Identcation of Extra Neutral Gauge Bosons at the LHC Using b- and t-Q Quarks

Stephen Godfrey and Travis A. W. Martin

Ottawa-Carleton Institute for Physics, Department of Physics,
Carleton University, Ottawa, Canada K1S 5B6
(Dated: April 20, 2013)

New Neutral Gauge Bosons, Z\(^0\)ta, are predicted by many models of physics beyond the Standard Electroweak Theory. It is possible that a Z\(^0\) would be discovered early in the Large Hadron Collider program. The next step would be to measure its properties to identify the underlying theory that gave rise to the Z\(^0\). Heavy quarks have the unique property that they can be identified in the final states. In this letter we demonstrate that measuring Z\(^0\) decays to b- and t-quark final states can act as an effective means of distinguishing between models with extra gauge bosons.

In the coming years, it is anticipated that the CERN Large Hadron Collider (LHC), a pp collider with centre of mass energy \(\sqrt{s} = 14\) TeV, will reveal a new level of understanding of the fundamental interactions when it starts to explore the TeV energy region. For a number of reasons, including the quadratic sensitivity of the Higgs boson mass to radiative corrections, it is generally believed that the Standard Model (SM) is a low energy effective limit of a more fundamental theory and numerous extensions of the SM have been proposed. Many of these extensions predict the existence of new neutral gauge bosons (Z\(^0\)) and other s-channel resonances [1,2,3,4,5]. If a kinematically accessible Z\(^0\) exists, it is expected to be discovered very early in the LHC program. Once such an object is discovered, the immediate task would be to measure its properties and identify its origins. This is a difficult task and there is a vast literature on Z\(^0\) observables and analysis techniques.

A key ingredient in determining the nature of a new resonance is to measure its couplings to fermions. The Z\(^0\) couplings to leptons can be measured using three observables: the cross section to leptons, the forward-backward asymmetry, \(A_{FB}\), and the width, \(\Gamma_{Z^0}\). For quarks, studies have shown that rapidity distributions can be used to separate u-quark couplings from d-quark couplings [6,7]. However, these analyses are statistical in nature so there will always be contributions from the other type of quark. In contrast, the ability to identify b- and t-quarks in the final state can be a powerful tool to measure quark couplings that can be used to distinguish between models that give rise to Z\(^0\) bosons.

Previous studies have pointed out that third generation fermions, top quarks in particular, can be used to search for extra gauge bosons [8,9,10,11,12,13,14,15] and to distinguish between models [13,15]. While some have noted the possibility of using third generation t- and b-quarks to distinguish between models of extra neutral gauge bosons [8,11,12,13], this subject has not been fully explored. The ability to identify heavy quark flavours opens the unique opportunity to measure individual quark couplings that is not possible for light quarks. In what follows, we describe a method of using b- and t-quark final states to distinguish between models of new physics that predict extra neutral gauge bosons [13,15].

The primary challenges in these measurements will be the identification efficiencies for top and bottom quarks needed to make statistically meaningful measurements and the discrimination of the t's and b's coming from Z\(^0\) decays from SM QCD backgrounds.

To distinguish between models, we propose to use the cross sections (pp ! Z\(^0\)!! bb) and (pp ! Z\(^0\)!! tt), as described by the DelphicYean cross section with the addition of a Z\(^0\) [20] at the LHC. We compute the cross sections using M Monte-Carlo phase space integration with weighted events, in posing a rapidity cut on the final state particles of \(|y| < 2.5\) to take into account detector acceptance. We also included parton and invariant mass distribution cuts with values chosen to reduce QCD backgrounds as described below. In our numerical results we take \(m_t = 128.9\), \(m_b = 0.231\), \(\delta = 91.1\) GeV, \(\Lambda = 2\times10^5\) GeV and \(m_c = 1.725\) GeV [21]. We use the CTEQ6M parton distribution functions [22] and included a K-factor to account for NLO QCD corrections [23] while NNLO are not numerically important to our results [24,25]. Final state QED radiation effects are in important [26] but require a detailed detector level simulation that is beyond the scope of the present analysis. The Z\(^0\) widths only include decays to standard model fermions. NLO QCD and electroweak radiative corrections were included in the width calculations [23].

An important challenge for this analysis will be to achieve sufficiently high b- and t-quark identification efficiencies to provide the statistics needed to distinguish between models. The ATLAS and CMS collaborations have worked hard at estimating these values but experience with real data will be required to obtain reliable values. We therefore present results for two sets of values,
is involving. The top quark almost always decays into a b-quark and a W + boson (t → W b) with the W 's subsequently decaying either into two leptons (e, µ, or τ) or into a light quark-antiquark pair (u, c, t) that in turn hadronizes. The single lepton plus jets final state, where one W decays leptonically and the other W decays hadronically, tt! W W bb! (ljj)bb, has a BR 30% of all tt events and is generally viewed as giving the best signal-to-background ratio. With suitable kinematic cuts and including the BR to (ljj)bb, a recent ATLAS study estimates 4% [14]. However, reconstructing the invariant mass of the tt system will reduce this number [14]. The ATLAS TDR is slightly more optimistic, claiming the e ciency for detecting a M tt = 2 TeV resonance of about 5% including the semileptonic mode BR while a CMS simulation obtains the lower value of 2% [29]. Baur and Orr [13,30] found that the t-quark identification e ciency for this channel can be improved by using 2- and 3-jet final states with b-tags. The fully hadronic modes have a combined BR 45% so utilizing the hadronic modes has the potential of improving the tt identification e ciency signi cantly. A method has been suggested to distinguish top jets from standard m odel backgrounds using substructure of the top jet [31,32]. Kaplan et al. [33] estimated that high pT dijets can be rejected with an e ciency of 99.9% while retaining 10% of the tt pairs. By combining the di erent top decay channels and identi cation strategies it should be possible to increase the overall tt identification e ciency. Given that the jet of t-quark identi cation at the LHC continues to evolve, we assume a wide range of values for pT, taking 1% and 10% for the low and high e ciency scenarios respectively.

Another challenge for making these measurements will be to distinguish the Z 0 signal from the large SM QCD backgrounds. The invariant mass distribution for bb nal states is shown in Fig. 1 for the SM QCD background and the signal for a Z 0 with a mass of 2 TeV for several representative m odels. The QCD backgrounds were calculated using the WHizard package [38] with O M ega m atrix element generation [39] and as an independent check we also calculated the QCD cross sections using a simple M ont Carlo event generator with three level m atrix elements. We use LO QCD cross sections in our background calculations. While it is known that higher order QCD corrections can be substantial [30,41], NLO corrections are highly dependent on the region of phase space being studied. As a crude estimate of the importance of NLO correction on our results, we rescaled the LO QCD backgrounds by a factor of 1.4 and found this to have little in pact on our results.

The pT distributions are quite di erent for the signal and backgrounds with quarks coming from Z 0 decays having a much harder distribution than the background events. The background can be reduced considerably by imposing a transverse momentum cut on the reconstructed nal state t and b's at some expense to the signal. The pT cut was varied and it was found that the optimum cut is approximately pT > 0.2M Z 0 which reduces the background signi cantly compared to the signal. A stronger cut in proves the signal to background ratio but decreases the total signal and therefore increases the statistical uncertainty. The invariant mass

dM bb (GeV)

dM bb + X (fb/GeV)

\begin{align*}
\text{M}_{bb} &= 2 \text{ TeV} \\
\text{E_0(w)} &
\end{align*}

\begin{align*}
\text{LR} \\
\text{TC} \\
\text{SLH} \\
\text{3-3-1} \\
\text{QCD}
\end{align*}

Fig. 1: Invariant mass distributions for the Drell-Yan process pp → bb including a Z 0 with mass M Z 0 = 2 TeV and the bb QCD backgrounds. The sets of curves correspond to E_0 (1), Left R ight symmetric (b = c = 1) [31], Sim plest Little Higgs [22,31], 3-3-1 model [35] and TC m odels (tan = 0.577) [14,39]. A kinematic cut of P_T > 50 \text{ GeV} was imposed on the b-quarks.
The QCD backgrounds can be further reduced by constraining the invariant mass of the final state fermions to \(M_{\text{eff}} \geq 25 \, \text{GeV} \). The window was chosen to balance the total signal against the signal to background ratio. We examined the model independent choice of \(M_{\text{eff}} \geq 0.07 \, \text{TeV} \), but found that our results were not very sensitive to the precise choice of \(M_{\text{eff}} \) window.

Fakes from gluon-\(g \), light quark-\(q \), and \(c \)-jets are potentially problematic but there is a tradeoff between heavy quark identification efficiencies and mistagging that requires detailed detector simulations. Likewise, we defer detector resolution effects to more detailed future studies. Other non-QCD SM backgrounds include \(W + b \) jets, \(W + W + b \), \(W + \ell + b \), and \(W + \ell + \ell + b \) states. Baur and Ors have shown that these can be controlled by constraining the cluster transverse mass and invariant mass of outgoing jets (and leptons) to be close to \(m_{t \ell} \approx 80 \, \text{GeV} \).

In addition to the QCD backgrounds and the question of heavy quark identification efficiencies, there are additional theoretical uncertainties in the cross sections; higher order QCD and EW corrections to the cross sections, both initial and final state contributions, and uncertainties in the parton distribution functions. We can reduce some of these uncertainties by using ratios of heavy quark production to charm production; \(R_{b \bar{b}} \) and \(R_{c \bar{c}} \). In particular, these ratios nearly eliminate the uncertainties originating in the parton distribution functions. The ratios are defined by

\[
R_{b \bar{b}} = \frac{(pp \rightarrow Z^0 \rightarrow b \bar{b})}{(pp \rightarrow Z^0 \rightarrow \ell \ell)} \frac{3K_q g_{b}^{2} + g_{\bar{b}}^{2}}{g_{\ell}^{2} + g_{\bar{\ell}}^{2}} \tag{1}
\]

\[
R_{c \bar{c}} = \frac{(pp \rightarrow Z^0 \rightarrow c \bar{c})}{(pp \rightarrow Z^0 \rightarrow \ell \ell)} \frac{3K_q g_{c}^{2} + g_{\bar{c}}^{2}}{g_{\ell}^{2} + g_{\bar{\ell}}^{2}} \tag{2}
\]

where \(K_q \) is a constant depending on the QCD and EW correction factors, and the factor of 3 is due to summing over color nonsinglet states. Each of these ratios depends on only four couplings from each model. An analysis based on the location of a mass measured \(Z^0 \) in the \(R_{b \bar{b}} \) and \(R_{c \bar{c}} \) parameter space provides a means of distinguishing between models.

We assume that a \(Z^0 \) has been discovered and its mass and width measured \([3,28]\), so that the appropriate \(M_{QCD} \) cuts described above can be applied. It is expected that a \(Z^0 \) with \(M_{Z^0} \approx 2 \, \text{TeV} \) can be discovered early in the LHC program with approximately 1–10 fb\(^{-1}\) of integrated luminosity depending on the specific model.

To obtain our results we calculated the expected number of events and statistical error for signal plus background for a given integrated luminosity and particle identification efficiencies. We also calculated and subtracted from the signal plus background events to give the predicted number of signal events. From these intermediate results we obtained the ratios given in equations \((1) \) and \((2) \) with the errors calculated in the usual way by including both signal and background. We did not include uncertainties coming from luminosity and identification efficiencies. In the latter case there is simply too big a range to include in an error, rather we show results for the two cases discussed above.

Our results for \(R_{b \bar{b}} \) and \(R_{c \bar{c}} \) are shown in Fig. 3 for \(M_{Z^0} = 2 \, \text{TeV} \). Fig. 3(a) shows results for the high mass identification efficiency values with 1 \(\sigma \) statistical errors based on an integrated luminosity of \(L = 100 \, \text{fb}^{-1} \). The low \(\ell \ell \) case would require higher integrated luminosity to distinguish between models so in Fig. 3(b) we show statistical errors based on \(L = 300 \, \text{fb}^{-1} \). The errors scale as \(10^{-1/2} \) for \(M_{Z^0} = 3 \, \text{TeV} \) and very roughly like \(10^{-1/2} \) so one can estimate how the errors will change with different integrated luminosities and heavy quark identification efficiencies.

It is clear that most models can be differentiated using heavy quark final states. However some models such as the \(E_6 \) and \(SU(5) \) anomaly free Little Higgs model give similar ratios so one would need additional input such as leptonic observables to distinguish between them.

In summary, we demonstrate that, in principle, the decay of a \(Z^0 \) boson into third generation quarks can be used to distinguish between models of physics beyond the Standard Model.
in between. Given the promise of this approach, a more detailed detector level study to see the effects of detector resolution is warranted.

The authors thank P. Kalyniak, H. Logan, H. Hou, J. Reuter, T. Rizzo, and T. Schwartz for helpful discussions and communications. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.