
Since we have the additional DCH the parameters h_{lab}, h_i, and i in our model are more relaxed than in the ZB model, given by

\[
0.42 \text{ TeV} \quad M < 10^3 \quad 4 \text{ TeV} \quad 0.1 \text{ TeV} < < 10^3 \quad 5 \text{ TeV} \quad 0.01 \text{ TeV} \quad h_i \quad ; \quad (26)
\]

and

\[
0.78 \text{ TeV} \quad M < 274 \quad 4 \text{ TeV} \quad 0.36 \text{ TeV} < < 274 \quad 5 \text{ TeV} \quad 0.036 \text{ TeV} \quad h_i \quad ; \quad (27)
\]

for the normal and inverted hierarchies of the neutrino masses, respectively, where the parameter $(M_1 = M_k)$ is taking to be 1 and P_i. Taking the central values $h_0 \quad 0.1$ and 1 TeV and the neutral singlet mass $M_0 \quad 1 \text{ TeV}$, we get $1 \text{ TeV}^2 M_1^2$ ($M_1 < M_2$) and

\[
s_{10} \quad 10^4 \text{ TeV} \quad 1 M_1^2 \quad (28)
\]

in Eq. (12) with s and M_1 in TeV. It is easy to satisfy the condition in Eq. (28) and describe observed baryon number asymmetry $n_b = n = 6 \quad 10^{10}$ [30] since s is free parameter of the model and for the DCH mass we only require $M_1 > M_5$.

We note that one may consider a minimal extension of this model by including the second neutral singlet scalar S_0 to generate the dark matter in the universe. S_0 particles are stable if their masses satisfy the condition

\[
M_{S_0} < M_{P_3} + 2m_e
\]

Moreover, the relation $M_{S_0} < 3M_{S_0}$ is needed to prevent the $S \rightarrow 3S_0$ decays which can deplete the lepton asymmetry. If both these conditions are satisfied, S_0 can be the ordinary candidate for stable dark matter particles [31].

In conclusion, we have investigated a new mechanism for the leptogenesis in the extension of the ZB model. We have shown that the observed baryon number asymmetry of the universe can be produced through the decay of the neutral scalar S for both normal and inverted hierarchies of the neutrino masses. This S boson at the TeV scale can be probed directly at the near future colliders. One of the advantages of our mechanism is that the degeneracy for the scalar masses and the hierarchy of couplings is not required. We have also pointed out that the dark matter can be generated if we include a second neutral scalar in our model.
Acknowledgements

This work is financially supported by the National Science Council of Republic of China under the contract #: NSC-95-2112-M-007-059-M Y3. We would like to thank Pei-Hong Gu and A.V. Borisov for helpful discussions.