Abstract

A 3-bracket variant of the Virasoro-Witt algebra is constructed through the use of su(1,1) enveloping algebra techniques. The Leibniz rules for 3-brackets acting on other 3-brackets in the algebra are discussed and verified in various situations.

1 Introduction

Recently there has been some progress in constructing a 2 + 1-dimensional local quantum field theory with SO(8) superconformal symmetry [1,2,7,8,9]. This is a useful stepping-stone to obtain a world-volume Lagrangian description for coincident M 2-branes. Crucial to the construction is the use of 3-algebras (a term originally coined by Filippov [6], following up on earlier work of Nambo [11]) which are built around antisymmetric products of three operators. It now seems possible to incorporate an arbitrary Lie algebra into a 3-algebra through the use of a small number of auxiliary charges.

While it may be sufficient to restrict attention to finite Lie and 3-algebras for model-building purposes, e.g. in M-theory, nevertheless it is intrinsically interesting to also consider in finite dimensional 3-algebras. Previous studies [9] have already considered the in finite 3-algebra that follows from the classical Nambo 3-bracket, on a 3-torus, in the form

\[[E_a;E_b;E_c] = a_{b,c}E_{a+b+c} \]

(1)

The indices here are 3-vectors, with the usual dot and cross products of those 3-vectors. By virtue of some simple identities for the volumes of parallelepipeds, this satisfies Filippov’s condition (the FI, or so-called fundamental identity) (a property he required to warrant the 3-algebra designation).

\[[E_x;E_y;[E_a;E_b;E_c]] + [E_x;[E_y;E_a;E_b];E_c] + [E_a;[E_x;E_y;E_b];E_c]] + [E_a;E_b;[E_x;E_y;E_c]] = 0 \]

(2)

This is easily remembered as just a Leibniz rule for 3-brackets acting on other 3-brackets. (However, this does not necessarily mean \([E_a;E_b;A] = [E_a;E_b;A]\) for arbitrary \(A\) and \(B\). While these are the same for the classical Nambo bracket, in general these two expressions differ for an operator algebra.)

A 3-algebraic variant of the su(2) Kac-Moody algebra has also been studied [13]. Moreover, it is straightforward to embed an infinite dimensional 3-algebra in this framework, just as it is to embed the usual infinite dimensional Lie algebra [12] (also see [8]) into that for su(2). Nonetheless, it is not completely clear from these previous examples how in infinite dimensional 3-algebras should be constructed. We consider this problem here. We construct an infinite 3-algebra variant of the centerless Virasoro (i.e. Witt) algebra. We leave the inclusion of central charges as well as supersymmetric extensions of our results for future work.
2 Three-brackets from Enveloping Algebras

The \"BL algebra\" presented by Bagger and Lambert \cite{1} is actually just a minor modification of Nam bu's original results on 3-brackets for the su(2) angular momentum algebra, $[L_x;L_y;L_z] = i L_z$, etc. Of course, Nam bu's work motivated and inspired both Filipov (12 years later) and Takhtajan (20 years later \cite{14}, as well as more recent studies (see \cite{5} and references therein).

After introducing the 3-bracket, Nam bu noted that the su(2) Casimir followed immediately from it (see Eqn (49) in \cite{13}).

$$[L_x;L_y;L_z] = L_x [L_y;L_z] + L_y [L_z;L_x] + L_z [L_x;L_y] = i L_x^2 + L_y^2 + L_z^2 = iL^2; \quad (3)$$

From this it follows that the BL algebra can easily be found in the enveloping algebra for su(2). If we rescale the angular momenta by a fourth root of the Casimir,

$$Q_x = \frac{L_x}{L^2}; \quad Q_y = \frac{L_y}{L^2}; \quad Q_z = \frac{L_z}{L^2}; \quad (4)$$

as well as define a fourth charge as that fourth root,

$$Q_t = \frac{L}{L^2}; \quad (5)$$

then we obtain $[Q_t;Q_x] = 0$ etc. Hence

$$[Q_x;Q_y;Q_z] = Q_t; \quad [Q_t;Q_x;Q_y] = iQ_z; \quad [Q_t;Q_y;Q_z] = iQ_x; \quad [Q_t;Q_z;Q_x] = iQ_y; \quad (6)$$

So any matrix rep of the angular momentum algebra yields a matrix rep of this 3-bracket algebra. This algebra can be summarized as

$$[Q_a;Q_b;Q_c] = i\delta_{abc} Q_d; \quad (7)$$

where $\delta_{xyst} = +1$ with a d 1; 1; 1; 1+i Lorentz signature used to raise indices. In this form it is easily verified that the FI conditions are satisfied: $[Q_d;Q_a;[Q_a;Q_b;Q_c]] = [Q_d;Q_c;Q_a];Q_b;Q_c] + [Q_a;Q_d;Q_a;Q_b]Q_c] + [Q_a;Q_b;Q_d;Q_c]$. (Again, this does not mean $[Q_d;Q_a;AB]$ is the same as $[Q_d;Q_a;A][B + A][Q_d;Q_a;B]$ for arbitrary A and B.)

Let us now pursue such enveloping algebra techniques to consider all conformal algebras as realized nonlinearly with su(1;1) generators. This gives the centerless version of the usual Virasoro algebra,

$$[L_n;L_m] = (n \cdot m)L_{n+m}; \quad (8)$$

An explicit realization is \cite{4}.

$$L_n = (L_0 + n) \frac{(L_0 + n)}{(L_0 + + n)} (L_1)^n; \quad \quad (9)$$

$$L_n = (L_0 + n) \frac{(L_0 + 1 + n)}{(L_0 + 1)} (L_1)^n; \quad$$

where the su(1;1) algebra and Casimir are given by

$$[L_1;L_1] = 2L_0; \quad [L_1;L_0] = L_1; \quad [L_0;L_1] = L_0; \quad (10)$$

From this construction, we compute 3-brackets and abstract from them a 3-algebra. An interesting question is: Does the algebra so obtained satisfy the 3-bracket Leibniz rule when acting on other 3-brackets? First we compute the 3-bracket for charges with positive indices.

$$[L_k;L_m;L_n] = (m \cdot n)L_kL_{m+n} + (n \cdot k)L_mL_{n+k} + (k \cdot m)L_nL_{k+m} = C \frac{(k \cdot m)(m \cdot n)(k \cdot n)}{L_0 + (k + n + m)} L_{k+m+n}; \quad (11)$$
Here we have used \((8)\) and an identity specific to the realization at hand,

\[
L_k L_{m+n} = (L_0 + k) \left(1 + \frac{k \left(\begin{array}{c} 1 \\ \end{array} \right)}{L_0 + (k + n + m)} \right) L_{k+m+n} ; \tag{12}
\]

plus cyclic permutations of \(k, m, n\). Note the simplification when \(m = 0\) or when \(n = 1\). Similarly, we compute

\[
[L_p \mid L_q ; [L_k \mid L_m \mid L_n]] = C (k \ m \ (m \ n \ (k \ n \ (p \ q) \left(1 + \frac{(k + m + n) \left(\begin{array}{c} 2 \\ \end{array} \right)}{L_0 + (k + m + n + p + q)} \right) \ L_{k+m+n+p+q} ; \tag{13}
\]

The case \(n=2\) stands out as particularly tasteful.

\[
[L_p \mid L_q ; [L_k \mid L_m \mid L_n]] \bigg|_{n=2} = \frac{1}{4} (k \ m \ (m \ n \ (k \ n \ (p \ q) L_{k+m+n+p+q} ; \tag{14}
\]

This case allows us to quickly check the FI condition for the \(L\)'s. We find that it holds true.

\[
[L_p \mid L_q ; [L_k \mid L_m \mid L_n]] \bigg|_{n=2} = 0 ; \tag{15}
\]

Before checking the FI for other values of \(n\), it is useful to first make some general observations.

The 3-bracket of \(L\) introduces a new operator given in the present realization as a product. To check the FIs for the 3-algebra then requires knowing how this new operator is acted under the action of a 3-bracket. Since the 3-bracket is not a derivation, in general, this requires some new input, even when the new operator is realized as a product. Therefore, we require several independent statements for the various 3-brackets. From the su \((1;1)\) enveloping algebra expressions, we find

\[
[L_k \mid L_m \mid L_n] = C (k \ m \ (m \ n \ (k \ n \ M_{k+m+n} ;
\]

\[
[L_p \mid L_q \mid M_k] = (p \ q) (L_{k+p+q} + \left(\begin{array}{c} 2 \\ \end{array} \right) k) M_{k+p+q} ; \tag{16}
\]

where, in that realization,

\[
M_k = \frac{1}{L_0 + k} L_k = \frac{(L_0 + k)}{(L_0 + k)} (L_1)^k ; \tag{17}
\]

In particular, \(M_0 = 1\). The Casimir-independent factors are tantamount to operators, of course, and will eventually be absorbed into normalizations, but we leave them explicit for now. Thus the algebra, we also need to consider two additional 3-brackets: \([L_p \mid M_q \mid M_k]\) and \([M_p \mid M_q \mid M_k]\).

So we compute some more in the enveloping algebra to find

\[
[M_q \mid M_k] = 0 ; \quad [L_p \mid M_q] = qM_{p+q} ; \tag{18}
\]

and then,

\[
[L_p \mid M_q \mid M_k] = L_p [M_q \mid M_k] + M_k [L_p \mid M_q] \ M_q [L_p \mid M_k] = qM_k M_{p+q} + kM_q M_{p+k} = (k \ q) M_{k+p+q} ; \tag{19}
\]

upon using another identity valid in the su \((1;1)\) realization. Namely

\[
M_k M_{p+q} = M_{k+p+q} ; \tag{20}
\]

Thus we arrive at the remaining 3-brackets.

\[
[M_p \mid M_q \mid M_k] = 0 ; \quad [L_p \mid M_q \mid M_k] = (k \ q) M_{k+p+q} ; \tag{21}
\]

\(^1\)An alternative presentation of the \(L\) algebra for the \(L\)'s and \(M\)'s is given by taking generating elements \(L_0\) and \(M_1\), with the condition \([L_0 \mid M_1] = M_1\). Then \(M_n = (M_1)^n\) and \(L_n = M_n(L_0 + n(1))\) leads to the algebra [8], [13]. From this it is clear the \(L\)'s depend on \(n\), but the \(M\)'s do not.
The complete 3-algebra found through use of the su(1;1) enveloping algebra is then

\[[L_k;L_m;L_n] = C (k \quad m \quad m \quad n) \quad M_{k+m+n}; \]
\[[L_p;L_q;M_k] = (p \quad q) \quad (L_{k+p+q} + (1 \quad 2) \quad k \quad M_{k+p+q}); \]
\[[L_p;M_q;M_k] = (k \quad q) \quad M_{k+p+q}; \]
\[[M_p;M_q;M_k] = 0; \]
(22)

In addition, the su(1;1) realization gives the interesting result that all higher N-brackets (i.e. totally antisymmetric products of N operators) are null. This follows from explicit calculation of the three possible forms for 4-brackets, three of which exhibit nontrivial cancellations of terms, to obtain

\[0 = [L_3;L_k;L_m;L_n] = [M_j;L_k;L_m;L_n] = [M_j;M_k;L_m;L_n] = [M_j;M_k;M_m;M_n] : \]
(23)

Consequently, all 5-brackets vanish upon being resolved into 4-brackets \([3]\), etc. Thus, all \((N-1)\)-brackets vanish for the su(1;1) realization of this in nilpotent algebra.

From the first relations in (22), it is now straightforward to check

\[[L_p;L_q;L_k;L_m;L_n] = [L_p;L_q;L_k;L_m;L_n] + [L_k;L_p;L_q;L_m;L_n] + [L_k;L_m;L_p;L_q;L_n] ; \]
(24)

for any value of \(C\) (and \(N\)). But of course, there are more possible FIIs involving both \(L\)s and \(M\)s, and these should also be checked. We proceed to do this, after a bit of streamlining.

The overall \(\text{Casimir}\) factor in the first relation of (22) is easily eliminated by rescaling the charges by a fourth root of the \(\text{Casimir}\), as in the original su(2) example of \(Q_k \rightarrow L_k, R_k \rightarrow C M_k\). However, the remaining \(\text{Casimir}\)-dependent factor in the second relation of (22) (i.e. a central charge \(z \quad (1 \quad 2) = \frac{1}{C}\) after the rescalings) is not so easily removed. In any case we now abstract from the su(1;1) enveloping algebra results the following.

3 Virasoro-Witt 3-Algebra

\[[Q_k;Q_m;Q_n] = (k \quad m \quad m \quad n) \quad R_{k+m+n}; \]
\[[Q_p;Q_q;R_k] = (p \quad q) \quad (Q_{k+p+q} + z \quad k \quad R_{k+p+q}); \]
\[[Q_p;R_q;R_k] = (k \quad q) \quad R_{k+p+q}; \]
\[[R_p;R_q;R_k] = 0; \]
(25)

where the central charge \(z\) is effectively a parameter. For generic values of \(z\), by direct application of this ternary algebra, we now see that 3-brackets acting on 3-brackets satisfy the usual Leibniz-like rules (FIIs) except when only one \(R\) is involved. There are two such exceptions out of twelve 3-on-3 possibilities.

In an obvious notation, the twelve FI possibilities stem from each of the following:

\[[R:R:R;R]; [R;R;R;R]; [Q;Q;R;R]; [Q;R;R;R]; [Q;R;Q;R]; [Q;R;Q;Q]; [R;R;R;R]; [Q;R;Q;Q]; [Q;Q;R;Q]; [Q;Q;Q;Q]; [R;R;Q;Q]; [R;R;Q;Q];] \]

Ten of the FIIs hold and behave as Filippov and Leibniz would dictate. For example, for any \(z\), the 3-algebra (25) gives

\[[Q_p;Q_q;Q_k;Q_m;Q_n] = [Q_p;Q_q;Q_k;Q_m;Q_n] + [Q_k;Q_p;Q_q;Q_m;Q_n] + [Q_k;Q_m;Q_p;Q_q;Q_n]] \]
(26)

as stated earlier in terms of \(L\)s. For another example,

\[[R_p;R_q;R_k;R_m;R_n] = [R_p;R_q;R_k;R_m;R_n] + [Q_k;R_p;R_q;R_m;R_n] + [Q_k;R_m;R_p;R_q;R_n]] \]
(27)

From (23) the LHS trivially vanishes in this case, while the three terms on the RHS cancel. The two exceptions, which do not obey FI conditions, give instead

\[[Q_p;Q_q;Q_k;Q_m;Q_n] = [Q_p;Q_q;Q_k;Q_m;Q_n] \]
\[[Q_k;Q_p;Q_q;Q_m;Q_n] \]
\[[Q_k;Q_m;Q_p;Q_q;Q_n] \]
\[[Q_k;Q_m;Q_p;Q_q;Q_n] \]
\[= 4 + z^2 (p \quad q \quad k \quad m \quad m \quad p \quad q \quad k \quad n \quad R_{k+m+n+p+q}; \]
\[[Q_p;R_q;Q_k;Q_m;Q_n] = [Q_p;R_q;Q_k;Q_m;Q_n] \]
\[[Q_k;Q_p;R_q;Q_m;Q_n] \]
\[[Q_k;Q_m;Q_p;R_q;Q_n] \]
\[[Q_k;Q_m;Q_p;R_q;Q_n] \]
\[= 4 + z^2 (n \quad k \quad k \quad m \quad m \quad n \quad q \quad R_{k+m+n+p+q}; \]
(28)
Nevertheless, for the special cases $z = 2i$ the RHSs of (28) also vanish. Hence in these special cases all the FIs hold for the algebra of (28), making it a bona fide 3-algebra.

It is interesting that the special values $z = 2i$ are obtained in the su(1;1) realization only in the classical limit of large Casimir $C = (1 + i) / 4$, for which

$$z^2 = \left(\frac{1 + i}{1} \right)^2 = 4 :$$

(29)

Perhaps this removersome of the mystery surrounding the FIs, which are all true statements for the proposed Virasoro-W Witt 3-algebra for these special values of z, since the FIs are known to hold for classical Nambo 3-brackets (as in [2] above). In this context, we note the cocrient on the RHS of the first relation in (28) is given by a $(b ; c)$ for three vectors $a = 1; b = 1; m = 2$, and $c = 1; m = 2$.

As emphasized in [2] there is nothing fundamental about the FI conditions so far as associativity is concerned. Generally these "identities" fail to hold due to quantum corrections for associative operator algebras. - deformations from the Jacobian-like limit of the classical Nambo brackets (CNBs) to become full-edged quantum Nambo brackets (QNBs). Although the FIs fail for (28) for generic z, there is an alternative identity following only from associativity of the charge multiplication. This alternate identity must hold if the associative algebra is consistent. The identity is

$$\begin{align*}
&\left[[A ; B ; C] ; D ; E \right] + \left[[D ; B ; E] ; B ; C \right] + \left[[D ; B ; E] ; A ; C \right] + \left[[D ; E ; C] ; A ; B \right] \\
&\left[[D ; B ; C] ; A ; E \right] + \left[[E ; B ; C] ; D ; A \right] + \left[[A ; D ; C] ; B ; E \right] \\
&\left[[A ; E ; C] ; D ; B \right] + \left[[A ; B ; D] ; C ; E \right] + \left[[A ; B ; E] ; D ; C \right] \\
&= 3 \left[[A ; B ; C] ; D ; E \right] :
\end{align*}$$

(30)

This is the prototypical generalization of the Jacobi identity for odd QNBs [3], and like the Jacobi identity, it is antisymmetric in all of its elements. The RHS here is an "inhomogeneity" that illustrates a more general result: The totally antisymmetric action of odd QNBs on other odd n QNBs results in $(2n - 1)$-brackets. For the case at hand, by explicit calculation using (28), we find for any value of z,

$$\begin{align*}
&\left[Q_p;Q_q;Q_k;Q_n;Q_k;Q_n \right] + \left[Q_k;Q_p;Q_q;Q_k;Q_n;Q_n \right] + \left[Q_k;Q_p;Q_q;Q_k;Q_n;Q_n \right] + \left[Q_k;Q_p;Q_q;Q_k;Q_n;Q_n \right] \\
&\left[Q_k;Q_p;Q_q;Q_k;Q_n;Q_n \right] + \left[Q_p;Q_k;Q_q;Q_k;Q_n;Q_n \right] + \left[Q_p;Q_k;Q_q;Q_k;Q_n;Q_n \right] \\
&\left[Q_p;Q_k;Q_q;Q_k;Q_n;Q_n \right] = 0 :
\end{align*}$$

(31)

Remarkably, there is no inhomogeneity for this or any other 3-on-3 situation computed using (28). Perhaps this is not too surprising given that all $(N - 1)$-brackets vanish for the su(1;1) realization that led to (28), although in any other realization it would be necessary to specify all the 5-brackets, either by direct calculation where possible, or by definition if necessary. Still, it is reassuring that the proposed 3-algebra (28) satisfies these associativity-required consistency checks.

4 Discussion

Just as there are a countably infinite number of copies of su(1;1) embedded in the centerless Virasoro-W Witt algebra, so there are an infinite number of BL algebras embedded in the (complexified) ternary Virasoro-Witt algebra proposed here. At any given level $L_n = 0$ and L_0 obey the su(1;1) commutation relations (10), with invariant $C_n = L_n; L_n; (L_0 + n) L_0$. The construction of the BL algebra at that level then proceeds as in [4] and [5] above, after complexifying the level's su(1;1) to obtain su(2) in the well-known way.

It is straightforward to include central charges in the Virasoro algebra, as well as the L and M commutators,

$$[L_n; L_m] = (n; m) L_{n + m} + cn^3 n; m; [L_n; M_m] = km^3 k; n; m; [M_n; M_m] = bn^2 b; k; n;$$

where b and c are central, and to investigate their consequences for the 3-algebra. This will be discussed in detail elsewhere. Similar remarks apply to the supersymmetric extension of (28).
The astute reader will have noticed that (8) and (18) form a sub-algebra of the Schrodinger-Virasoro algebra [13]. The extension of our 3-bracket results to include the remaining charges of that larger algebra could be of interest.

Finally, we re-emphasize that our construction leading to (25) used only 3-brackets defined as totally antisymmetric operator products: [A;B;C] = ABC + BCA + CBA + CAB + ACB. Any other definition of the 3-brackets might lead to a ternary algebra different from that proposed here.

Acknowledgments This work was supported by NSF Award 0555603 and by the US Department of Energy, Division of High Energy Physics, Contract DE-AC02-06CH11357.

References

