Solar neutrino limit on axions and keV-mass bosons

Paolo Gondolo¹ and Georg G. Raffelt²

¹Department of Physics, University of Utah, 115 S 1400 E # 201, Salt Lake City, UT 84102, USA
²Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 Munich, Germany
(Dated: 18 July 2008, revised 21 April 2009)

The all-avoir solar neutrino signal measured by the Sudbury Neutrino Observatory (SNO) constrains nonstandard energy losses to less than about 10% of the Sun’s photon luminosity, supersed- ing a helioseismic obliquity argument and providing new limits on the interaction strength of low-mass particles. For the axion-photon coupling strength we nd \( g_a < 7 \times 10^{-10} \text{ GeV}^{-1} \). We also derive explicit limits on the Yukawa coupling to electrons of pseudoscalar, scalar and vector bosons with keV-scale masses.

PACS numbers: 95.35.+d, 14.80.Mp, 26.65.+t, 96.60.Jg

I. INTRODUCTION

The interaction strength of new low-mass particles with photons, electrons or nucleons is severely constrained by the well-known requirement that stars not lose energy in excess of observational constraints [1,2,3]. Depending on the assumed particle mass and interaction structure, these constraints limit its typically derived from population statistics in globular clusters, the white dwarf luminosity function, and the duration of the SN 1987A neutrino signal. Such constraints usually imply that the solar particle emission is small compared to its photon luminosity, but it can still serve as a powerful source, e.g. for the ongoing solar axion searches [2,3,4,5].

Constraints based on the properties of the Sun remain a focus of interest, even if they are less restrictive than other astrophysical arguments, because they are more direct and thus perhaps more comparable to laboratory experiments. Moreover, some think the Sun is enough to test a given hypothesis. In this case it is nice to have a simple argument at hand that does not require more complicated astrophysical reasoning.

Previously the most sensitive diagnostic for the solar interior was the helioseismic sound-speed profile, providing restrictive energy-loss limits [3]. Of course, the underlying chain of argument is not simple and worse, a new detection of the solar elemental abundances [6] has created an unresolved tension between solar opacities and helioseismicology [7,8,9]. While the conservative limit it of Ref. [3] likely remains unchanged, it is nice that the measured solar neutrino flux provides such a check on more restrictive limits based on a simple particle argument.

The recently completed SNO measurements of the all-avoir solar neutrino flux [10,11,12] probe directly the physical conditions of the particle-emitting solar core. The steep temperature dependence of the \(^8B\) neutrino production rate gives a sensitive test of the Sun's interior that would be hotter if a lot of "invisible energy" were produced. The main purpose of our note is to update solar energy-loss constraints using the SNO results.

The inner solar temperature is around 1 keV, so these limits always apply to sub-keV mass particles, notably axions. Recently the hypothesis of keV-scale bosons as possible dark matter candidates has received some attention [13]. Moreover, some time ago it was proposed [1] that keV-mass pseudoscalars explain the annual modulation observed in the DAMA/LIBRA experiment [14]. Unfortunately, this intriguing interpretation was based on the incorrect axio-electric absorption rate of Refs. [15,16], the correct rate being much larger but nearly independent of velocity [14,16,17]. While an earlier version of our manuscript was largely motivated by this new-dimensional interpretation, an evaluation of the solar limit for keV-mass bosons may still prove useful in future.

We present the new solar energy-loss constraint in the context of axions and apply it explicitly to the axion-photon interaction strength. This result is of interest for solar axion searches. We also treat explicitly keV-mass bosons that couple to electrons. To this end we derive the +e!e+ Compton cross section, correcting several errors in the literature.

II. AXION-PHOTON INTERACTION

Axions are of particular interest because the Sun is used as a source for ongoing helioscope searches [2,3,4,5]. Axions are produced by the Primakow process \( + Z e \rightarrow Z^0 + a \), that is mediated by a virtual photon due to the axion’s two photon interaction \( L_a = \frac{i}{\hbar} a_F F^a \). In the laboratory, solar axions convert back into X-rays while traveling along a dipole magnet oriented toward the Sun. Form, at \( 0.2 \text{ eV} \), CAST [6] provides the most restrictive limit of \( g_{a_1} < 0.088 \) at 95% CL, where \( g_{a_1} = 10^{-10} \text{ GeV}^{-1} \). The stellar energy-loss limit from globular-cluster stars is comparable, but without a detailed budget of systematic uncertainties.

The axion luminosity \( L_a = g_{a_1}^2 \times 1.85 \times 10^3 \text{ L}_\odot \) represents a negligible perturbation of the Sun if \( g_{a_1} \) is below the CAST limit. However, for larger couplings the energy loss modifies the solar structure. To maintain the observed amount of energy emitted at the surface, mass energy density needs to be produced by nuclear burning. The latter is self-regulating, so the energy-producing re-
gions must heat up. The extra losses would have operated for the entire lifetime of the Sun so that one must evolve a zero-age model to its present age of \(4.5 \times 10^9\) years, at which point its must match the present-day radius and surface luminosity. One adjusts the unknown pre-solar helium abundance to achieve this.

Schlattl et al. (1998) have produced a series of such self-consistent present-day solar models for different levels of axion emission based on the Primakow effect [3]. They provide the required pre-solar helium abundance and show the present-day central helium abundance, density and temperature as well as the neutrino fluxes. In 1998 the question of neutrino axion oscillations was not yet settled. Therefore, Schlattl et al. used helioseismology to provide a conservative constraint \(L_0 < 0.20\) L, corresponding to \(g_0 < 10\).

The all-axor solar neutrino flux from the \(^8\)B reaction measured by the SNO experiment [12,13,14] is a more direct probe. For \(L_0 < 0.5\) L the self-consistent solar models of Schlattl et al. [3] provide with excellent accuracy

\[
\begin{align*}
\frac{a_{8}}{b_{8}} &= \frac{L + L_a}{L}^{4.16} ; \\
T_a^c &= T_c^0 \frac{L + L_a}{L}^{0.22} ;
\end{align*}
\]

where \(a_{8}/b_{8}\) is the \(^8\)B solar neutrino flux for a solar model with axion losses \(L_a\) whereas \(a_{8}/b_{8}\) is for the standard case, and \(T_a/c\) is for the central mass temperature.

These power laws follow from a simple scaling argument because we are in a regime where the axion flux is a small perturbation. The second equation shows that energy generation by hydrogen burning for solar conditions scales approximately with \(T^3\) and the \(^8\)B flux varies roughly as \(T^3\). The main advantage of Eq. (3) is that it uses the constraint of a self-consistent present-day solar model and that one has a direct connection between the Sun-averaged neutrino flux and axions.

The all-axor solar neutrino flux from the \(^8\)B reaction was measured by SNO. The pure D\(_2\)O phase provided a flux of \(5.59^{+0.43}_{-0.41}\) (stat) \(^{+0.03}_{-0.02}\) (sys) in units of \(10^6\) cm\(^{-2}\) s\(^{-1}\) [12]. The salt phase provided \(4.94^{+0.04}_{-0.02}\) (stat) \(^{+0.03}_{-0.02}\) (sys) [13]. Very recently, the \(^5\)He phase gave \(5.54^{+0.03}_{-0.02}\) (stat) \(^{+0.03}_{-0.02}\) (sys) [14]. The old solar models predicted 5.94 in the same units, whereas the new opacities lead to 4.72, each with a nominal error of 11% [11]. The main non-abundance contributions to this uncertainty are opacity (6.8%), dilution (4.2%) and the \(S_{1/2}\) factor for the \(p-\overline{\beta}\)B reaction (3.8%).

The measured results and predictions agree well within the stated errors, although the dominant uncertainty of the calculated fluxes evidently is from the assumed element abundances. It appears reasonably conservative to assume the true neutrino flux does not exceed the prediction by more than 50% so that

\[
L_0 < 0.20 L ;
\]

This nominal limit implies

\[
g_0 < 7 \times 10^{10} \text{GeV}^{-1} ;
\]

somewhat more restrictive than the helioseismicological limit. The Tokyo helioscope search provides a limit very similar to this result [3,5], whereas the CAST search is significantly more sensitive [3,6] and therefore self-consistent. An axion flux on the level of the CAST limit would not cause any other observable modification of the Sun or the solar neutrino flux.

The sensitivity of the helioscope technique quickly diminishes for \(m_a > 1\) eV. An alternative is Bragg conversion in the strong electric field within a crystal lattice. This approach extends to keV-scale masses because the spatial E-field oscillation in the crystal provides the required momentum difference. Constraints on \(g_0\) from such experiments [12,23,24,25,26] are however less restrictive than the solar limit of Eq. (3).

The most recent constraint from the CDM S experiment \(g_0 < 24 \times 10^{10} \text{GeV}^{-1}\) at 95% CL for \(m_a < 0.1\) keV [23].

### III. Boson-Electron Coupling

The exact energy-loss mechanism is irrelevant for the limit of Eq. (5) even though the spatial distribution of particle emission is what does depend on the temperature and density variation of the relevant emission process. So we may consider other reactions besides the axion Primakow process.

A case in point might be by the hypothesis of keV-scale dark matter [13] are bosons that interact with electrons through a Yukawa coupling \(g_{ee}\). Such particles are emitted from stars by bremsstrahlung e + e e + e + and the Compton process + e + e + e. For pseudoscalars, bremsstrahlung contributes about 75% of the total emission in the Sun, Compton about 25% [23]. However, the energy spectrum for bremsstrahlung is much softer than for Compton. For keV mass particles threshold effects are important, so it is enough to use the Compton process alone.

We have calculated the Compton cross sections for the pseudoscalar (PS), scalar (S), and vector (V) cases for a non-zero mass \(m_a\). The interaction is

\[
L_{ee} = g_{ee} \begin{pmatrix} 1 & \overline{\pi} \\ \pi & e \end{pmatrix} \begin{pmatrix} \overline{\pi} \\ S \end{pmatrix},
\]

(5)

G general expressions for the total Compton cross section are given in the Appendix, supersedes for PS an erroneous result in the literature [26]. For the application

1 In Ref. [26] the factors of 2 in the argument of the logarithm in Eq. (6) are missing. In an earlier version of our paper we
in the Sun we take the limit of nonrelativistic electrons with mass \( m_e \) (photon energy) and use the velocity of the outgoing boson \( \frac{E}{m} = \frac{1}{(m + 1)^2} \) to express the cross sections. For PS we find

\[
PS = \frac{q^2_{ee}}{2m_e^2} \left( \frac{4}{3} + \frac{4}{3} \right)
\]

(6)

in agreement with Ref. [13]. This is a superposition of a final-state s and d wave. For the other cases we find

\[
= \frac{q^2_{ee}}{2m_e^2} \left( 3 + \frac{4}{3} \right)
\]

(7)

For S this is a final-state p wave, for V a superposition of s and p. For a massless boson we have \( m = 1 \) and the V cross section is twice that of S, representing 2 interacting spin degrees of freedom. For the other extrem e! 3 our result reduces to a factor of 3 in interacting degrees of freedom relative to S. In Ref. [13] the V cross section was stated without the velocity factors.

We integrate the emission rate over a standard solar model [27] and find explicitly for \( m = 0 \)

\[
L_{\text{Compton}} = \frac{q^2_{ee}}{2m_e^2} \left( \frac{4}{3} + \frac{4}{3} \right) S, \quad V.
\]

(8)

With Eq. (8) this implies the constraints

\[
\begin{align*}
8 &< 1.25 \times 10^6 L \quad PS, \\
8 &< 1.72 \times 10^4 L \quad S, \\
8 &< 3.44 \times 10^4 L \quad V.
\end{align*}
\]

(9)

We show the dependence of these limits in Fig. 1.

IV. SUMMARY

The SNO mass dependence of the all-flavor solar neutrino ux produced by the very temperature-dependent pp reaction severely constrains anomalous solar energy losses. We have re-considered self-consistent solar models produced by Schall et al. [10] who included axion losses by the Primakoff effect. We have observed that the predicted solar neutrino ux is nicely reproduced by a simple and intuitive power law as a function of the assumed adiabatic loss. In this way the measured neutrino ux and the adiabatic energy loss are directly related in a simple form. The excellent agreement between the measured and predicted solar neutrino ux provides a restrictive limit on any new energy loss channel of the Sun. While constraints from other astrophysical arguments are usually more restrictive, the solar neutrino limit on new energy losses is complementary in that it is based on a direct diagnostic of the solar interior.

In particular, we have derived a new solar limit on the axion-photon interaction strength \( g_a \), superseding an often-cited helioseismic result. Only the CAST experiment is sensitive enough to detect solar axions obeying our new constraint Eq. (9).

For bosons coupling to electrons, our \( g_a \) extends to masses of a few keV even though the solar inner temperature is around 1 keV. This would have been of interest to constrain the DAMA annual modulation in terms of an \( keV\)-scale pseudoscalar dark matter particle. However, based on the corrected axio-electric absorption rate of Ref. [14] this interpretation is no longer viable. Instead, recent direct constraints on \( keV\)-scale pseudoscalar dark matter by CEGEN [24] and CDMS [23] are more restrictive than the solar limit.

IV. Acknowledgments

We acknowledge an illuminating correspondence with M. Popelev on the axio-electric effect and with J. Collar on the CEGEN results. P.G. acknowledges support from NSF grant PHY-0456825. G.R. acknowledges partial support by the Deutsche Forschungsgemeinschaft under Grant TR-27 "Neutrinos and Beyond," by The Cluster of Excellence "Origin and Structure of the Universe," and...
For future reference, we list here the complete expressions of the Compton cross sections for the production of massive pseudoscalar, scalar, and vector bosons. We use the notation of ref. [2], namely \( \rho_0 = (s^2 + m^2) = 2s^2 \), \( p = (p_x^2 + m^2)^{1/2} \), \( k_0 = (s + m^2) = 2s^2 \), and \( k = p_s \). We nd

\[
\begin{align*}
A(s) + B(s) &= \frac{m^2 + m^2}{8s} \log \frac{2p_0 k_0 + 2p_0 k}{2p_0 k_0 + 2p_0 k} + \frac{m^2}{8s} \\
A(s) &= \frac{3}{8} + \frac{m^2}{s} \left( \frac{8m^2}{s} + \frac{8m^2}{s} \right) S, \\
B(s) &= \frac{3}{8} + \frac{m^2}{s} \left( \frac{8m^2}{s} + \frac{8m^2}{s} \right) S, \\
V &= \frac{3}{8} + \frac{m^2}{s} \left( \frac{8m^2}{s} + \frac{8m^2}{s} \right) S.
\end{align*}
\]

(A.1)

and

\[
\begin{align*}
\text{For } m = 0 \text{ and } g^2_{ee} = 4, \text{ the } V \text{ cross section reduces to the usual Compton cross section for } + e! + e + .
\end{align*}
\]


[18] Z. Ahmed et al. [CDMS Collaboration], \"Search for axions with the CDMS experiment,\" [arXiv:0802.4693].

