I. INTRODUCTION

Because of the nowadays accepted existence of cosmological acceleration [1,2], the study of spherically symmetric solutions of the Einstein equations [3,4] in presence of dark energy is of much interest. This study has already been undertaken for instance in [5,6,7].

One of the simplest models for dark energy is the Chaplygin gas [10,11]. The model is based on a perfect uid satisfying the equation of state $p = -\Lambda$, where p is the pressure, Λ is the energy density and Λ is a positive constant. Some studies have already appeared where the problem of nding spherically symmetric or worm hole-like solutions of Einstein’s equations in presence of the Chaplygin gas have been addressed [8,9].

Here we study static solutions of the Tolman-Oppenheimer-Volkov (TOV) equations for spherically symmetric objects living in a space filled with the Chaplygin gas. Results obtained appear to be very different from the apparently similar problem of stars in presence of a cosmological constant [5]. Indeed, in the latter case the exterior solution of the TOV equations is nothing but the well-known Schwarzschild-de Sitter geometry, while the interior problem essentially coincides with the standard TOV case. The only di erence is that the pressure does not vanish at the star surface; on the contrary, it is negative and its absolute value is equal to the cosmological constant.

Instead, the Chaplygin gas strongly feels the presence of the star, and consequently the solution acquires quite unusual features. These features are the existence of a maximum value of the radial coordinate, dubbed “equator”, and the appearance of curvature singularities at some nite values of the radial coordinate r. Moreover, these solutions cannot be identi ed with the usual Morris-Thorne-Yurtsever worm holes [12] because they are not asymptotically at. Moreover, they possess curvature singularities at nite values of r as well.

The structure of the paper is as follows: in Sec. II we write down the TOV equations in presence of the Chaplygin gas and describe two exact solutions of them; Sec. III is devoted to the analysis of the non-al case where $p_j < 0$ while in Sec. IV we study the phantom case with $p_j > 0$, and we consider the star-like configurations.
analogous to those studied in Sec. III; in Sec. V we
consider the solutions of the TOV equations existing
in a universe filled exclusively with the phantom Chaplygin
gas. Sec. 6 contains conclusions and discussion.

II. TOLMAN-OPPENHEIMER-VOLKOFF
EQUATIONS IN THE PRESENCE OF THE
CHAPLYGIN GAS

We suppose that the universe is filled with a perfect
uid with energy-momentum tensor $T = (\rho + p)u^a u^b$
and consider a static spherically symmetric interval
\[ds^2 = e^{(r)} dr^2 + e^{(r)} dr^2 - (d\theta^2 + \sin^2 \theta d\phi^2) \]
(1)
Then the Einstein system reduces to the following pair
of equations:
\[e^{\frac{1}{2}} \frac{d}{dr} \left[\frac{1}{r^2} + \frac{1}{r^2} \right] = 8; \]
(2)
\[e^{\frac{1}{2}} \frac{d}{dr} \left[\frac{1}{r^2} + \frac{1}{r^2} \right] = 8 p; \]
(3)
plus the energy-momentum conservation equation
\[\frac{dp}{dr} = \frac{d^2}{dr^2} + \frac{p}{r} \]
(4)
Solving Eq. (2) with the boundary condition $e^{(0)} = 1$
gives
\[e = 1 + \frac{2M}{r} \]
(5)
where, as usually, $M(r) = 4 \int_0^r \frac{dr}{r^2}$ This is equivalent
to
\[\frac{dM}{dr} = 4 r^2; M(0) = 0; \]
(6)
Eq. (3), (4) and (5) together give rise to the TOV differential equation [3,4]
\[\frac{dp}{dr} = \frac{(\rho + p) M + 4 \rho^2}{r (r^2 - 2M)} \]
(7)
Completing equations (5) and (4) with an equation of
state relating p and M one has a closed system of three
equations for the three variables p and M. In this paper we investigate the case when the uid is the Chaplygin gas whose equation of state is
\[p = \frac{p_0}{r^2}; \]
(8)
Then Eqs. (3) and (4) give rise to the following system
of rst-order differential equations for p and M:
\[\frac{dp}{dr} = \frac{(p_0^2 M + 4 r^2 p)}{pr (r^2 - 2M)}; \]
(9)
\[\frac{dM}{dr} = \frac{4 \rho r^2}{p}; \]
(10)
We denote the radius of the star by r_0. As usual we
suppose that the pressure is continuous at the surface of
the star. The exterior problem amounts to considering system (10) in the interval $r > r_0$ with some properly
chosen boundary conditions $p(r_0)$ and $M(r_0)$ at $r = r_0$.
It is easy to see that at $r > r_0$ the system admits two
exact solutions with constant pressure. The rst of them
\[p = \frac{4}{3} r^3; \]
(11)
describes the geometry of the de Sitter space with
\[e = e_1 = \frac{r^2}{r_{gs}}; r_{gs} = \frac{r}{3}; \]
(12)
The second solution is the Einstein static universe
\[p = \frac{p_0}{3}; M = \frac{p_0}{3} \frac{r^3}{3}; \]
(13)
with the radius
\[r_{0} = \frac{p_0}{3} \frac{r_{gs}}{3}; \]
(14)

III. THE NORMAL CASE: $p > 0$

We now consider solutions with a non-constant pressure. Some additional constraints have to be imposed on the boundary conditions:
\[p(r_b) > 0; \]
(15)
\[p(r_b) < \frac{r}{r_0}; \]
(16)
First of all, note that the pressure p cannot attain the
values $p = 0$ and $p = \infty$ in the region where $2M(r) < r$.
Indeed, for $2M < r$ the right-hand side of (3) is
negative, while in order to approach $p = 0$ starting from
negative values of p, it is necessary to have $dp/dr > 0$.
In addition, let us rewrite Eq. (3) as follows:
\[d\ln \left(\frac{2}{p^2} \right) = \frac{2dr}{(M + 4 \rho^2)} \]
(17)
and suppose that $p > \rho r > r_1$ with $r_1 > 2M(r_1)$. Then,
upon integration of Eq. (17), we get a divergence at the left-hand side and a regular expression at the right-hand side, a contradiction.
Thus, as long as the condition $2M < r$ is satisfied
we have $p(r) < 0$ and $r > 0$. This means that the mass $M(r)$ is growing at least as fast as r^3, so that at some radius $r = r_0$ the equality
\[M(r_0) = \frac{r_0}{2}; \]
(18)
is achieved. Then at \(r = r_0 \) we must have \(p(r_0) = p_0 = \frac{1}{r_0^2} \). Indeed, let us expand the relevant quantities around \(r_0 \):

\[
 r = r_0 + \epsilon; \quad (19)
\]

\[
 M(r) = \frac{r_0}{2} M'(\epsilon) \quad (20)
\]

\[
 p(r) = p_0 + p'(\epsilon); \quad (21)
\]

where \(M'(\epsilon) \) and \(p'(\epsilon) \) tend to zero when \(\epsilon \to 0 \). Equation \((9) \) has the following asymptotic form:

\[
 \frac{dp}{d\epsilon} = \frac{p_0^2 (1 + 8 \epsilon^2 p_0)}{2(\epsilon^2 + 8 \epsilon^2)}; \quad (22)
\]

from which it is easily seen that \(p \to \infty \) when \(\epsilon \to 0 \), unless \(p_0 = \frac{1}{r_0^2} \).

On the other hand, since \((r) > r_0\), Eq. \((8)\) implies that if \(M'(\epsilon) \geq \frac{4}{3} \epsilon^2 \) so that

\[
 r > \frac{1}{8}; \quad (23)
\]

\[
 r_0 < \frac{3}{8}; \quad (24)
\]

The asymptotic equation for \(p \) has the form

\[
 \frac{dp}{d\epsilon} = \frac{p}{2\epsilon} + C_0 \quad (25)
\]

where

\[
 C_0 = \frac{1}{8} r_0^3 \left(\frac{3}{2} 32 \epsilon^2 \right); \quad (26)
\]

and its solution is

\[
 p = A \epsilon^2 + 2C_0 \epsilon; \quad (27)
\]

where \(A \) is an arbitrary constant. Thus, the family of the solutions \(p(r); M(r) \) can be characterized by the two parameters \(r_0 \) and \(A \), which, in turn, are determined by the boundary conditions \(M(r_0); p(r_0) \) on the surface of the star.

However, the coordinates which we have used so far are not convenient for the problem under consideration since the metric coefficient \(g_{rr} = \epsilon = (1 - 2M/r)^{-1} \) has a cusp (coordinate) singularity at \(r = r_0 \). Therefore, instead of the coordinate \(r \), we introduce a new coordinate \(\rho \) defined by \(r = \rho \sin \theta \), so that the corresponding metric becomes

\[
 ds^2 = e^{\rho/r^2} \left(1 + r^2 \sin^2 \theta \right) \left(1 + \sin^2 \theta \right) d\rho^2; \quad (28)
\]

Then the \(\theta \)-component of the Einstein equations has the form

\[
 e = \left(\cot^2 + 2 \cot^2 \right) + \frac{1}{r_0^2 \sin^2} = \frac{8}{(29)}
\]

where prim e denotes differentiation with respect to the variable \(\epsilon \). Integration with the boundary condition \(p(0) = 1/r_0^2 \) gives

\[
 e = \frac{1}{r_0^2 \cos^2} \left(\frac{8}{0} \right) \frac{Z}{\sin} \quad (30)
\]

From Eqs. \((18)\) and \((14)\) it follows that

\[
 r_0^2 = \frac{R}{r_0^2} \frac{1}{(29)} \quad (31)
\]

that implies the positivity and finiteness of the expressions \((29)\).

For latter purposes we also write down the \(\theta \)-component of the Einstein equations:

\[
 e (29) + \left(\cot^2 + 2 \cot^2 \right) \frac{1}{r_0^2 \sin^2} = 8 \quad p; \quad (32)
\]

The energy-momentum conservation equation now reads

\[
 0 = \frac{2p_0}{p^2}; \quad (33)
\]

and for the case of the Chaplygin gas it can be easily integrated to give

\[
 e = \frac{A_0}{p^2} \left(\frac{3}{2} \right); \quad (34)
\]

where \(A_0 \) is some positive constant which xes the choice of the time scale.

Combining Eqs. \((29), (32)\) and \((33)\) one gets

\[
 p^0 = \frac{\cos \left(\frac{1}{(29)} (M + 4 \epsilon^2 \sin^2 \epsilon) p \right)}{\sin \left(\epsilon_0 \sin \epsilon \right)} \left(\frac{2M}{2} \right); \quad (35)
\]

where

\[
 M(0) = \frac{4 \epsilon^2 \sin^2 \epsilon \epsilon; M(0) = 0 \quad (36)
\]

and

\[
 M(0) = \frac{4 \epsilon^2 \sin^2 \epsilon \epsilon; M(0) = 0 \quad (37)
\]

Relation \((18)\) can be rewritten as

\[
 r_0 = 2M (0 = 2); \quad (38)
\]

and for the Chaplygin gas Eqs. \((35)\) and \((37)\) acquire the form

\[
 p^0 = \frac{\cos \left(\frac{2}{(29)} (M + 4 \epsilon^2 \sin^2 \epsilon) p \right)}{p^2 \sin \left(\epsilon_0 \sin \epsilon \right)} \left(\frac{2M}{2} \right); \quad (39)
\]
\[M^0 = \frac{4}{p} \frac{r_0^3}{2} \sin^2 \cos \] respectively.

We study these equations in the vicinity of the \textit{equator} \(\theta = \pm 2 \) by introducing a small all positive variable such that

\[\frac{1}{2} \quad ; \quad \text{(41)} \]

and the functions \(p(\) \) and \(M^*(\) \):

\[p = \frac{1}{8} \frac{r_0^3}{2} + p(\) ; \quad \text{(42)} \]

\[M = \frac{r_0^3}{2} M^*(\) ; \quad \text{(43)} \]

A simple calculation shows that

\[M^* = 16 \frac{2}{8} \frac{r_0^3}{2} \quad ; \quad \text{(44)} \]

while for \(p(\) \) one can write down the following asymptotic equation

\[\frac{dp}{dx} = p + C_1 \quad ; \quad \text{(45)} \]

where

\[C_1 = \frac{3}{2} \frac{32}{3} \frac{2}{8} \frac{r_0^3}{2} ; \quad \text{(46)} \]

The solution of Eq. (45) is

\[p = B + C_1 \quad ; \quad \text{(47)} \]

with \(B \) an arbitrary constant. This solution can be continued to negative values of the parameter that corresponds to the equator crossing. Thus, all trajectories intersecting the equator \(\theta = \pm 2 \) can be characterized by two parameters, which could be chosen as \(r_0 \) and \(B \). The static Einstein solution corresponds to the values \(B = 0 \) and \(C_1 = 0 \), the latter condition being equivalent to \(r_0^3 = 3 \frac{64}{2} = 2 \).

In order to investigate the behavior of the trajectories after crossing the equator, we find it convenient to introduce a new variable

\[y = \frac{1}{\sin} ; \quad \text{(48)} \]

so that \(1 \quad y \quad 1 \). In terms of this variable Eqs. \(\text{(45), (46)} \) can be rewritten as

\[\frac{dp}{dy} = \frac{p^2}{8} \frac{M^3 + 4 \frac{r_0^3}{2} p}{p y^3 \left(r_0 \quad 2 M \quad y \right)} ; \quad \text{(49)} \]

\[\frac{dM}{dy} = \frac{4}{p} \frac{2 r_0^3}{y^3} ; \quad \text{(50)} \]

Now one can show that the expression \(r_0 \quad 2 M \quad y \) in the denominator of the right-hand side of Eq. (49) is always positive at \(y > 1 \). In order to prove this statement, we show that it is true if \(p > 0 \).

To this end we introduce the function

\[f(y) = \frac{r_0}{r_0^2} y + \frac{2 r_0^3}{3 y^2} ; \quad \text{(51)} \]

Since \(p > 0 \), it satisfies the inequality

\[f(y) = \frac{r_0}{r_0^2} \quad 2 M \quad y \quad ; \quad \text{(52)} \]

We have

\[f(1) = 0 \quad ; \quad \text{(53)} \]

and

\[f'(y) = \frac{r_0}{r_0^2} + \frac{8}{3} \frac{r_0^3}{3 y^3} ; \quad \text{(54)} \]

so that

\[f'(1) = \frac{r_0}{r_0^2} (8 \quad 1) = \frac{1}{p(\)} \quad 1 > 0 ; \quad \text{(55)} \]

Now assume that the function \(r_0 \quad 2 M \quad y \) becomes equal to zero at some \(y = y_1 > 1 \). This means that at some value \(y = y_2 \), the function \(f(y) \) vanishes. In turn, this last condition requires the vanishing of the derivative \(f'(y) \) at some value \(y = y_3 < y_2 \). From Eq. (54) one nds

\[y_3 = \frac{16}{3} \frac{r_0^3}{8} \quad 1 \quad ; \quad \text{(56)} \]

and the requirement \(y_3 > 1 \) is equivalent to

\[1 < \quad r_0^3 < 3 ; \quad \text{(57)} \]

The vanishing of the function \(r_0 \quad 2 M \quad y \) at the point \(y_1 \) implies also the vanishing of the expression \(M \quad y^3 + 4 \frac{r_0^3}{2} \) at this point, i.e. the vanishing of the numerator of the expression in the right-hand side of Eq. (49). Thus, the values of the functions \(M \) and \(p \) at the point \(y_1 \) are given by

\[M(\ y_1\) = \frac{r_0}{2y_1} ; \quad p(y_1) = \frac{y_1}{8} \frac{r_0^3}{2} ; \quad \text{(58)} \]

It follows from the condition \(p > 0 \) that

\[y_1^2 < \quad 8 \quad r_0^3 ; \quad \text{(59)} \]

while from \(y_3 < y_1 \) we nd

\[y_3^2 < \quad 8 \quad r_0^3 ; \quad \text{(60)} \]

Substituting the expression (56) into the inequality (60) we get that this inequality is satisfied provided

\[8 \quad r_0^3 > 4 ; \quad \text{(61)} \]
that contradicts the condition \[(57) \].

Finally, looking at Eq. \[(43) \] one can see that the pressure can, in principle, achieve the value \[p = 2M \] at some value \[y = y \] only if \[r_0 = y = 2M \] \[(y) \] and \[r \rightarrow 1 \]. A simple analysis similar to the one carried out above shows that this is possible as well. Thus, we have shown that the expression \[r \neq 2M (y) \] cannot vanish at any value of \(y \) in the range \(1 < y < 1 \).

We now study the behavior of the pressure at \(y > 1 \). Here we end three families of solutions (geometric). The first one contains trajectories arriving at the south pole of the three-dimensional spherical anisotropes \((y = 1) \) with some value \[0 < p (1) > r_0 \]. Looking at Eq. \[(49) \] we see that the necessary condition for such solutions to exist is the convergent behavior of the integral

\[
Z \frac{dy}{y^3 (r_0 - 2M y)} \quad (62)
\]

at \(y = 1 \) that implies the vanishing of the function \(M \) at \(y = 1 \). Indeed, assume \(M (1) = M_0 \neq 0 \). Then \(M_0 > 0 \) contradicts the positivity of the expression \(r_0 \) \[2M (y) \], while \(M_0 < 0 \) implies the integral \[(62) \] to diverge logarithmically. Thus, the only value \(M (1) \) compatible with \(p (1) > r_0 \) is \(M (1) = 0 \). Then it follows from Eq. \[(50) \] that the asymptotic behavior of \(M \) at \(y = 1 \) is

\[
M = \frac{m}{y^3} \quad (63)
\]

where

\[
m = \frac{4 \pi r_0^3}{3 p (1)} \quad (64)
\]

Substituting the value of \(m \) into the integrand of the right-hand side of Eq. \[(43) \], we see that the sign of the derivative \(dp/dy \) at \(y = 1 \) is determined by the sign of the expression \(\left(\frac{2}{3} \pi p (1) \right) \). If \(p < \frac{3}{2} \pi p (1) \) this derivative is negative, while it is positive for \(p > \frac{3}{2} \pi p (1) \).

Thus, there exists a two-parametric family of regular space-time geometric, for which the spatially anisotropic represents a three-dimensional spheroidal parametrized by the two parameters \(r_0 \) and \(p (1) \) and the metric coefficient \(g_{00} \) given by the formula \[(53) \] is always positive.

The second family of geometric includes those where the value of the pressure \(p \) becomes equal to zero. Let us describe basic features of such geometric. We suppose that \(p (y_0) = 0 \) at \(y_0 > 1 \). The function \(M (y) \) cannot become negative at \(y = y_0 \) because in this case the derivative \(dp/dy \) would be negative and it would be impossible to reach the value \(p (y_0) = 0 \). Hence we consider the case where \(M (y_0) = M_0 \) where \(0 < M_0 < \frac{3}{2} \pi p (1) \). We assume that in the neighborhood of the point \(y_0 \) the pressure behaves as

\[
p (y) = D (y_0 - y) \quad (65)
\]

where \(D \) and \(M_0 \) are some positive constants. Substituting the expression \[(65) \] into Eq. \[(15) \], one gets

\[
p (y) = D y_0 - 2M_0 y \quad (66)
\]

Consider also the case when \(M (y_0) = 0 \). In this case we look for the expressions describing the behavior of \(p \) and \(M \) in the vicinity of \(y = y_0 \) in the form

\[
M (y) = M_1 (y_0, y) \quad (67)
\]

\[
p (y) = E (y_0, y) \quad (68)
\]

where \(M_1 \) and \(E \) are positive and \(0 < y < 1 \). Substituting expressions \[(67) \] and \[(68) \] into Eqs. \[(49), (50) \] one finds the following values for the parameters \(; M_1 \) and \(E \):

\[
M_1 = \frac{2}{3} \pi p (1) \quad E = \frac{2}{3} \pi p (1) \quad M_1 = \frac{2}{3} \pi p (1)
\]

Note that in this case the value of the of the parameters \(M_1 \) and \(E \) are uniquely fixed by the value of \(y_0 \). In the case of \(M (y_0) > 0 \) considered above one has a one-parametric family of geometric, corresponding to \(p > 0 \) and some parameters \(r_0, y_0 \) and \(M_0 \). However, Eqs. \[(66) \] or \[(69) \] describe necessary conditions which should be satisfied to provide the existence of the geometric having the maximum radius \(r_0 \) and the pressure \(p \) vanishing at \(y = y_0 \). Not all the solutions satisfying the relations \[(66) \] or \[(69) \] correspond to the initial conditions of a physical system, \(y = 1 \), i.e., \(M (y = 1) = r_0 = 2 \).

Moreover, taking into account the monotonous behavior of the function \(M (y) \) one can believe that at least one value of the parameter \(M (y_0) \) corresponds to a geometric with the desirable initial conditions. Thus, the family of solutions (geometric) ending with \(p = 0 \) is also two-parametric and can be parameterized by the two parameters \(r_0 \) and \(y_0 \).

An interesting feature of the geometric described above consists in the presence of the singularity at \(y = y_0 \). Indeed, the Chaplygin gas equation of state implies an in the growth of the density energy when the pressure tends to zero that in turn determines the divergence of the scalar curvature. Thus, the space-time under consideration cannot be continued beyond \(y = y_0 \). In other words, \(y_0 = \arcsin y_0 \).

The third family of possible geometric includes those for which the pressure \(p \) tends to the value \(y = 1 \) \((1) \). In this case the acceptable behavior of the function \(M (y) = M_0 (1) = M_2 \), where \(M_2 = 0 \). The behavior of the pressure at \(y = 1 \) can be represented as...
where \(p(y) \) is a positive function vanishing at \(y = 1 \). Substituting (73) into Eq. (49), one gets an asymptotic equation

\[
\frac{dp}{dy} = \frac{p}{y};
\]

which solution is

\[
p = \frac{F}{y} \tag{72}
\]

where \(F \) is a positive constant. This constant does not depend on the value of the parameter \(M \). Thus, the family of the geometries with \(p \) at \(y = 1 \) appears to be described by the three parameters \(r_0, F \) and \(M \). However, as in the case of the family of geometries described above with the pressure vanishing at some \(e \) of \(y = y_0 \), we are not free in the choice of the value of \(M \) after the values \(r_0 \) and \(F \) are fixed. Indeed, due to the monotonic behavior of the function \(M(y) \), at least one value of the parameter \(M \) corresponds to a solution \(M(y) \) satisfying the initial condition \(M(1) = r_0 = 2 \). Thus, one has a two-parameter family of geometries described by fixing the values of \(r_0 \) and \(F \). These geometries have a singularity of the Schwarzschild type at \(y = 1 \) (= \(r = 0 \)) due to the nonvanishing mass \(M = M_2 \). They have another curious feature: the metric coefficients \(g_{tt} = e^t \) given by the formula (73) tend to infinity as \(p \) tends to infinity, and, hence, integrals of the proper time \(d = p^{\frac{1}{2}} \) tend to infinity, so one has an infinite blue shift effect in contrast to the well-known red shift effects in the vicinity of the Schwarzschild and de Sitter horizons.

Summarizing, solutions of the Tolman–Oppenheimer–Volkov equations in the presence of the Chaplygin gas have the following curious features:

1. All the spatial sections of the spacetime are foliated (excluding a special case of the de Sitter spacetime) are closed.
2. Some geometries have a divergent scalar curvature invariant at a finite value of \(r \).
3. Some geometries manifest an infinite blue-shift effect.

Unfortunately, the relations between the boundary conditions \(p_2; M_2 \), the parameters, characterizing the crossing of the equator \(r_0 = 0 \) and the \(\\text{null parameter} \) characterizing the three families of geometries with qualitatively different behaviors at \(\text{boundary condition} \) cannot be found analytically and should be studied numerically.

IV. THE PHANTOM CASE: \(\text{p} > \phi \)

Now consider the system of equations (39, 40) with the boundary condition

\[
p(r_0) < 0; \tag{73}
\]

In this case \(p > \phi \) that corresponds to phantom dark energy and, in principle, to a possibility of creation of wormholes. If the condition (73) is satisfied, two cases are possible.

Case A:

\[
M(r) + 4 \frac{r^2}{r_0} p(r) < 0; \tag{74}
\]

In this case, the pressure \(p \) is decreasing and its absolute value is growing. Correspondingly, the energy density is also decreasing and hence the mass \(M \) grows slower than \(r^2 \). Then the left-hand side of the expression (74) is decreasing, too, so the expressions \((M + 4 r^2 p)(r^2 + 2M) \) and \((p^2 - 2) \) cannot change their signs.

We examine three possible subcases:

1. \(p \) tends to some finite value \(1 < p < 0 \) when \(r \to 1 \);
2. \(p \) tends to \(1 \) when \(r \to 1 \);
3. \(p \) grows indefinitely when \(r \) tends to some finite value \(r_1 \).

The subcase 1 cannot take place because the left-hand side of Eq. (80) is regular while its right-hand side diverges as \(r^2 \) when \(r \to 1 \).

Likewise, the subcase 2 cannot be realized as well. Indeed, suppose that \(p = p_1 r^2 ; 0 < p_1 > 0 \) when \(r \to 1 \). Then Eq. (73) becomes

\[
\frac{dp}{dr} = 4 p^2 r^2; \tag{75}
\]

which implies

\[
1 = 2 + 1 \tag{76}
\]

or \(1 = 2 \) which contradicts the positivity of \(p \).

We are left with the subcase 3 which can be realized with

\[
p = \frac{p_1}{r^2}; \quad p_1 > 0; \quad \text{when} \quad r \to r_1; \tag{77}
\]

Substituting expression (77) into Eq. (50), we have the following relation:

\[
\frac{p_1}{(r_1 R)^2} = \frac{p_1^2}{(r_1 r)^2} = \frac{4 r_1^2}{r_1^2 + 2M_1}; \tag{78}
\]

from which we find the value of parameter \(p_1 \) as a function of the radius \(r_1 \) and the mass \(M_2(r_1) = M_1 \):

\[
p_1 = \frac{r_1^2}{4 M_1}; \tag{79}
\]

Thus, we obtain a two-parameter family of solutions in which one encounters a singularity at \(r = r_1 \) because the scalar curvature \(R \) diverges there.

Case B:

\[
M(r) + 4 \frac{r^2}{r_0} p(r) > 0; \tag{80}
\]

In this case the pressure grows with \(r \). Then, in the right-hand side of Eq. (50) we have three decreasing positive
term $s(p^2 - 2), (M + 4 pr^2)$ and $(r - 2M)$. The problem is which of them vanishes before the others, if any.

The above terms cannot simultaneously remain positive as $r \to 1$ because in this case $p > 1$ and the expression $(M + 4 pr^2)$ would unambiguously change sign.

The case when $p = 1$ while the other two expressions remain positive is also excluded. Indeed, if $p > 1$ as r approaches some finite value, the left-hand side of Eq. 14 has a logarithmic divergence while its right-hand side is regular. On the other hand, if $p < 1$, the expression $(M + 4 pr^2)$ will change its sign.

If $(p^2 - 2)$ and $(r - 2M)$ vanish at some $r = r_0$, Eq. 13 takes the form

$$d \ln(p^2 - 2) = \frac{dr}{r - r_0}$$

which implies

$$p^2 - 2 = \frac{1}{r - r_0}$$

contradicting the hypothesis. Thus, the pressure cannot achieve the value $p = 1$.

As shown in the preceding section, the denominator $(r - 2M)$ at the right-hand side of Eq. 13 can only vanish at some $r = r_0$ simultaneously with $(M + 4 pr^2)$ and the pressure at $r = r_0$ should equal $p = \frac{1}{r - r_0}$ (equator). Let us prove that it is impossible to achieve the equator if $p < 1$. Indeed, the formula 13 shows that in this case

$$r - 2M = r_0 + (r - r_0) 2M (r_0) - 2M (r_0) (r - r_0)$$

$$= (r - r_0) (1 - 64 2^2 2^2)$$

as $r = r_0$. The difference $(r - 2M)$ should be positive as $r \to r_0$ from below, so the expression $(1 - 64 2^2 2^2)$ should be negative. However, at $p > 1$ this expression is positive - a contradiction.

Thus, if (p^2) is satisfied, p grows so that some maximum value $p_{\text{max}} < 1$ when the expression $(M + 4 pr^2)$ changes sign while the term $(p^2 - 2)$ and $(r - 2M)$ are positive, and we led back to the case A.

So, we have proved that only two regimes are possible for a star-like object immersed into the phantom Chaplygin gas. If initial conditions satisfy 12, the pressure is decreasing and diverges at some finite value of r. Then the space-time acquires a scalar curvature singularity there. On the other hand, if initial conditions satisfy 30, then the pressure grows with the r until some maximum value $p = p_{\text{max}}$ where the expression in the right-hand side of Eq. 13 changes sign. After that we come back to case A: the pressure decreases and explodes according to 12 at some finite value of the radial coordinate r. No equator and no horizon are attained in the case of the phantom Chaplygin gas: the quantity $(r - 2M)$ is always positive. As in the case of the non-phantom Chaplygin gas, the relation between the initial values of the paramters $p(r_0)$ and $M(r_0)$ and the parameters r_1 and $M(r_1)$ cannot be found analytically.

We can summarize the results of the above considerations in the following

Theorem. In a static spherically symmetric universe filled with the phantom Chaplygin gas, the scalar curvature becomes singular at some finite value of the radial coordinate and the universe is not asymptotically at.

V. STATIC SPHERICALLY SYMMETRIC UNIVERSE FILLED EXCLUSIVELY WITH THE PHANTOM CHAPLYGIN GAS

Now we study spherically symmetric static solutions for a universe filled exclusively with the phantom Chaplygin gas. The theorem above is valid in this case, too. This situation is of much interest because when the weak energy condition is violated, $p < 0$, worm holes may appear (though not necessarily, see 2 in this connection). Suppose that at some finite value of the radial variable $r = r_0$, the factor $r_0 2M (r_0)$ is positive and $p(r_0) < 1$. Then, as in the preceding analysis, one can consider the evolution of the functions $M(r)$ and $p(r)$ in accordance with Eqs. 9, 10 but with a decreasing value of the radial variable r. Now only two possibilities may be realized: one can arrive at the value $r = 0$ keeping always a positive value of the factor $r - 2M$ or one can encounter a situation when at some finite value of $r = r_0$, the factor vanishes.

Consider the case when $(r - 2M)$ is positive for all values $r > 0$. Here, one can imagine two different regimes as r approaches zero. In the first one the mass in the vicinity of $r = 0$ is positive and behaves as $M \sim \frac{1}{r}$; $r > 0$. In the second regime the mass tends to a negative constant when $r \to 0$. A detailed analysis shows that only the first regime is compatible with the TOV equations 11, 12 in the presence of the phantom Chaplygin gas. Precisely, in the vicinity of $r = 0$ the pressure and the mass functions have the form

$$p = p_0 \frac{8 (3p_0^2 - 2) (p_0^2 - 2) r^2}{3p_0^4}$$

$$M = \frac{4 r^2}{3p_0}$$

where p_0 is an arbitrary number such that $p_0 < 1$. Being regular at the center $r = 0$, this static solution develops a singularity at some finite value of the radius r_1, where the pressure becomes equal to minus infinity. Thus, we have a one-paramater family of static spherically symmetric solutions of the Tolman-Oppenheimer-Volkov equations in a world filled with the phantom Chaplygin gas. This family is parametrized by the value of the pressure at the center $r = 0$.
Now suppose that the factor \(r > 2M(r) \) vanishes at some value \(r = r_0 \). An analysis similar to the one carried out in Sec. 3 shows that this is positive only if also the expression \(M + 4r^2 \) in the numerator of the right-hand-side of Eq. (86) vanishes at \(r_0 \). In Sec. 3 the surface \(r = r_0 \) was called equator because it corresponded to the maximal value of the radial variable \(r \). Now it corresponds to the minimal value of \(r \), and it is nothing but a throat. Just like in the case of the equator considered in Sec. 3, the throat can be achieved only at \(p = \frac{1}{8} \). In the phantom case \(p < 0 \), hence, there is a restriction on the size of the throat

\[
\frac{r}{r_0} < \frac{1}{8} \quad ; \quad (86)
\]

In order to describe the crossing of the throat, it is convenient to introduce the hyperbolic coordinate instead of the radius \(r \),

\[
r = r_0 \cosh \; ; \quad (87)
\]

which plays a role similar to that played by the trigonometric angle in the description of the equator.

Now the TOV equations look like

\[
\frac{dp}{dr} = \frac{(\frac{2}{p^2})M + 4p \cosh^3 \; \sinh}{\cosh (r_0 \cosh - 2M)} \quad ; \quad (88)
\]

\[
\frac{dM}{dr} = \frac{4 \cosh^2}{p} \quad ; \quad (89)
\]

The solution of (89) at small values of \(r \) is

\[
M = r_0 + 16 \cosh \quad ; \quad (90)
\]

Representing the pressure as

\[
p(\;) = \frac{1}{8} r_0 \quad ; \quad (91)
\]

one can rewrite Eq. (89) in the neighborhood of the throat as

\[
\frac{dp}{dr} = \frac{p + C_T}{D} \quad ; \quad (92)
\]

where the negative constant \(C_T \) is equal to

\[
C_T = \frac{64}{16} \cosh^3 \quad ; \quad (93)
\]

The solution of Eq. (92) is

\[
p = D + \frac{1}{2} C_T \quad ; \quad (94)
\]

where \(D \) is an arbitrary constant.

Thus, geodesics with a throat constitute a two-parametric family, characterized by the value of the throat radius \(r_0 \) and by the value of the parameter \(D \). From Eq. (94) we see that when the hyperbolic parameter grows, the negative term \(-C_T \) starts dominating, while the pressure decreases and achieves an infinite negative value at a finite value of the radius \(r \) where we encounter a curvature singularity. The peculiarity of this configuration with a throat consists in the fact that these singularities are achieved at both sides of the throat or, in other words, at one positive \(r > r_0 \) and one negative \(r < r_0 \) values of the hyperbolic parameter. The values \(r_0 \) and \(r_0 \) correspond to values \(r_1 = r_0 \cosh \) and \(r_2 = r_0 \cosh \) of the radial paramter. If \(D = 0 \) one has \(r_1 = r_2 \). The solutions with a throat could be seen as worm hole-like, but in contrast with the Misner-Thomas-Yurtsev wormholes [13], they do not connect two asymptotically at regions.

We summarize the preceding considerations concerning solutions of the Tolman-Oppenheimer-Volkov equations in the universe led with the phantom Chaplygin gas as follows. Suppose we start from an initial condition \(r > 2M(r) > 0 \) and \(p(r) < 0 \) for some given value of \(r \) or \(\frac{dM}{dr} \). Then letting the functions \(M \) and \(p \) evolve to values \(r > r_0 \), we unavoidably arrive to an infinite negative value of the pressure at some finite value \(r_0 \) of the radius \(r \), thus encountering a singularity. Instead, for \(r < r_0 \) two qualitatively different situations may arise: either we arrive to \(r = 0 \) in a regular way, or we may discover a throat at some finite value \(r = r_0 \), this being the generic situation. Upon passing the throat, an observer finds itself in another patch of the world and then, with the radius increasing, stumbles again upon a curvature singularity at some finite distance from the throat.

Note that in the traditional view of worm holes, one supposes that there is a minimum value of the radial parameter characterizing a throat, and the space-time at both sides of the throat is either asymptotically flat, or has some other traditional structure (for example, wormholes could also connect two expanding asymptotically Friedmann universes). Here we have found a different kind of worm hole-like solutions: those connecting two space-time patches which have a scalar curvature singularity at some finite distance from each other.

We conclude this section with the brief comment on the results of paper [7], where the problem of the existence of worm hole solutions supported by the phantom Chaplygin gas was studied. The main part of this paper is devoted to the consideration of the so-called "anisotropic" Chaplygin gas, i.e. a uid whose radial pressure satisfies the Chaplygin gas equation of state, while the tangential pressure can be arbitrary. Then the system of TOV equations is under-determined and its solution contains one arbitrary function. Choosing this function in a convenient way, one can construct a lot of solutions, satisfying the desired properties. However, this uid is not the Chaplygin gas and, moreover, it is not a barotropic uid. The case of the isotropic Chaplygin gas is also considered in Ref. [7]. The author studies numerically the behavior of metric coefficients in the vicinity of the throat without considering the problem of continuation of this solution.
to larger values of the radial coordinate. However, the general theorem proved at the end of the section IV of the present paper states that all spherically-symmetric solutions supported by the phantom Chaplygin gas (with or without a throat) have a curvature singularity at some finite value of the radial coordinate and hence cannot be asymptotically flat.

VI. CONCLUSION

In this paper we have studied the Tolman-Oppenheimer-Volkov equations for static spherically symmetric objects in a space filled with the Chaplygin gas. Both cases, phantom and non-phantom, were considered. In the non-phantom case all solutions (excluding the de Sitter one) represent a spheroidal geometry, where the radial coordinate achieves a maximum value (equator). After crossing the equator, depending on the boundary conditions, three types of solutions can arise: a closed spheroid having a Schwarzschild-type singularity with a finite blue-shift at the "south pole", a regular spheroid, and a truncated spheroid having a scalar curvature singularity at a finite value of the radial coordinate.

For the case of the phantom Chaplygin gas, the equator is absent and all star-like external solutions have the geometry of a truncated spheroid having a scalar curvature singularity at some finite value of the radial coordinate. Besides, we have also considered the static spherically symmetric configurations existing in a universe filled exclusively with the phantom Chaplygin gas. Here two cases are possible: geodesics which are regular at the center r = 0 and having a scalar curvature singularity at some finite value of r, and geodesics containing throats connecting two patches of the world which again have scalar singularities at some finite values of the radius.

Because of these singularities, the construction of stable, traversable and asymptotically at worm holes using the phantom Chaplygin gas is prohibited, in spite of breaking the weak energy condition in this case.

Finally, we note that many of the solutions of the TOV equations studied above possess singularities arising at some finite values of the radial coordinate, while intuitively it is more habitual to think about singularities arising at the point characterized by the vanishing of this coordinate. Some other singularities are presented in the study of isotropic and homogeneous cosmological models, too.

Here in addition to the traditional Big-Bang and Big Crunch singularities, an intensive study of the singularities which take place at finite or at finite values of the cosmological scale factor is under way (see eg. [13]).

Acknowledgement

This work was partially supported by the Russian Foundation for Basic Research via grant RFBR 08-02-00923, by the Program of support of Leading Scientific Schools of the President of the Russian Federation via grant LSS-4899.008.2, and by the Scientific Program "Astronomy" of the Russian Academy of Sciences.