The final mass and spin of black hole mergers

Wolfgang Tichy and Pedro Marronetti
Department of Physics, Florida Atlantic University, Boca Raton, FL 33431, USA

We consider black holes resulting from binary black hole mergers. By fitting to numerical results we construct analytic formulas that predict the final mass and spin of the final black hole. Our formulas are valid for arbitrary initial spins and mass ratios and agree well with available numerical simulations. We use our spin formulas in the context of two companion mergers for supermassive galactic black holes. We consider the case of isotropically distributed initial spin orientations (when no surrounding mass is present) and also the case when mass closely aligns the spins with the orbital angular momentum on emission. The spin and angular momentum of black holes resulting from successive generations of mergers (with symmetric mass ratios) have a mean of 0.73 ± 0.28 in the isotropic case and 0.94 for the closely aligned case.

PACS numbers: 04.25.D-, 04.25.Dg, 04.70.-s, 97.60.Lf, 98.62.Js, 98.65.Fz

Introduction. Barring the influence of surrounding matter or third objects, two gravitationally bound black holes (BHs) (with masses M_a, M_b and spins S_a, S_b) will orbit around their common center of mass at equal orbital radii and eventually shrink the orbits until the BHs merge and form a BH of mass M_f and spin S_f. Thus, the initial state is described by eight parameters: the mass ratio $q = M_b/M_a$, the dimensionless spins $s = S_a/M_f^2, b = S_b/M_f^2$ of the initial BHs and the dimensionless angular velocity $\lambda = (M_a + M_b)$. Here, λ speciﬁes which point on the possibly very long inspiral trajectory is used as initial point. After the merger the final BH is characterized by seven parameters, the final mass $m = M_f = (M_a + M_b)$, the spin $s = S_f/M_f^2$ and the kick velocity v_f. Predicting the final mass and spin from the initial parameters is of great importance in many astrophysical mergers. Boyle, Kesden and Nisanke [1,2] propose to describe any of the initial parameters as a Taylor expansion in the six initial spin components. These spin expansions (with coefficients a_i, b_i) are based on the assumption that any dimensionless quantity must be a function of the eight initial parameters. In this paper we use their expansions for the final mass and spin. Note, however, that all expansion coefficients depend on q and λ, and we Taylor expand only in a_i, b_i, etc., if we know the coefficients for a particular mass ratio and a particular initial angular velocity we cannot predict any parameter for different mass ratios or initial velocities. At first glance this seems to severely limit the usefulness of these expansions. However, as we will see, we have come up with a particular parameterization of the q-dependence, which seems to work rather well. Also, we will show that the final spin magnitude depends only weakly on q. The orientation of the final spin, however, does depend on q as one would expect due to spin precession of the individual BH spins if one starts at a different initial q. Nevertheless, our approach can even approximate spin orientations if we start with values for q like the one used here, which are typical for the current state-of-the-art simulations performed by most groups.

We use our spin formulas to calculate the probability density of the final spin for successive generations of BH mergers. We consider "gas-rich" or "wet" mergers, where a circum-binary disk surrounds the binary, and also "gas-poor" or "dry" mergers, where no matter is present [3,4].

Spin expansions. Our coordinate system is such that the z axis is perpendicular to the initial orbital plane. The center of mass is initially at rest at the origin, with the x axis along the direction of the common emission of BH b. The y axis is along the line connecting the BHs with BH b located at $y > 0$.

To construct formulas aimed at predicting the final BH mass and spin, we follow the method described in [2]. To linear order, the spin expansions for the final mass and spin are:

$$m = m_0 + (m^{a1}a + m^{b1}b)$$

$$s_x = (s_x^{a1}a + s_x^{b1}b) + (s_x^{a2}a^2 + s_x^{b2}b^2)$$

$$s_y = (s_y^{a1}a + s_y^{b1}b) + (s_y^{a2}a^2 + s_y^{b2}b^2)$$

$$s_z = s_z^{a1}a + s_z^{b1}b;$$

(1)

where the coefficients are functions of the mass ratio q and the initial orbital angular velocity λ. Notice that by using symmetries such as parity or exchange m any terms that would appear in an unconstrained Taylor expansion have been dropped. In addition, all coefficients enclosed in parentheses are related by $m^{b1}(q;!) = m^{a1}(\lambda=q;!)$ and $s_x^{b1}(q;!) = s_x^{a1}(\lambda=q;!)$.

We ignore the dependence on q for the time being and focus on the equal mass case. Note that for $q = 1$ the above mentioned relation between equal mass binary and $s_z^{a1}(\lambda=1;!) = s_z^{b1}(\lambda=1;!)$.

We perform the dependence on q for the time being and focus on the equal mass case. Note that for $q = 1$ the above mentioned relation between equal mass binary and $s_z^{a1}(\lambda=1;!) = s_z^{b1}(\lambda=1;!)$. We perform 10 numerical simulations of equal mass binaries with spins of magnitudes between 0.1 and 0.27 with orientations as in Table X of [2]. All 10 simulations
m^0 = 0.9515, m^1 = m^b = 0.013, m = 0.007
\[s^a_0 = s^b_0 = 0.877, s^a_0 = s^b_0 = 0.282 \]
\[s^a_0 = s^b_0 = 0.282, s^a_0 = s^b_0 = 0.004 \]

\[s^a_0 = 0.868, s^b_0 = 0.15, 0.03 \]

TABLE I: Equal mass coefficients up to linear order.

<table>
<thead>
<tr>
<th>q</th>
<th>a_0</th>
<th>a_1</th>
<th>b_0</th>
<th>b_1</th>
<th>s</th>
<th>m</th>
<th>m_p</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.750</td>
<td>.000</td>
<td>-.015</td>
<td>.750</td>
<td>.000</td>
<td>-.015</td>
<td>.772</td>
</tr>
<tr>
<td>1</td>
<td>.739</td>
<td>-.128</td>
<td>.000</td>
<td>.095</td>
<td>-.680</td>
<td>.303</td>
<td>.777</td>
</tr>
<tr>
<td>1</td>
<td>-.721</td>
<td>.061</td>
<td>.199</td>
<td>-.280</td>
<td>-.159</td>
<td>-.677</td>
<td>.622</td>
</tr>
<tr>
<td>1</td>
<td>-.146</td>
<td>-.704</td>
<td>-.215</td>
<td>-.413</td>
<td>-.333</td>
<td>-.530</td>
<td>.778</td>
</tr>
<tr>
<td>1</td>
<td>-.639</td>
<td>-.227</td>
<td>.321</td>
<td>-.517</td>
<td>-.543</td>
<td>.020</td>
<td>.795</td>
</tr>
<tr>
<td>1</td>
<td>-.413</td>
<td>-.340</td>
<td>-.511</td>
<td>.187</td>
<td>-.388</td>
<td>-.426</td>
<td>.542</td>
</tr>
<tr>
<td>1</td>
<td>-.443</td>
<td>-.323</td>
<td>.512</td>
<td>.390</td>
<td>-.324</td>
<td>-.553</td>
<td>.849</td>
</tr>
<tr>
<td>1</td>
<td>.136</td>
<td>.405</td>
<td>-.616</td>
<td>.062</td>
<td>-.704</td>
<td>.244</td>
<td>.635</td>
</tr>
<tr>
<td>1</td>
<td>.010</td>
<td>.187</td>
<td>.726</td>
<td>.174</td>
<td>-.489</td>
<td>.542</td>
<td>.867</td>
</tr>
<tr>
<td>1</td>
<td>.006</td>
<td>.054</td>
<td>-.748</td>
<td>.398</td>
<td>-.635</td>
<td>-.026</td>
<td>.587</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.682</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.684</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.150</td>
<td>-.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.683</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.683</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.682</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.673</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.673</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.150</td>
<td>-.100</td>
<td>.000</td>
<td>.000</td>
<td>.100</td>
<td>.696</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.683</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.685</td>
</tr>
<tr>
<td>56</td>
<td>.000</td>
<td>.000</td>
<td>.100</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.712</td>
</tr>
<tr>
<td>58</td>
<td>.091</td>
<td>.268</td>
<td>.412</td>
<td>.043</td>
<td>-.375</td>
<td>.132</td>
<td>.565</td>
</tr>
<tr>
<td>58</td>
<td>.287</td>
<td>.225</td>
<td>.342</td>
<td>.100</td>
<td>-.315</td>
<td>.226</td>
<td>.556</td>
</tr>
<tr>
<td>23</td>
<td>-.384</td>
<td>-.033</td>
<td>.106</td>
<td>-.112</td>
<td>-.064</td>
<td>-.271</td>
<td>.676</td>
</tr>
<tr>
<td>23</td>
<td>-.339</td>
<td>-.120</td>
<td>.174</td>
<td>-.207</td>
<td>-.217</td>
<td>.011</td>
<td>.724</td>
</tr>
<tr>
<td>23</td>
<td>-.230</td>
<td>.180</td>
<td>-.273</td>
<td>.075</td>
<td>-.236</td>
<td>-.169</td>
<td>.587</td>
</tr>
<tr>
<td>23</td>
<td>.073</td>
<td>.214</td>
<td>-.330</td>
<td>.033</td>
<td>-.281</td>
<td>.099</td>
<td>.596</td>
</tr>
</tbody>
</table>

TABLE II: Test simulations: the columns show the initial mass ratio q, the progenitor spins a_0, b_0, and the final spin mass m and m_p, and our predictions s_q and m_p.

Formal dependence:

\[
S_x = R \left[a x \right]^{0 M \frac{1}{2}} + \frac{q^2 b}{(1 + q^2)}
\]

\[
S_y = R \left[b y \right]^{0 M \frac{1}{2}} + \frac{q^2 a}{(1 + q^2)}
\]

(4)

Remarks:

- **Formal dependence:**

\[
S_x = S^a_0 + S^b_0 + S^{c1}_0 + S^{c2}_0 + S^{c3}_0 + S^{c4}_0 + S^{c5}_0 + S^{c6}_0
\]

(3)

\[
S_y = S^a_0 + S^b_0 + S^{c1}_0 + S^{c2}_0 + S^{c3}_0 + S^{c4}_0 + S^{c5}_0 + S^{c6}_0
\]

(5)

This means that the final spin components in the xy-plane are given by rotating and scaling the initial spins. The scale factor is 0.685 and the rotation matrix is R. This result is physically reasonable, because we know that the initial spins will process and also radiate as a result of angular momentum transfer. If, Eq. (2) also hold for unequal masses, it would imply a certain form for the mass ratio dependence:

\[
S_y = S^a_0 + S^b_0 + S^{c1}_0 + S^{c2}_0 + S^{c3}_0 + S^{c4}_0 + S^{c5}_0 + S^{c6}_0
\]

(6)

\[
S_y = S^a_0 + S^b_0 + S^{c1}_0 + S^{c2}_0 + S^{c3}_0 + S^{c4}_0 + S^{c5}_0 + S^{c6}_0
\]

(5)

where

\[
q = \frac{q}{(1 + q^2)}
\]

(6)

are chosen such that s = a for q = 0 and s = b for q = 1.

So far we have only considered the component axes in the xy-plane. For equal masses, we have shown that s, in Eq. (5), is only valid when a = b. A s above we introduce a q-dependence given...
by
\[s_2 = s^{(0)}_2(4w + 16(1 - w)^2) + s^{(1)}_2 [g(q; c_1) a_s + g(l = q; c_3) b_s]; \]
where \(c_1 = \frac{p}{s^{(0)}_2} = 1 \) and \(s^{(1)}_2 = 0.632. \) The dependence of the leading coefficient is inspired by post-Newtonian (PN) expressions, and has been shown to work without initial spins very well. The constant \(w = 1.26 \) is used when using the results for unequal mass discussed below.

Similarly, we build a mass ratio dependence into the nambu form ula and write
\[m = 1 + (m^0 14) + m^1 16 \cdot 2 (a_s + b_s); \]

The leading term is inspired by the fact that the binding energy is proportional to \(m \), and the linear term is chosen such that it has the correct limit in the extreme mass ratio case.

While the \(q \) dependence we have introduced so far reproduces our results for the equal mass case and simulates the correct answers in the extreme mass ratio cases, it is not clear how well our form ula perfoms for intermediate mass ratios. For this reason we have performed 21 more simulations with \(q \) different from unity. As one can see from Table the predictions are at most 0.4% from the numerical results.

So far we have only kept linear terms in our expansions. We need that our formulas agree with a wide range of test runs. Yet, for initial spin magnitudes close to 1, our formulas deviate from the extrapolated values for them in the mass and maximum possible nambu.

These problems can be addressed if we add some quadratic terms to \(s_2 \) above:
\[s_2 = s^{(0)}_2(4w + 16(1 - w)^2) + s^{(1)}_2 [g(q; c_1) a_s + g(l = q; c_3) b_s] + 16 k^2 (a_s + b_s)^2 + (a_s + b_s)^2 (a_s + b_s)^2 \]

These quadratic terms approximate reproduce mass of the very small and very uncertain quadratic coefficients in \(s_2 \). The coefficient \(k = 0.008 \) is chosen such that we get the best overall agreement with our numerical simulations.

Results. Our particular mapping of initial mass and spins into the nambu mass and spin given by Eqs. (0), (1), (2) and (3) was tested for the initial orbital angular velocity \(\Omega = 0.05 \). If we start with the same initial spin components but at lower initial angular velocity (i.e. larger separation) the individual spins and the orbital plane will have precessed by the time we reach \(\Omega = 0.05 \). In this case we cannot expect that our formulas will predict the nambu spin components if we simply use the initial spin components. However, the nambu spin magnitude should still be approximatively correct, since PN calculations demonstrate that the spin magnitudes are conserved at 2PN order. This expectation is borne out for the following additional \(q = 1 \) test run. It starts with \(\Omega = 0.03 \), and yields a nambu spin \(s = (0.637; 0.526; 0.325) \) and magnitude \(s = 0.793 \). Our fitting formula predicts
\[s = (0.194; 0.176; 0.753) \] with magnitude \(s = 0.797 \). This shows that the predicted magnitude is correct up to an error of 0.6%, while the component only agree if the predicted vector is rotated. This rotation comes from the precession during the time it takes to go from \(\Omega = 0.03 \) to \(\Omega = 0.05 \), during which the system com plates about 4 orbits.

We have also compared with the numerical results published in [11,12,13,14,15,16,17,18,19,20], which all start from the same initial orbit and use our formulas. These results are at most 0.4% from the numerical results. One of their assumptions is that the components of the nambu spin in the initial orbital plane are obtained by summing the components of the initial spins i.e., \(S_i \) = \(S_1 + S_2 \). In our simulations we observe that this assumption is violated. From the discussion around Eqs. (2) and (3) it is clear that these components get slightly rotated and shortened by a factor of 0.85 during the merger. For instance, the run from the first line in Table (1) gives a value of \(s_{xy} = 0.291 \) for the in-plane component of the spin. Our formula (3) predicts a close value of \(s_{xy} = 0.284 \), the approach in [13] leads to \(s_{xy} = 0.375 \) which is about 30% larger, while both approaches predict almost the same spin magnitude. Thus our formula in prove the nambu spin orientation.

Black hole mergers. Using Eqs. (3), (4) and (5) we can study the properties of the spin of BHs produced by successive binary BH mergers. Two types of scenarios are likely to be of interest: one in which the two BHs carry with them dense surrounding matter (wet mergers) and another where the progenitors met in relatively empty space (dry mergers). In the former case the progenitors spins are likely to reach the merger aligned with the orbital angular momentum, while in the latter the spin are bound to be isotropically oriented. In our models we assume that the initial spin directions either have a uniform probability distribution (dry mergers) or that the longitudinal angle obeys a normal distribution centered in the direction of the or-
The main difference is in the spin orientation which has been integrated out.

Discussion. By fitting to numerical results we construct formulas (Eqs. [9], [10], [11]) that predict the mass and spin of the final BH coming from binary BH mergers. We use them to determine the probability distribution of the final spin magnitude (Figs. 1, 2) after several generations of mergers of either "dry" or "wet" mergers.

It is a pleasure to thank B. Bruegmann, L. Rezzolla, E. Barausse, L. Boyle and M. Kenedi for useful discussions. This work was supported by NSF grant PHY-0652874. We acknowledge TACC at UT Austin for providing HPC resources under allocations TG-PHY08022N and TG-MCA08X010.

[23] We use a standard deviation of ± 20, but almost identical results are obtained for ± 40 ± 5.

FIG. 1: Probability density for different mass ratios of the final BH spin magnitude after 4 generations of "dry" mergers (top) and "wet" mergers (bottom).

FIG. 2: Mean value of the final spin magnitude as a function of the symmetric mass ratio . The vertical bars are the corresponding standard deviations.