Com ply em entarity of Future Dark Energy Probes

Jiayu Tang, Filipe B. Abdalla and Jochen Weller

Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK.

Accepted ???, Received ???, in original form 21 April 2013

Abstract

In recent years a plethora of future surveys have been suggested to constrain the nature of dark energy. In this paper we adopt a binning approach to the equation of state factor w^e and discuss how future weak lensing, galaxy cluster counts, Supernovae and baryon acoustic oscillation surveys constrain the equation of state at different redshifts. We analyse a few representative future surveys, namely DES, PS1, WFMOS, PS4, EUCLID, SNAP and SKA, and perform a principal component analysis for the w^e bins. We also employ a prior from Planck cosmic microwave background measurements on the remaining cosmological parameters. We study at which redshifts a particular survey constrains the equation of state best and how many principal components are significantly determined. We then point out which surveys would be significantly complementary. We conclude that weak lensing surveys, like EUCLID, would constrain the equation of state best and would be able to constrain the order of three significant modes. Baryon acoustic oscillation surveys on the other hand provide a unique opportunity to probe the equation of state at relatively high redshifts.

Key words: cosmology observations | cosmology theory | dark energy

1 Introduction

One of the most challenging puzzles in modern physics is the cause for the observed accelerated expansion of the Universe. The renewed interest in accelerating cosmologies was born out of Type Ia Supernovae observations a decade ago (Perlmutter et al. 1997; Riess et al. 1998; Perlmutter et al. 1999).

The simplest way to model an accelerated expansion in the Universe is by including a cosmological constant in Einstein’s equations of gravity. However, the introduction of a cosmological constant requires an extreme fine tuning of the initial conditions of the Universe to about 120 orders of magnitude. This motivates the search for alternative explanations for the speeding up of the expansion rate, although there have been recent successes in obtaining universes with the observed cosmological constant in a range of the multiverse of the meta-stable vacua of the string theory landscape (Kachru et al. 2003). This, in connection with the anthropic principle (Weinberg 1987; Efstathiou 1995; Bousso 2006; Peacock 2007; Cline et al. 2007), could motivate the observed value of the cosmological constant. Nevertheless, it is still valid to seek other alternatives to a cosmological constant. One approach is to introduce a dynamical scalar field, usually dubbed Quintessence, which is either slowly rolling down a potential or is trapped in a false vacuum state (Weinberg 1987; Efstathiou 1995; Bousso 2006; Peacock 2007; Cline et al. 2007).

These models can lead to cosmic acceleration with less fine tuning. Another possibility was that the Universe is permeated by a network of cosmic defects, which also acts like a source in the energy-momentum tensor and can lead to accelerated expansion (Battey et al. 1999; Battey & Moss 2005). The dynamical evolution of the Universe in Quintessence or defect based models is governed by the equation of state of the dominant components. The equation of state is given by the ratio of the pressure to the density of these fields. For a cosmological constant this is $w = -1$. However, dynamical dark energy models can deviate from this value and the ratio can also vary with time. Typically the ratio is named $\omega = \rho_m / \rho_\Lambda$. The precise measurement of the value of ω is hence one of the foremost tasks for observational cosmology. Any significant measurement of a deviation of ω from -1 would be a major result. Currently conservative constraints on ω are in...
the region of \(w = -1 \) \cite{Tegmark2004;Aster2006}.

Up to now, it has been difficult to make any connection between suggested quintessence models and find data for them. Another possibility to obtain accelerated expansion is the cold dark matter (CDM) Universe consisting of a cosmological constant and dark matter. The background evolution for all these models can be obtained by a suitable choice of the components of the energy-momentum tensor. Hence the question for \(w \) goes beyond its usual application to quintessence models, although they are the only models where there is actually a physical meaning associated with \(w \). It is therefore an interesting question to ask if \(w \) is different from \(-1\) the value for a cosmological constant. The main attempt to address this question is to look for different constant values of \(w \). However, this approach is very restrictive given that dark energy models allow for evolving equation of state factors \(w \) \cite{Weller2001;Aubert2002;Aubert2004}. Hence it is important to allow for a time varying equation of state parameter \(w \). A simple Taylor expansion in redshift \(z \) is too restrictive if we want to include data sets which are sensitive to high redshifts, like the CMB. A more successful approach is to parametrize a time varying equation of state with a Taylor expansion in the scale factor, like \(w = w_0 + w_a (1/a) \) \cite{Chevallier2001;Linder2003}. This was also the same at some point of et al. (2005). The DETF chose this parametric form because it is able to be combined with different proposed surveys on an equal footing. In addition, this parametric form allows one to extend the distinction of two subclasses of quintessence model, namely freezing and thawing out models \cite{Linder2006}.

In this paper, we want to pursue a more general approach. In order to get out the redshift sensitivity to the dark energy density, or better its time derivative, we will bin the equation of state in redshift \cite{Huterer2003;Crittenden2003;Huterer2003;Aubert2007;Aubert2007;Aubert2007;Sullivan2007}. A rough approach, there are some ambiguities how to exactly perform the binning \cite{dePutter2007}, the binning approach is in general the most model independent approach to the for the background evolution of the Universe. Note that this approach is inherently related to the weighting function method \cite{Deep2003;Simmon2006} in the limit of an infinite number of bins.

We are now faced with the difficult task of selecting surveys to pursue our analysis. We emphasize that our selection is subjective and our aim is that we have at least one representative survey for each of the probes we are discussing.

In this introduction we will mention briefly the surveys and what their technical specification is expected to be, while we describe how they exploit particular cosmological probes in the sections where we discuss constraint from the different probes.

We start with Stage II surveys according to the classification by the DETF \cite{Aubert2006;Aubert2006}. A key online in its simplest connotation is the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS). Pan-STARRS in its full conformation will consist of four 1.8 m telescopes, equipped with a wide field camera with a field of view of 7 arc minutes and a total of 1.6 Gigapixels. Currently only one of the four planned telescopes is deployed. We refer to this setup as Pan-STARRS1 (PS1) in contrast to the full setup Pan-STARRS4 (PS4). The Pan-STARRS survey is planned to take exposures of 60 seconds in each of the gri, r, i, z, filters in the PS1 conformation and should go much deeper in the PS4 conformation with gri, r, i, z, filters. One of the surveys with PS1 will be a nearly all sky, 20,000 deg2, survey up to an average redshift of 0.5. The nearly all sky survey is hoped to be exploited for large scale structure and BAOs \cite{Peebles1970;Hu1998;Blake2003} experiments as well as weak gravitational lensing observations. The medium deep survey will be suitable for cosmological constraints with Type Ia SNe out to redshifts of 1.5. PS1 in the DETF category is a Stage II survey, while PS4 is Stage III.

Another survey already deployed, which is relevant to dark energy science, is the South Pole Telescope (SPT) \cite{Ruhl2004}. The SPT is a 10 m telescope with a bolometric array in its focal plane, designed to detect thousands of clusters of galaxies via their Sunyaev-Zeldovich \cite{Sunyaev1972} decrement in the sub-mm/mm domain over 4500 deg2. Current plans are to operate at 150, 219 and 274 GHz. This survey in addition with a redshift survey will allow to constrain dark energy with the clustering and redshift distribution of galaxy clusters.

We describe now near-future surveys, which are currently not deployed. The Dark Energy Survey (DES) \cite{DES2005} is an optical/near infrared survey under construction. The optical part will go down to 24th magnitude in the gri, r, i, z, bands on the 4 m telescope and the 1.8 m telescope at Cerro Tololo Inter-American Observatory (CTIO). The infrared counterpart will come from part of the VISTA Hemisphere Survey (VHS) survey performed by ESA's 4m VISTA and Infrared Survey Telescope for astrometry (VISTA) in the JHK bands to 20th magnitude. The DES camera can have a 2.2 deg2 field of view, which allows to

1. see at: pan-starrs.ifa.hawaii.edu
obtain in aging and photon metric information of millions of galaxies. It is planned to observe 5000 deg^2, which overlap with the area of the SPT survey. This will allow to constrain dark energy via weak lensing tomography, galaxy clustering and galaxy cluster redshift distribution. In addition there is a wide-area survey where 10% of the allocated time will be used to follow Type Ia SN events light-curves.

The Wide Field multiObject Spectrograph (WFMOS) (Gazebrook et al. 2005) will consist of a new wide-field (1.5 deg) 4000 bers spectrograph with a passband of 0.39-1.0 microns which would be deployed in a 5m class telescope. Current suggestions are that there will be 10 kw dispersion spectrographs with R = 1800 in the blue and R = 3500 in the red. This will enable the measurement of BAOs in 0.5 < z < 1.3 and 2.3 < z < 3.3 using the redshifts of millions of galaxies over 200 deg^2 at low z and 500 deg^2 at high z.

W e will now introduce two proposed satellite missions, which might come online in the long term. Both NASA and ESA in their "Beyond Einstein" and "Cosmic Vision" studies have proposed to pursue missions which are able to probe dark energy. One of the contenders for NASA is the SuperNova Acceleration Probe (SNAP) (SNAP Collaboration 2005; Ajert et al. 2005). SNAP is a 2 m telescope in space with a 0.7 square-degree wide field in ager and a R = 100 spectrograph. Both are sensitive in the 0.4-1.7 m wave-band. SNAP is designed to probe dark energy with a SuperNova and weak lensing survey, where the weak lensing takes advantage of the 1 Mers with a depth of 26.6A m magnitude. We will discuss the particulars of the two surveys in the relevant sections later in the paper. The EUCLID survey is a combination of the former SPACE (Cimatti et al. 2008) and DUNE proposals. The Dark Universe Explorer (DUNE) (Reffert et al. 2006) is a proposed wide field space in ager on a 1.2 m telescope with a 1 deg^2 visible/near-IR field of view. It is designed to measure cosmic lensing over 20,000 deg^2 of the sky and will exploit this as its main cosmological probe. DUNE is designed to use one broad visible band (R + I + Z) for accurate shape measurement for weak lensing and Y, β, J in the near infrared to complement optical photometry which should be available by 2017 for accurate photon metric redshifts in the range 0 < z < 2.

The Square Kilometer Array (SKA) is a radio interferometer that is planned to operate in a large range of frequencies (60 MHz - 350 MHz) with a sensitivity of 20,000 m^2-K in the range 0.5-1.4 GHz with an e/1 of view of 200 deg^2 at 500 MHz (Carilli & Rawlings 2004). This interferometer will allow to locate galaxies in the Universe given their 21cm line emission and would allow us to perform large surveys for galaxy evolution and Cosmology (Rawlings et al. 2004; Blake et al. 2004; Abdalla & Rawlings 2005, 2007, Abdalla et al. in preparation). The project is planned to be an on-going project which should build up from 1% demonstrators in the following years to a 10-15% core in 510 year time to its full completion in 2020.

This concludes our preview of the surveys being discussed in this paper. However we will exploit one more core survey, not for its ability to constrain dark energy, rather for its ability to constrain other cosmological parameters to high precision. The forthcoming Planck satellite mission will observe the sky in 9 radio wave bands in order to measure the anisotropies to in the CMB (ESA-SC (2005)) (2005). Given that the primordial anisotropies are mainly a probe of the angular diameter distance to the surface of last scattering, Planck alone is not a strong probe of dark energy, however it puts strong constraints on other cosmological parameters (ESA-SC (2005)) (2005). We will hence use forecasts for the Planck surveyor to put prior constraints on the renaming cosmological parameters.

We start the paper by discussing the method of principal component analysis (PCA) in the context of the binning of the equation of state in Section 2. In Section 3 we discuss constraints arising from the Planck survey and introduce the covariance matrix we will use in the later sections of the paper. In Section 4 we study the principal components of Type Ia Supernovae as cosmic probes. In this section we will also analyse the impact of marginalization of the renaming cosmological parameter. In Section 5 we will study the PCA in the context of cosmic lensing. Section 6 will analyse cluster counts as cosmic probes. In the Section 7 we will examine the ability of BAOs to constrain dark energy. Before concluding in Section 10 we discuss how to perform a joint principal component analysis between com plentary surveys.

2 PRINCIPAL COMPONENTS OF THE EQUATION OF STATE

We will now introduce the method we use to constrain the equation of state of dark energy. As outlined in the introduction we will pursue a binning approach to the equation of state. Binning in this context was first introduced by Huterer & Starkman (2003), but has since been studied by many authors (Crittenden & Pogosian 2005; Huterer & Peiris 2007; Abrecht & Bernstein 2007; Sullivan et al. 2007; de Putter & Linder 2007). There are different possibilities to bin the equation of state, but the one we follow here is given by

\[w(z) = \begin{cases} w_i & z_i \leq z < z_{i+1} \\ w_h & z \geq z_{ih} \end{cases} \]

where \(w_i \) is value of the equation of state of dark energy in a given redshift bin \(z_i \leq z < z_{i+1} \). Note that beyond a maximum \(z_{ih} \) we assume a constant equation of state \(w_h \). Although the binning of \(w \) in redshift leads to a quasi model-independent tting procedure, the increased number of parameters in general lead to a better \(t \) but with the drawback of greatly increased error bars. Typically we will choose the redshift bins in the region of \(z_i \approx 0.05 \), hence obtaining tens of new parameters for a given survey. Cosmic ray comments tell us that this large number of parameters do not lead to significant proven fact in general. However, just increasing the bin width or cutting of all surveys at a given redshift does not do justice all surveys we are going to discuss. This is because in general the error bars between different bins are highly correlated. What we want is to extract information described in a correlated way. This can be achieved by diagonalizing the correlation matrix of the \(w \) bins and then expressing the \(t \) in terms of the eigenmodes. This is essentially a Principal Component Analysis.
Hubbels constant H_0, the spectral index n_s of primordial perturbations and the amplitude of the primordial power spectrum A. Note that we restrict our analysis to the cosmic parameters. In addition, as we shall see later, each experiment has also a few nuisance parameters. We introduce the parameter vector

$$\mathbf{f} = (z_1, \ldots, z_N, \ldots)$$

where we assume N bins in redshift to w. In order to obtain the correlation matrix for a given survey we need to know the likelihood of the data vector x given the parameters $p(x; \mathbf{f})$. From this we can estimate the correlation matrix with the help of the Fisher information matrix

$$F_{ij}^{\text{obs}} = \left(\frac{\partial^2 \mathcal{L}}{\partial f_i \partial f_j} \right)_{\text{obs}}$$

with $L = \ln p(x; \mathbf{f})$. We will show how to calculate the Fisher matrix for the particular surveys in the corresponding sections.

In order to study the ability of a given survey to constrain dark energy in different redshift bins we must have to marginalize over the other cosmological parameter vectors and the nuisance terms. This usually involves the addition of prior information on the other cosmological parameters. For the work presented here, this means in general to add a prior from the forthcoming Planck CMB survey and this prior will be discussed in the next section. This means we just have to multiply the likelihood with the prior to obtain the posterior, or in terms of the Fisher information matrix

$$F = F^{\text{prior}} + F^{\text{obs}}$$

The remaining procedure is to integrate the posterior over the nuisance parameter vectors and the cosmic parameter vectors not involving the equation of state. In terms of the Fisher matrix approximation this can be achieved by inverting F, projecting this inverse to the space involving the equation of state parameter vectors w_i, and inverting again, i.e.

$$F^{-1} F^{\text{prior}} + F^{\text{obs}} F^{-1} = \sum_{i=1}^N w_i^2 e_i(z)^2$$

where the index i,j runs over the indices of the corresponding w_i parameter vectors.

The matrix F is the estimator of the correlation matrix we want to determine. We are hence calculating the eigenvalues λ_i and the eigenvectors $e_i(z)$, where the vector has the dimension of the number of bins N. In the basis of the eigenvectors $e_i(z)$ the Fisher matrix is diagonal and hence de-correlated. The eigenvectors represent the principal components of the corresponding survey. We can now write the underlying $w(z)$ in terms of the eigenvectors

$$w(z) = \sum_{i=1}^N \lambda_i e_i(z)^2$$

The error bars on the e_i coefficients are then given in terms of the eigenvalues λ_i. Hence the error on w is given by

$$w(z)^2 = \sum_{i=1}^N \lambda_i e_i(z)^2$$

where $e_i(z)^2 = (e_{i1}^2, e_{i2}^2, \ldots, e_{iN}^2)$ is a vector.

Since we now have a hierarchy of m modes, with increasing error bars, we can in fact use a criteria similar to the prior to decide which m modes are constrained significantly by the experiment. Huterer & Starkman (2003) used a risk factor to decide this. This includes the increasing variance with the number of m modes, but also a decreasing bias factor. In a modern Bayesian approach this problem can be addressed with the Bayesian information criterion or evidence (Saini et al. 2004; Liddle 2004). We will now move back to this in the discussion section of the paper. In the meantime we will concentrate on studying the structure of the eigenmodes and their associated eigenvalues. While A. Der-Sm wanna (2007) concentrated on the area of the posterior probability for a given number of m modes to assign a genuine merit to an experiment, we will in addition study the redshift dependence of the eigenvectors. This will allow to shed light on the redshift sensitivity of a given survey. In order to study this dependence and accuracy we will plot in the forthcoming sections the quantity

$$i(z) = \frac{\sum_{i=1}^N \lambda_i e_i(z)}{\sqrt{\sum_{i=1}^N \lambda_i e_i(z)^2}}$$

where the amplitude of this expression is representative to the accuracy of the mode and $i(z)$ is encoding the redshift sensitivity. Note that the prefactor N appears in Eqn. (8) in order to make this quantity quasi-independent of the number of bins.

We will now proceed to forecast the parameter constraints from the Planck survey, which we subsequently will use as prior information for the other surveys.
provide enough information so that foregrounds can be removed over as much as 80% of the sky in order to perform cosmological analysis over this area. We assume only one science frequency is used after foreground cleaning, e.g. the 143 GHz channel.

Usually one can use all the information including low multipoles to determine cosmological parameters from the CMB. However, in this paper we are concentrating on the role of the dark energy equations of state. In order to treat low CMB multipoles correctly one requires to calculate the integrated Sachs-Wolfe (ISW) effect. For a consistent treatment of the ISW it is necessary to include dark energy perturbations (Weller & Lewis 2003). There is a singularity in the perturbation equations (not necessarily essential), when the equation of state crosses the line $w = 1$ (Hu 2005; Caldwell & Doran 2005), which of course for arbitrary bins can happen. In addition there arises a problem for the binning approach in context of the ISW. Since the perturbations in the dark energy component depend on the time derivative of the equation of state, any step binning in w involves singular derivatives (Weller & Lewis 2003). This, of course, could be resolved by imposing continuous bins (Crittenden & Pogosian 2005). In light of these difficulties we choose not to include CMB multipoles below $\ell_{\text{min}} = 20$. The drawback of this approach is that the constraints from the CMB on the optical depth are poor, but we prefer to have a conservative estimate rather than treat this perturbations incorrectly.

If we ignore foreground noise and the late time ISW effect, Eqn. (9) forecasts the errors on parameter set given by the Planck experiment. For the purposes of this paper we will treat Eqn. (9) as a prior for other dark energy probes. Note that in addition to the cosmological parameters introduced in section 2, the CMB analysis requires the optical depth due to reionization of the Universe as a free parameter.

The fiducial values of the cosmological parameters we use for the analysis are listed in Table 1. In the remainder of the paper we refer to the cosmological parameters excluding the w-bin parameters as standard cosmological parameters. In this paper we used a modified version of CAMB (Lewis et al. 2000) to calculate CMB power spectrum; we modified the code by allowing for binning in w as described in Eqn. (1). In the case of the CMB alone we choose $z_{\text{max}} = 3$. This has been chosen at a relatively low redshift panel to the CMB redshift because for a general equation of state $w(z) < 0$ it is mainly the low redshift behaviour that has the highest impact on CMB observables (Deep Saini et al. 2003). The choice of a higher $z_{\text{max}} > 3$ will have very little impact on the principal components that we study. For the convenience of joint analysis on different probes, we set the redshift width of each bin as a constant $z = 0.05$. We emphasize that our results do not change if we decrease the size of the bins. With this set up it is simple to perform a joint analysis between two experiments. Even though two experiments may have two different maximum redshifts and hence a different total number of bins N, in the overlapping redshift range the w_i are the same and it is straightforward to add their Fisher matrices and combine them to produce principal components for joint experiments. In order to do this, we simply add corresponding columns in the Fisher Matrices. For parameter sets, which are only relevant for one experiment but not for a second experiment, we insert zeros in the Fisher matrix given @0,0 = 0 for the relevant observable O_j and ℓ for the second experiment.

In Fig. 1 we plot $\phi(z)$ as given in Eqn. (8) for the Planck experiment. The upper panel shows $\phi_1(z)$ when cosmological parameters are fixed. In this panel, the ℓst and second component are three orders of magnitude higher than the rest of ϕ. No sign transition occurs on the ℓst mode, while on the second mode changes sign around $z = 0.25$. This is indicated by the kink in the logarithmic plot. In the

Table 1. The fiducial cosmological model used for the the forecasting analysis in this paper.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Fiducial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω_Λ</td>
<td>0.7</td>
</tr>
<tr>
<td>Ω_M</td>
<td>0.3</td>
</tr>
<tr>
<td>H_0</td>
<td>72</td>
</tr>
<tr>
<td>n_s</td>
<td>0.94</td>
</tr>
<tr>
<td>$w(z)$</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Figure 1. We plot $\phi_1(z)$ for the Planck experiment. The solid line indicates the ℓst best estimated principal component (PC). The dotted line shows the second best estimated PC and the dashed line indicates the third one. The faint dotted lines show the remaining PCs. The upper panel represents the PCs with fixed cosmological parameters, while the lower panel shows the PCs after cosmological parameters have been marginalized.
lower panel we plot \(w(z) \) after the standard cosmological parameters have been marginalized. Compared with the upper panel, all \(i \) are one order of magnitude smaller. This is due to the degeneracy between \(w(z) \) and the cosmological parameters, in particular \(n_0 \).

To visualize the impact of the principal component on the observable, we plot in Fig. 2. the change of \(C_{X,i} \) when \(w(z) \) changes along the direction of the principal components, i.e., we construct \(w(z) \) as

\[
 w(z) = w_i(z) + \epsilon_i(z), \quad (10)
\]

where \(\epsilon_i \) is the error on \(w_i \). For a data set with 60 parameters, \(\epsilon_i = 82 \sqrt{i} \) give the 1- boundary along the \(i \)-th eigenvector direction from the center. Note that the prefactor in this relation is there to represent a 1- error bar in a 60-dimensonal parameter space.

Figures 2 (a), (b) and (c) presents the changes of \(C_{TT,i}, C_{EE,i}, \) and \(C_{TE,i} \), respectively. The solid and dotted line represent changes in the first and second eigenvector, respectively. In the top plot of each panel, we show how \(w \) deviates from the ducal value (faint dotted). For \(i = 1 \) (solid), \(w \) only deviates slightly from \(w_0 \) at \(z < 0.5 \); while for \(i = 2 \) (dotted), \(w \) descends from \(0.5 \) at \(z = 0 \) to \(1 \) around \(z = 0.5 \) and then goes slowly back to \(0.9 \) at higher redshift. The second plot from the top in each panel shows how \(C_{X,i} \) behaves. The light area shows the observational error. For every spectrum, the deviation from the ducal \(C_{X,i} \) shows small correlation with the observational error, in fact too small to be seen in the graph. For clarity, we present in the bottom plot in each panel the relative difference \(C_{X,i}/C_{X,0} \) to show how \(C_{X,i} \) changes. The peaks of \(C_{X,i}/C_{X,0} \) have the same height, which indicates that \(C_{X,i} \) shifts along \(1 \) when we add the principal components. This is because \(w(z) \) changes the expansion history of the Universe and therefore the angular correlations of acoustic peaks. \(C_{TT,i}, C_{EE,i} \) and \(C_{TE,i} \) all have the same qualitative behavior with changing eigenvector. Notice in the bottom panels of (c) that the peaks become more in nitely small as \(C_{X,i} \) crosses zero at the same position.

The ‘constraint’ on \(w(z) \) from CMB power spectrum mainly come from the estimation on the angular positions of acoustic peaks. Since the angular positions also depend on \(n_0 \), there is a large degeneracy between \(n_0 \) and \(w(z) \) (Bean & M elchiorri 2002). Therefore, in the marginalized case it is two orders of magnitude smaller than the one with fixed cosmological parameters. However, the first mode is still three orders of magnitude higher than the rest of \(i \). The second mode drops down two orders of magnitude, but it still changes sign around \(z = 0.25 \). The lower panel is consistent with the lowest panel of Fig. (1) in Critenden & Pogosian (2005).

From the discussion above, one can tell that the information for \(w(z) \) from CMB power spectrum is very limited. However, since the Planck surveyor will be able to pin down the other cosmological parameters to a percentage level, we will choose it as a prior on cosmology when we evaluate \(w(z) \) from other dark energy probes.

4 TYPE IA SUPERNOVAE

Type Ia SNe are so called standardizable candles and can be used to probe cosmological models (Perlmutter et al. 1998, Riess et al. 1998). Their luminosity distance-redshift relation provides a straightforward way to measure the expansion rate of the Universe. The magnitude-redshift relation for Type Ia SNe is given by

\[
 m = M + 5 \log_{10} d_L(z) + 25; \quad (11)
\]

where \(m \) is the apparent magnitude and \(M \) is the intrinsic magnitude of the Supernovae. In order to forecast a given SNe survey, we have to choose a fiducial value for \(M \), and we assume \(M = -19 \) (Perlmutter et al. 1999). The luminosity distance \(d_L \) of a at Universe is given by

\[
 d_L(z) = c(l + z) \int_0^z \frac{dz'}{H(z')}; \quad (12)
\]

where \(c \) is the speed of light and \(H(z) \) is the Hubble parameter. For a at universe, \(H(z) \) is de ned as

\[
 H(z) = H_0 \left[n(1 + z)^3 + (1 - n) \exp \left(3 \int_0^z \frac{w(z')}{1 + z'} dz' \right) \right]^{1/2}; \quad (13)
\]

The Fisher matrix for the Supernovae survey is given by (Tegmark et al. 1998)

\[
 F_{ij} = \int_0^{z_{max}} \frac{1}{n(z)} \frac{\partial m}{\partial \theta_1} \frac{\partial m}{\partial \theta_2} n(z) dz; \quad (14)
\]

where \(n(z) \) is the density distribution of the Supernovae satisfying

\[
 \int_0^{z_{max}} n(z) dz = N; \quad (15)
\]

where \(N \) is the total number of SN Ia in the survey, \(z_{max} \) denotes the survey depth and \(n \) is the error on the magnitude \(m \). We assume that \(n = 0.15 \) for all Type Ia SN surveys, which is a simpli cation, but common assumption neglecting, for example, errors in the data and nuisance parameters.

We start our discussion with the SNAP survey (SNAP Collaboration 2005; Albert et al. 2005). SNAP is a proposed space mission designed to measure the light curves and spectra of Type Ia SNe and the spectra of their host galaxies to estimate their redshifts. It is estimated that up to 10,000 SNe Ia could be found out of which \(2\% \) have well measured light curves (SNAP Collaboration 2005; Albert et al. 2005). Note that the value of \(\Delta m_{15} \) in Eqn. (1) will be di erent depending on di erent survey parameters and for the SNAP SN survey is \(\Delta m_{15} = 1.7 \).

For a at Universe the only standard cosmological parameters relevant for Supernovae as cosmological probes are the total matter density \(\Omega \) and \(H_0 \). The intrinsic magnitude \(M \) can be combined with \(H_0 \) and be treated as a nuisance parameter and marginalized over. However, we treat both of them separately given that \(H_0 \) can be constrained to a certain extent by the Planck surveyor.

We conservatively assume that we have 50 calibration SNe Ia between \(z = 0.03 \). In addition, we assume that the rest of SNe Ia are uniformly distributed in redshift.

The evolution of the eigenvalues in \(z \), therefore, will mainly depend on the derivatives of the apparent magnitude \(m(z) \) with respect to \(w(z) \). Fig. (3) shows all \(i \) for this survey. There are 34 eigenvalues in Fig. (3). As in the CMB case, we highlight the first three eigenvalues. The black solid line, the red dotted line and the blue dashed line
Figure 2: The changes of C_{Xl} as we perturb w around the fiducial model along the eigenmode directions by 1- with standard cosmological parameters. In (a), (b) and (c) we show the changes of C_{TT}, C_{EE} and C_{TE}, respectively. The solid and dotted line show the first and second eigenmode, respectively. The faint dotted line is the fiducial model. In the top plot of each panel, we show $w(z)$ given the change along the different principal components. In the middle plots the light area shows the observational error on each spectrum per multipole l. In the bottom we show $C_{Xl} = C_{Xl}$.

Figure 3. The i for the SNAP SNe Ia survey. The solid line shows $i(z)$. The dotted line and dash line show $2(z)$ and $3(z)$, respectively. The faint (green) dotted lines show all higher order eigenmodes. The upper panel shows maintaining n and H_0 fixed, while the lower panel represents the eigenvectors as marginalized over n and H_0 including the Planck prior. The errors on the components drop down linearly from the best constrained ones to the worst ones. By marginalizing over n and H_0, the amplitudes of i become slightly smaller, which is consistent with the results of Huterer & Starkman (2003). We notice that the redshift dependence of the eigenmodes has changed with marginalization; the eigenmodes acquire zeros as we marginalize over n and H_0, indicating the impact of parameter degeneracies.

Fig. 4 shows how the apparent magnitude $m(z)$ changes when w changes along the direction of the eigenmodes. We take the first three components as examples. In the upper panel, we plot $w = w_d + i e(z)$ where $i = 6:1:2$ for the 34 free parameters. The middle panel shows the magnitude $m(z)$. For clarity, we also show in the lower panel the absolute change $j m_j$ relative to $n = 0.15$ for each case. The solid line is when we vary the first eigenmode, while the dotted and dashed lines represent variations of the second and third eigenmodes, respectively. As we expect, the error on m due to these variations is less than $n = 0.15$.

We can now proceed to compare the i from SNAP, PS4 and DES SNe Ia surveys. PS4 will have a medium survey in the $griY$ bands over 1,200 deg2 and an ultra deep survey in the same bands over 28 deg2, which is two magnitudes deeper than the medium survey. These will allow potentially the detection of 5,000 Type Ia SNe and 1,000 in early type hosts. We note that DES and Pan-Starrs will not have the capability of spectroscopic follow-up. Therefore follow-up will have to be done with other instruments or photometric redshifts will have to be used. We do not consider these caveats in this analysis and assume real spectra are available for redshift determination. DES has a dedicated Supernovae program in conjunction with a spectroscopic follow-up for

Footnote:

3 See at:pan-starrs.ifa.hawaii.edu/public/science/active.html
The change of $m(z)$ when w changes along the direction of the principal components. The upper panel shows $w = w + 6 \sum_{i=1}^{2} e_i(z)$ with $i = 1, 2, 3$. The second panel from the top shows the $m(z)$ for each case. In the lower panels we show the absolute change $|m|$ relative to $m = 0.15$ corresponding to each case. The solid, dotted and dashed lines represent $i = 1, 2, 3$, respectively.

![Figure 4](image)

<table>
<thead>
<tr>
<th>Survey</th>
<th>N</th>
<th>Redshift range</th>
<th>Bins</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>1,900</td>
<td>(0.3, 0.75)</td>
<td>15</td>
</tr>
<tr>
<td>PanStarrs-4</td>
<td>6,000</td>
<td>(0.3, 1)</td>
<td>20</td>
</tr>
<tr>
<td>SNAP</td>
<td>2,000</td>
<td>(0.3, 1.7)</td>
<td>34</td>
</tr>
</tbody>
</table>

Table 2. Experiments' Parameters For Type Ia SNe surveys. Note that we put 50 SNe Ia between $z = 0$ and 0.3. The rest is uniformly distributed in redshift.

![Figure 5](image)

Figure 5. (upper panel) and 2 (lower panel) for different SNe Ia surveys. The solid line, dotted line and dash line indicate SNAP, DES and Pan-Starrs, respectively.

![Figure 6](image)

Figure 6. Comparison of $\phi(z)$ between different SNe Ia redshift distribution $n(z)$ for SNAP SNe Ia survey. The solid line represents $\phi(z)$ by assuming constant $n(z)$ and the dotted line shows $\phi(z)$ with the distribution from Table(1) in Kim et al. (2004).

Because of its lower maximum redshift and its higher minimum redshift.

In reality, the SNe Ia distribution $n(z)$ is unlikely to be constant; instead, $n(z)$ is a result of the survey strategy. In order to find out how the $\phi(z)$ depend on $n(z)$, we adopt a fiducial SNe Ia distribution given by Table(1) in Kim et al.
With \(\Delta > \). Setting \(\mathbf{A} = (\mathbf{I}; \mathbf{v}) \) and \(\mathbf{B} = (\mathbf{0}; \mathbf{0}) \), the elements of the covariance \(\text{Cov}_{ij}^{A B} \) are given by \(M_{a} \ et \ al (2006) \):

\[
\text{Cov}_{ij}^{A B} = \mathbf{P}_{A}^{i} \mathbf{P}_{B}^{j} \left[\mathbf{P}_{A}^{i} \mathbf{P}_{B}^{j} + \mathbf{P}_{B}^{j} \mathbf{P}_{A}^{i} \right] - 1 \]

in which \(\mathbf{P}_{A}^{i} \) is

\[
\mathbf{P}_{A}^{i} \left(\mathbf{I} \right) = \mathbf{P}_{A}^{i} \mathbf{P}_{A}^{j} + \mathbf{P}_{B}^{j} \bigg/ \mathbf{P}_{A}^{i} \mathbf{P}_{A}^{j} (21)
\]

which is a combination of the power spectrum and the noise, \(f_{\text{sky}} \) is the fraction of the sky coverage of the survey, \(\sigma_{i} \) is the average surface density of galaxies, Eqn. (20) holds under the Gaussian assumption on the convergence \(\kappa \) for the weak lensing power spectrum \(P(\mathbf{k}; \mathbf{z}) \) with the w-binning paramenterization. Dark energy modi es the growth of the matter perturbation and the shape of the matter power spectrum. The growth factor \(D(z) \) is analytically given by

\[
D = 3 \left[1 + \left(\mathbf{w}(a) \big(1 - n(a) \big) \mathbf{D} \right) \right] = 3 \left[1 + \left(\mathbf{w}(a) \big(1 - n(a) \big) \mathbf{D} \right) \right] = 3 \left[1 + \left(\mathbf{w}(a) \big(1 - n(a) \big) \mathbf{D} \right) \right] = 3 \left[1 + \left(\mathbf{w}(a) \big(1 - n(a) \big) \mathbf{D} \right) \right]
\]

with the prime representing the derivative with respect to the scale factor \(a \). However, since future weak lensing surveys extend to the non-linear scale, the dependence of the shape of the non-linear matter power spectrum on \(w \) has to be considered when calculating the lensing power spectrum. Peacock & Dodds (1996) and Smi õh et al. (2003) developed a set of tting form for \(w \) for calculating the non-linear matter power spectrum with a cosmic ymological constant psition. Though work has also been done to correct the tting form for constant \(w \) \(\geq 1 \) \(M \ et \ al \ et \ al (2006) \), this area is still limited to a non-evolving equation of state on a small cosmic ymological paramater space. It requires a lot of e ort calibrating the matter power spectrum considering evolving \(w \) by running low resolution N-body simulations. However, since the aim of this paper is to demontrate the behaviour of the counsider the power spectrum with dis erent future weak lensing surveys, we simply generalize the method given by Smi õh et al. (2003) for \(w \)-bin parameterization. We emphasize that in real data, the non-linear N-body simulation with evolving \(w \) must be run or the non-linear parameters must be predescribed with a ren orm alsable perturbation theory model (Crocce & Scocci amrano 2006) or run by a training set (Habb et al. 2007). Here we still use the tting form of Smi õh et al. (2003) but use the transfer function output from m odel CAMB code (see Sec3).

The SNAP weak lensing survey is one of the most representative future surveys. Its baseline is to in age over 1,000 square degree and approximate 100 resolved galaxies will be found in one square arcmin in (SNAP Collaboration 2005) up to redshift 3. Six optical and three infrared filters are
used to estimate the photometric redshift of the galaxies. In this paper, we adopt the simulated galaxy distributions in Refregier et al. (2004). We focus on the case with the three tomography slices since the constraint from probes insignificant with more slices. We set $z_{\text{max}} = 3$ since SNAP can nd galaxies up to redshift 3. Fig. (7) shows 60 (λz). The black solid line represents the first. The red dotted line and the blue dashed line indicate the second and third, respectively. The faint (green) dotted lines show all higher order modes. In the upper panel we show the cosmological parameter estimates. The rst m modes dominate at low redshift and then decay along the redshift. Since the $rst m$ modes drop down four orders of magnitude, at redshift $z > 1$, the second and third modes become dominant. Errors on the components drop exponentially from the best constrained ones to those worst ones. In the lower panel, we show (λz) after cosmological parameters being marginalized including Planck prior. The amplitude of the rst mode is slightly smaller in this plot. However, the redshift dependence of the modes change dramatically. 1 has a peak around $z = 1$. At redshift $z > 25$, there is minimal information from SNAP, so 1 is mainly driven by Planck Prior. 2 and 3 are one order of magnitude lower than 1 but still dominate at high redshift $z > 0.8$. This is consistent with Fig. (2) in Simpson & Bridle (2006) where they found that for cosmological shear, higher modes contribute significantly to weight function w_i.

To test how $P_{h_{\beta}}$ changes with the eigenvalues, we plot in Fig. (8) $P_{h_{\beta}}$ and its deviation from the diagonal value when we modify w_i along the direction of the eigenvalues. The top plot on each panel shows $w = w_d + i e_i$, where $i = 8 \sqrt{1/3}$ for 60 free parameters. We choose the rst three best estimated modes after marginalization as the eigenvalues which are represented by (black) solid, (red) dotted and (blue) dashed lines, respectively. In the second plot of the left panel, we show the auto correlation of the first slice, i.e., $P_{h_{\beta}}$ with $A = (1;1)$. The second plot of the right panel shows the cross correlation between the rst slice and second slice, i.e., $P_{h_{\beta}}$ with $A = (1;2)$. The shaded area is the error around the diagonal value which is presented as the black solid line. For clarity, we show in the bottom the absolute change of $P_{h_{\beta}}$ relative to the error bar for each mode. The deviation is very small compared with the error bar, which shows that the rst three modes are well constrained. However, the error in this plot only comes from a single shell. One also obtains constraints on w_i from other auto and cross correlations.

In the following of this Section, we compare SNAP with four other weak lensing surveys: EUCLID, DES, PS1 and PS4. SNAP and EUCLID are space based, while DES and PS (1 and 4) are ground based surveys. As stated before ground based surveys and space based surveys have different systematics effects which enter the weak lensing analysis. In age quality is in space far superior than on the ground. This will allow for better shape measure errors in space. This effect is hard to include in a Fisher analysis, we would be able to include this effect by producing in age simulation and estimating what and n_{β} we would have for a given seeing and amplitude depth. Producing in age simulation is beyond this work, so we simply keep roughly constant and change n_{β} to account for the effects of in age quality. The other main difference is the seeing. Even though

![Figure 7. 60 (λz) for SNAP weak lensing survey. The (black) solid line indicates the rst eigenmode. The (red) dotted line and (blue) dashed line indicate the second and third modes, respectively. The faint (green) dotted lines show the remaining ones. The upper panel is when cosmological parameters are fixed, while the lower panel is after cosmological parameters have been marginalized with the use of the Planck prior.](image-url)
The changes of $P_{\ell m}$ as we perturb w around the fiducial model along the eigenvector directions. We show the change of $P_{\ell m}$ with $A = (1,1)$ and $A = (1,2)$ on the left and right panel, respectively. The (black) solid, (red) dotted and (blue) dashed line represent the first three eigen modes, respectively. In the top plot of each panel, we show w given by $w = w_0 + \varepsilon_i$. The faint (green) area shows the observational error on each spectrum per multipole i. We present in the bottom of each panel $|P_{\ell m}| = P_{\ell m}$.

Based on these catalogues, we choose six slices for EUCLID and PS4, three slices for DES and PS1. We also list z_{90} for each in Table (3).

We plot $\hat{z}(z)$ (upper panel) and $\hat{z}_1(z)$ (lower panel) in Fig. (9). We marginalize the Fisher matrices over the cosmological parameters and w_0, including a Planck prior. As we expect, \hat{z} of DES (green dashed) and PS1 (blue dash-dotted) are about one order of magnitude lower than \hat{z} of SNAP (black solid), EUCLID (red dotted) and PS4 (magenta dash-triple-dotted). DES has a relatively small sky coverage and number density of galaxies. PS1 covers half the survey, but has a relatively small number density of galaxies. The redshift dependences of $\hat{z}(z)$ are different as well. \hat{z} of DES decays along the redshift, this may be due to the fact that the values of the intrinsic Fisher matrix of DES is small so that the Planck priors have a bigger effect in the analysis. \hat{z} of the first peak around $z = 0.5$ but stays positive in the whole redshift region. We notice that the redshift dependences of $\hat{z}_1(z)$ do not change much for different surveys except for the amplitude and the redshift where $\hat{z}_1 = 0$. We also found that with a Planck prior, \hat{z}_1 depend weakly on how we define the tomographic slices.

If we compare the eigen modes between DES and PS1, one can also notice that PS1 has better constrained eigen modes than DES. Among SNAP, EUCLID and PS4, EUCLID and PS4 have better constraints on the eigen modes than SNAP. Amara & Refregier (2007) conclude that the sky coverage is the dominant parameter on in proving the gure of merit rather than n_{90} and z_{90}.

<table>
<thead>
<tr>
<th>Survey</th>
<th>f_{sky}</th>
<th>n_{90}</th>
<th>z_{90}</th>
<th>z_{90}</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNAP</td>
<td>0.3</td>
<td>0.024</td>
<td>100</td>
<td>1.23</td>
</tr>
<tr>
<td>EUCLID</td>
<td>0.3</td>
<td>0.5</td>
<td>30</td>
<td>0.83</td>
</tr>
<tr>
<td>DES</td>
<td>0.3</td>
<td>0.12</td>
<td>10</td>
<td>0.67</td>
</tr>
<tr>
<td>PS1</td>
<td>0.3</td>
<td>0.5</td>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>PS4</td>
<td>0.3</td>
<td>0.5</td>
<td>20</td>
<td>0.83</td>
</tr>
</tbody>
</table>

6. GALAXY CLUSTER COUNTS

Galaxy cluster counts probe cosmological models via the redshift dependence of the survey volume and the sensitivity of the halo mass function to the linear growth of structures. For a coming generation of surveys, the extended Rosati et al. (2007) and Rozo et al. (2007). For example, DES and EUCLID would be able to identify thousands of clusters with this method.

The redshift evolution of the number of clusters N in the redshift interval between $z = 2$ and $z = 2$ found by a Galaxy Cluster survey is given by

$$N(z) = \frac{1}{(1 + z_0)^3} \int_{z_0}^{1} \frac{dn}{dz} \delta(z) (1+z) \, dz \; ;$$

see at http://www.mp-mpg.de/projects/hs#exosita
The last term is the linear power spectrum $P(k) = 4k^3P(k)$. Following Sec.(5), we use CAMB to calculate the transfer function and the power spectrum $P(k)$.

The Fisher matrix for the cluster counts is given by (Haiman et al. 2001; Levine et al. 2002)

$$ F_{ij} = \sum_{n=1}^{N} \frac{\partial N}{\partial z} \frac{\partial N}{\partial \bar{z}} \sigma_{ij}^2 $$

where N is the number of clusters in redshift interval z at redshift \bar{z}, with z_0 the maximum redshift of the survey.

In order to extract cosmology from a galaxy cluster count survey we need to understand the relation between the survey parameters and the limiting mass $M_{\text{lim}}(z)$ of the survey. For example for Sunyaev-Zel'dovich cluster surveys, $M_{\text{lim}}(z)$ is a function of the ux cut S_{lim} at frequency (Battye & Weller 2003). In this context to estimate $M_{\text{lim}}(z)$, one requires well-calibrated mass-temperature relation for galaxy clusters and an understanding of the scatter (Lim a & Hu 2004). However in order to get an estimate of the ability of galaxy cluster counts to constrain the equation of state for different types of cluster selection, we assume a limiting mass, which is constant in redshift and neglect scatter. It is straightforward to include scatter in any analysis however it is not clear at the moment how large the intrinsic scatter is for different survey strategies.

The South Pole Telescope (SPT) is a bolometric array observing 4,000 square degrees of the southern sky in 34 radio wavebands, with the main signal coming from the 1500 Hz channel. It will discover thousands of clusters roughly above a mass threshold of $2\times10^{14} \, M_\odot$. The Dark Energy Survey is observing the same area of sky as SPT and will provide photometric redshifts and vital weak lensing information for the galaxy clusters. The observed redshift range goes roughly out to $z = 1.5$. In Fig.(10) we show $\langle z \rangle$ for red and a marginalized cosmological parameters. As before we highlight the first three moments, and note that only the first eigenmode is dominating. This is similar to the SN case, where the hierarchy of modes is almost linear. A few marginalize over the other cosmological parameters, the amplitudes of the eigenmodes are one order of magnitude lower. Notice that the eigenmodes do not change signiﬁcantly after the marginalized analysis. This is because we impose the prior from Planck, which constrains the other cosmological parameters even more tightly.

In order to test the signiﬁcance of the eigenmodes, we replace the ducial of $\omega(z)$ with $w = w_a + i \omega; \omega$ with $\omega = 5.7 \times 10^{-2}$ corresponding to the 1 error bars for 30 free parameters. In Fig.(11), we show $N(z)$ for the ducial models and $N(z)$ when $w = w_a + i \omega$ for the rst three modes. The solid, dotted, and dashed lines represent M modes $i = 1; 2; 3$, respectively. In the top panel, we show $w(z)$. In the second panel from the top, we show $N(z)$ together with Poisson errors around the duclial of ω (dashed). For clarity, we show the absolute change $J \sqrt{\omega(z)}$ relative to the error bar. In the lowest panel, for some redshifts where $z < 0.5$, $\omega(z)$ is larger than expected for the third eigenmode indicating that there might be redshift ranges where we can constrain up to three modes, although overall the constraint on this mode is much weaker than the the rest eigenmode. This agrees with earlier ndings (Battye & Weller 2003) that cluster counts will be able to give a good constraint on w since we can act both the volumetric element $dV = dzd\bar{z}$ and the growth factor $D(z)$. In order to compare different surveys we show in Fig.

Figure 9. (upper panel) and (lower panel) from different weak lensing surveys. The (black) solid line, (red) dotted line and (green) dash line indicate SNAP, EUCLID, DES, respectively. The (blue) dash-dotted line and (magenta) dash-dotted line represent PanStarrs 1 and 4, respectively.
With mass limits of $2 \times 10^{14} h^{-1} M_{\odot}$, which corresponds roughly to the limit of the SPT survey. The (black) solid line indicates the 1st eigenmode. The (red) dotted line and (blue) dashed line indicate the second and the third one, respectively. The (green) faint dotted lines show the remaining 27 modes. The upper panel is for fixed cosmological parameters, while in the lower panel we marginalize over cosmological parameters under the assumption of prior information from the Planck survey.

![Figure 10](image)

Figure 10. $\omega(z)$ for a cluster survey with a mass limit of $2 \times 10^{14} h^{-1} M_{\odot}$, which corresponds roughly to the limit of the SPT survey. The (black) solid line indicates the 1st eigenmode. The (red) dotted line and (blue) dashed line indicate the second and the third one, respectively. The (green) faint dotted lines show the remaining 27 modes. The upper panel is for fixed cosmological parameters, while in the lower panel we marginalize over cosmological parameters under the assumption of prior information from the Planck survey.

(12) \(\omega(z) \) and \(\omega(z) \) for three different cluster surveys with mass limits of \(M_{\text{lim}}(z) = 2 \times 10^{14} h^{-1} M_{\odot} \) (solid), \(M_{\text{lim}}(z) = 10^{14} h^{-1} M_{\odot} \) (dotted), \(M_{\text{lim}}(z) = 5 \times 10^{14} h^{-1} M_{\odot} \) (dashed), all over 4,000 deg2 out to a maximum redshift of \(z = 15 \). The lower mass limit could correspond to optical cluster selection like DES or EUCLID, albeit any realistic treatment should include scatter in the mass limit for these surveys. Nevertheless, we clearly see that a lower mass limit leads to much better determined masses, due to the fact the number of observed cluster increases dramatically for lower mass limits.

7 BARYON ACOUSTIC OSCILLATIONS

Baryon Acoustic Oscillation (BAO) arises from the structure evolution of the underlying dark matter fields, the spatial scale of the acoustic oscillation well resolved as a standard ruler which can be used to calibrate the geographical evolution of the Universe. As galaxies are tracers of baryons, galaxy redshift surveys have been performed to be a comple mentary probe to constrain cosmological parameters and the properties of dark energy (Percival et al., 2007).

![Figure 11](image)

Figure 11. The change in $\omega(z)$ when w changes along the principal directions of the eigenmodes. The upper panel shows $w = w_0 + 50 \Delta_i e_i$ with $i = 1, 2, 3$. The second panel from the top shows the $\omega(z)$ for each case, where the solid line is for the fiducial model including Poisson errors, the solid line is for the 1st eigenmode, the dotted line for the second, and dashed for the third. In the lower panel we show $(N) = \sum_i N_i$ for each mode.

The basic idea of BAO is to calibrate the length scale of the acoustic waves at different redshifts and this distance-redshift relation with cosmological models. The numerical details of the methodology vary according to different authors. In this paper, we use the methodology developed in Seo & Eisenstein (2003), where the full matter power spectrum $P(k, z)$ has been used to measure Hubble parameter $H(z)$ and the angular diameter distance $d_A(z)$ given by

$$d_A(z) = \frac{\omega(z)}{(1 + z)^2};$$

(28)

$P(k, z)$ is estimated from galaxies in a redshift shell centered at z. The shear matrix at the shell is given by (Seo & Eisenstein 2003)

$$F_{ij} = \frac{\theta \ln P(k; \theta) \theta \ln P(k; \theta)}{\theta \ln P(k; \theta)} V_a(k; \theta)^2 \frac{k^2 dk}{2\pi^2};$$

(29)

where k is the norm of the wave vector k, θ is the cosine of the angle between k and the line of sight, V_a is the effective volume of the redshift shell given by

$$V_a = \int \left[\frac{n(r) P(k; \theta)}{n(r) P(k; \theta)} \right]^2 dr;$$

(30)
in which \(\mathbf{r} \) is the vector along the line of sight and \(n(r) \) is the comoving number density of the galaxies.

The observed power spectrum \(P(k) \) in Eqn. (29) is given by (Seo & Eisenstein 2003)

\[
P(k_{\text{ref}}, k_{\text{ref}}) = \frac{d_{\text{ref}}^2(z_{\text{ref}})H(z_{\text{ref}})^2}{d_z^2 H(z)^2} \left(1 + \frac{k_r^2}{k_i^2 + k_r^2} \right)^2 D(z)^2 P(k) + P_{\text{shot}}; \tag{31}\]

in which \(z \) and \(k \) present the traverse and line-of-sight directions, respectively. The index \(\text{ref} \) indicates the reference cosmology we use. In this paper, we set the reference cosmology same as the fiducial one that we assume. \(P_{\text{shot}} \) is the shot noise power. \(b_0 \) is the bias factor and is \(\frac{\sigma_8}{b} \). We treat the bias of each shell independently as an nuisance parameter and marginalized over them in the analysis. In reality, the bias value of the bias depends on galaxy types that one uses to recover the power spectrum. Here we assume \(b = 1 \).

One uncertainty in Eqn. (29) is the upper integral limit of \(k \). This has been discussed by different authors (Blake & Glazebrook 2003; Seo & Eisenstein 2003). In this paper, we choose a conservative value of \(k_{\text{max}} = 0.2h \text{Mpc}^{-1} \) for shells at \(z < 2 \) where most surveys reach. For WFMOS deep, we choose \(k_{\text{max}} = 0.5h \text{Mpc}^{-1} \), as it is a much higher redshift survey and will probably have non-linearity which will prevent us to measure \(P(k) \) for larger \(k \).

For spectroscopic galaxy surveys, if we ignore the correlation between the shells for very small \(k \) along the line of sight, the Fisher matrix of the whole survey can be obtained simply by adding together the Fisher matrices at different redshift shells. However, one has to be careful with the photometric redshift surveys. The relative large photo-z error will smear the power spectrum along the line of sight and introduce a cross correlation between different shells. In this paper we ignore the cross correlation between different shells, but given that the photo-z data sets the power spectrum along the line of sight, i.e.

\[
P_{\text{photoz}} = P(k_{\text{ref}}, k_{\text{ref}}) \exp(-k_{\text{ref}}^2 \sigma_\text{photoz}^2); \tag{32}\]

where \(\sigma \) is taken from simulations (Abdalla et al. 2007). We choose the width of the shells to be much larger than the photo-z error of galaxies in that shell. This strategy is also a solution for avoiding the cross correlation between shells (Seo & Eisenstein 2003).

Another freedom in the analysis is how to choose the redshift shells. The principle is to make sure that the width is large enough that one can measure two or three wiggles in the power spectrum along the line of sight in that shell. At the same time, we wish to make the shell thin enough so that we have enough information for each bin. Therefore a choice of \(z = 0.2 \) as the shell width means reasonable for most surveys. For WFMOS deep, we use \(z > 0.2 \) (see Table 5).

Two out of the three surveys planned by WFMOS (\(\text{wide} \) and \(\text{deep} \)) will provide a combined constraint on cosmology and dark energy (Glazebrook et al. 2005). In this section, we take the \(\text{wide} \) survey as an example and study how \(\hat{\epsilon} \) behaves in this case. Table 4 shows the parameters for WFMOS survey and Table 5 the locations of the slices. We use 25 \(w \)-bins for \(z_{\text{max}} = 12 \). We plot \(z(z) \) in Fig. 13. The (black) solid line indicates the best estimated eigenvector. The (red) dotted line and (blue) dash line indicate the second and the third eigenvector, respectively. The (green) dotted lines show the other eigenvectors. In the upper panel we marginalize over the bias of each of the shells. The \(r_{\text{max}} \) of the domino at low redshift but decays slightly along \(z \) and crosses zero around \(z = 0.8 \). At redshift \(z > 0.5 \), the second and third \(r_{\text{max}} \) dominate. In the lower panel, we show \(z(z) \) after marginalization over all other parameter including a Planck prior. In this plot the \(r_{\text{max}} \) peaks around \(z = 0.5 \) where the survey starts. In both panels, the value \(\hat{\epsilon} \) is still significantly different from other probes. This is also consistent with Simpson & Bridle (2006) where they found that the weight function of BAO shows high sensitivity in \(w(z) \) at high redshift due to the location of the data at high redshift.
The location of the redshift shells in WFMOS

<table>
<thead>
<tr>
<th>Survey</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WFMOS(wide)</td>
<td>0.6</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>WFMOS(deep)</td>
<td>2.5</td>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. (13). One can notice that w deviates from the fiducial values dramatically at high redshift, which is different from what we found from SNe Ia, W L, and Cluster Count. The second plot from the top presents the $P(k; i)$ divided by the power spectrum without baryons and normalized to the same value at $k = 0$. The (green) error bars represent the error (P) on the power spectrum, which is given by (Seo & Eisenstein 2003)

$$P = \frac{P}{V_{0}} \sqrt{\frac{2(\bar{y})}{\bar{k}^2 k}}$$

In order to be consistent, we also divide (P) by the fiducial power spectrum without baryons. In the bottom plot, we show the absolute change j relative to the error bar. As we expect, P is smaller than the error of the power spectrum. One can also notice that the amplitude of the power spectrum changes significantly compared with the scale of the wiggle.

In Fig. (15), we show $\phi(z)$ and $\phi(z)$ from different redshift surveys marginalized with Planck prior. There are seven surveys shown in this plot. The (black) solid line indicates WFMOS wide, the (red) dotted line represents WFMOS deep. The (green) dash line represents SKA. Note that we have not analyzed EUCLID BAOS in this paper, which is a strong component of the EUCLID program. Because of the large cosmological parameter space, the values are dramatically different from other surveys. For WFMOS deep, the data come from redshift $2 < z < 3$; therefore, $\phi(z)$ dominates at high redshift. However, $\phi(z)$ is significantly lower than zero at high redshift. Both $\phi(z)$ of SKA and WFMOS deep cross zero around $z = 1$, which is different from $\phi(z)$ of WFMOS wide. Besides WFMOS and SKA, we also show the eigenmodes from photo-z redshift surveys. The (blue) dash dotted line shows DES, the (cyan) thin dash line shows PS1 and the thick one represents PS4. These $\phi(z)$'s are very similar to $\phi(z)$ from Planck prior. This is because of the damping factor on the power spectrum of the line of sight due to the photo-z error. The values of the Fisher matrices are relatively small compared with Planck prior; therefore, the Planck prior has a larger effect on $\phi(z)$.

8 Joint Principal Components

We have performed PCA analysis on a few representative future surveys. In the following, we will compare the eigenmodes for different stages and discuss the joint principal components from each stage. All the probes discussed in this section are marginalized over the other parameters including the Planck prior.

In Fig. (16), we show $\phi(z)$ (upper panel) and $\phi(z)$ (lower panel) for the surveys that we have analyzed for stage III. The (black) solid line indicates SNe Ia surveys with the thin and thick lines representing DES and PS4, respectively. The (red) dotted and dash lines represent W L from DES and PS4, respectively. The (green) dash dotted line shows the cluster count result. The remaining lines show the result for BAO surveys; the (blue) long dashed line is for PS4 and the (magenta) thick long dashed line represents DES. The (blue) dash triple dotted line shows WFMOS with the thin and thick lines representing deep and wide, respectively. The amplitudes of $\phi(z)$ for this stage are roughly between ten
and one hundred. \(1(z) \) of PS4 for W L dominates at redshift \(z < 12 \), while \(1(z) \) of W FM O S deep for BAO is dominant for higher redshifts. The redshift dependence of \(1(z) \) can be classified into three types. First, \(1(z) \) behaves very similar to the first mode of the Planck prior, which is represented by CC and BAO from DES and PS4. This is due to the relatively strong Planck prior for these cases. Second, \(1(z) \) crosses zero at low redshift. \(1(z) \) of DES and PS4 for SN e I a and W FM O S deep for BAO show this feature. However, for W FM O S deep this feature is already at intermediate redshifts around \(z = 1 \). The third type of behaviour is encountered by PS4 for W L and W FM O S wide for BAO. \(1(z) \) stays positive and peaks at the median redshift. For most of the probes, \(1(z) \) is significant at low redshift and then decays afterward, while W FM O S deep has a very significant contribution at high redshift above \(z = 15 \). In the lower panel, we notice that the amplitude of the second mode \(2(z) \) is already one order of magnitude lower than the first mode. The dominant contribution of \(2(z) \) is still at low redshift with the exception of W FM O S deep. Due to the dominance of the first mode, \(1(z) \) is the dominant redshift dependence of a given survey encoded in this mode (Hu et al. & Starkman 2003).

Figure 17 shows the two leading modes for the stage IV surveys in our analysis. The (black) solid line is for type Ia SN e from SNAP. The (red) dotted line shows W L from SNAP and the (green) dash line shows W L from EUCLID. The (blue) dash dotted line shows BAO from SK A. The amplitudes of \(1(z) \) for this stage are about one order of magnitude higher than \(1(z) \) in stage III; SK A for BAO dominates in its redshift range \(z < 2 \). In SNAP for SN e I a and BAO for SK A have a change in sign for the most dominant mode, while \(1(z) \) of both SNAP and EUCLID for W L have a mode which stays positive throughout. The amplitudes of \(2(z) \) are about one order of magnitude lower, hence the same sign as the primary mode for the stage III surveys.

From the four probes that we discussed, one can see that for most surveys the best constrained eigenmodes dominate at low redshift. The exception are surveys which target objects at high redshifts as for example W FM O S deep. \(1(z) \) from W FM O S deep stands out at high redshift in the upper panel of Figure 16. In the following, we discuss how the eigenmodes behave if we combine different probes. We perform the joint analysis based on the two stages. For stage III, we combine PS4(SN e I a), PS4(W L) and W FM O S deep (BAO). For stage IV, we combine SNAP(SN e I a), EUCLID (W L) and SK A (BAO). We also include the Planck prior for both cases. In Figure 18 we show the joint eigenmodes with the upper and lower panel representing the stage III and IV, respectively. We find that \(1(z) \) is significant within the whole redshift range and expect around \(z = 12 \) where \(1(z) \) changes sign. It is interesting to note that higher order modes and namely the second mode fill this gap in redshift. In addition boosting \(1(z) \) at high redshift, W FM O S deep (BAO) is considered entry with PS4(SN e I a), PS4(W L) at high redshifts. For stage IV we find that the equation of state w III is constrained signally at least out to redshift \(z = 15 \).
9 W RECONSTRUCTION

So far, we have compared different surveys by concentrating on the behaviour of \(i(z) \) and \(i^2(z) \), which allows us to explore the redshift sensitivity on \(w(z) \) for each probe. To reconstruct \(w(z) \), however, one would like to include higher order eigenodes to get less bias in the reconstructed equation of state. However, if we use higher order eigenodes, the error on the reconstructed \(w \) is dominated by the errors from these orders. In order to decide how many eigenodes to use for reconstruction, we require the bias and the variance to be low. Hence, an alternative to the standard use of an error bar on the data (Abrecht et al. 2006) is to count how many eigenodes can be well constrained under certain criteria.

In Fig. (19), we plot the first 15 eigenvalues weighted by the number of bins, for the different surveys that we used in the joint analysis in the previous section. All the surveys are marginalized over other parameters including Planck priors. The (black) solid line shows the Type Ia SNe surveys with the filled and unfilled circles indicating PS4 and SNAP, respectively. The (red) dotted lines represent the W L surveys, with the filled and unfilled stars indicating PS4 and EUCLID, respectively. The (green) dashed lines represent the BAO surveys with the filled and unfilled triangles indicating WFMOS deep and SKA, respectively. We also show the joint analysis with the (blue) dotted-dashed lines; the filled and unfilled squares indicating stage III and IV, respectively.

In order to explore the problem of the \(w \)-reconstruction quantitatively, let us assume that one only uses \(M \) eigenodes. The reconstructed \(w_{\text{rec}}(z) \) is then given by

\[
 w_{\text{rec}}(z) = w(z) + \sum_{i=1}^{M} \epsilon_i(z); \tag{34}
\]

where \(w \) is the value around which we wish to reconstruct the equation of state. The \(\epsilon_i \) are the best \(M \) eigenvectors in the eigenmode basis \(\epsilon_i(z) \). The reconstruction strategy given by Huterer & Starkman (2003) is equivalent to setting \(w(z) = 0 \) and the expected \(\epsilon_i \) is then given as the projection of \(\epsilon_i(z) \) on the residual mode. Crittenden & Pogosian (2005) define \(w = w_a \) under the assumption that \(w_a \) is close to the true physical mode for any reconstruction in a realistic situation and in this case the expected \(\epsilon_i \) are zero.

We now have to employ a statistical criterion, which allows us to gauge how many eigenodes to use for the reconstruction.
construction of the equation of state. There are three effects at work, which need to be considered. First the goodness of the t, which, of course, improves with the number of used modes, second the degradation of the errorbars with increasing number of modes and finally the bias between the true underlying model and the model, w, around which we reconstruct the equation of state. As we will show below the Bayes' factor (Je reys 1939; Trotta 2008) based on Bayesian evidence (Sivia 1996) provides exactly such a criterion.

We will proceed by describing a Gaussian approximation of the Bayes' factor, based on Bayesian evidence, to decide the number of significant modes. We will follow closely the discussion in Saini et al. (2004). Under Gaussian assumptions, which hold for the F isher matrix approximation of the underlying likelihoods, the evidence for the data D given the hypotheses H is approximated by

$$E = P(D \,|\, H) \cdot P(D \,|\, H) \cdot \exp \left(C \left(\frac{F + P}{F} \right)^{1-2} \right)$$

(35)

with F the covariance between the w-bin parameters, σ, in the basis of the eigenvectors, P the covariance of the prior on these parameters and ν are the parameters of the maximum likelihood. C is the term which encodes the overlap of the prior with the likelihood, i.e. this term is measuring the bias between the prior and the likelihood and is given by

$$C = \frac{1}{2} (\nu \cdot \sigma)^T F (F + P)^{-1} F (\nu \cdot \sigma)$$

(36)

where ν is the mean of the prior, which we choose to be $w(z)$ or $\nu = 0$ in the expansion given in Eqn. 34. If we make the simplistic assumption that the prior is diagonal and the same in each bin we obtain

$$P = \frac{1}{w - 1}$$

(37)

Note that this prior, because of its diagonal nature, has the same form in the original w-bin basis and the eigenvector basis. Hence we have to make an important point. We would like that the w-basis, which is the mean equation state for the prior, is independent of the number of bins. Hence we have to scale the error in each bin, w, according to

$$(w)^2 = N \cdot (w)^2$$

(38)

Finally we will assume that the maximum likelihood can be written as

$$P (D \,|\, H) = N \cdot e^{-\chi^2}$$

(39)

We will introduce the index M to denote the evidence
for \(M \) modes. Keeping in mind that we work in the basis where the entries in the covariance matrix \(F \) are given by the eigenvalues we can write the evidence for \(M \) modes as

\[
E_M = N \exp \left(\frac{1}{2} \sum_{i=1}^{M} w_i^2 \right) \exp \left(\sum_{i=1}^{M} \frac{1}{w_i^2 + 1} \right) \left(\prod_{i=1}^{M} \frac{1}{w_i} \right)
\]

where the first term measures the 'goodness-of-fit' of the \(M \) modes, the second term the overlap between the prior and the likelihood and the last term is Occam's razor by comparing the posterior to the prior volume. We can now construct the Bayes' factor (Je reys 1939; Trotta 2008)

\[
B_{M+1} = \left| \log_{10} \frac{E_{M+1}}{E_M} \right| = \frac{1}{2} \left(\frac{X_{M+1}^2}{X_M^2} \right) \ln 10 + \frac{1}{\ln 10} \left(\sum_{i=1}^{M} \frac{1}{w_i^2 N + 1} + \frac{M+1}{w^2 N + 1} \right) + \log_{10} \left(\prod_{i=1}^{M+1} w_i \right)
\]

where \(X_M \) and \(X_{M+1} \) are the log-likelihood values at the best \(t \) points, if we use for \(M \) or \(M+1 \) modes respectively, \(t \) and \(i \) are the best \(t \) expansion param eters for these two cases.

We will first discuss the simple case with no bias. In this case we choose \(w(z) = \frac{1}{1+z} \). Since we are expanding around the ducial mode we obtain for all expansion coef ficients \(i = 0 \) the best \(t \) likelihood between \(M \) and \(M+1 \) modes is exactly same, i.e., \(X_M = X_{M+1} \). Hence both the best \(t \) and the overlap term vanish for the Bayes' factor and only Occam's razor term remains. If we further assume the prior is while compared to the likelihood we obtain for the Bayes' factor

\[
B_{M+1} = \left| \log_{10} \left(\frac{1}{w_i^{M+1} N} \right) \right| = \left| \log_{10} \left(\frac{M+1}{N} \right) \right|
\]

Hence, in this approximate scenario the evidence ratio is given by the ratio of the likelihood uncertainty on the \(M \) + 1st mode, \(M+1 \), to the prior uncertainty on a single bin in \(N \). Although the equation at low redshifts is determined almost to the 10\% level by current data, it is much more uncertain at higher redshifts. We hence choose \(w = 1 \) for the mean uncertainty on the mean \(w \) averaged over the entire redshift range. According to Je reys's scale (Je reys 1939) we have strong evidence if the Bayes' factor is 1-2 and substantial evidence if it is between 0.5 and 1. We choose 1 as our evidence level. If we employ this as a condition for strong evidence

\[
N > 100
\]

The shaded region in Fig. 19 highlights the area where this condition is violated. All points above the shaded region are eigenmodes, which are significant. Evidently no that the joint analysis can determine higher order eigenmodes than the individual surveys, which is consistent with Fig. (1) in Crittenden & Pogosian (2005). This comes from the complementarity of the different dark energy probes. For most of the probes, the eigenvalues descend exponentially.

We will now continue to analyze the full Bayes' factor expression in Eqn. 41 to decide for how many eigenvalues we have strong evidence. We will discuss two cases: As before the unbiased case where we reconstruct the equation of state around the ducial mode a biased case where we choose \(w(z) = 1 \). The latter is what will happen in a realistic situation, where the true underlying mode is not known a priori, although one could imagine an iterative method of end up reconstructing around the true underlying mode, but this is a posterior statement.

To illustrate how \(w \) will take effect on the reconstruction, we give a very simple example for the SNAP SNe Ia survey. We take the eigenvalues from the SNAP SNe Ia survey with xed cosmological param eters and use our ducial cosmology with \(w(z) = 0 \). In Fig. (20) we plot the reconstructed \(w_{\text{rec}}(z) \) for different \(w \) and \(M \). The solid line is for \(M = 2 \) and the dotted and dash lines for \(M = 10 \) and \(M = 30 \), respectively. The thin (black) lines are for \(w = 0 \) and (blue) thick lines represent \(w = 1 \). One notices that no matter how we choose \(w(z) \), \(w_{\text{rec}}(z) \) will be around the ducial mode at low redshift, while at high redshift, \(w_{\text{rec}}(z) \) will be biased towards \(w(z) \). This is because SNe Ia surveys have very weak constraints on \(w(z) \) at high redshift.

Fig. (20) also shows the oscillation on \(w_{\text{rec}} \) at high redshift, which is an artifact of the PCA decom position. This is due to the im ined unnum eigenvalues with \(M < N \) that we choose to reconstruct \(w(z) \) with. For \(M = 2 \), \(w_{\text{rec}} \) has no constant behaviour with redshift. As we include more eigenmodes, \(w_{\text{rec}} \) starts to converge around 0.9 for redshifts \(z < 1 \). The oscillation at high redshifts is consistent with the results in Huterer & Starkman (2003), in which the analysis indicates that it is not possible to recover \(w(z) \) at redshifts \(z > 1 \) with SNAP SNe data. It is hence important to

\[
\text{Future Probes of Dark Energy} \quad 19
\]
Figure 20. An example on reconstructing \(w(z) \) from different \(w \) and \(M \) for the SNAP SNe Ia survey. The solid line shows \(M = 2 \) and the dotted and dash lines show \(M = 10 \) and \(M = 30 \), respectively. The thin lines are for \(w = 0 \) and (blue) thick lines for \(w = 10 \).

In this paper we have studied future constraints on \(w \)-bins for four dark energy probes, Type Ia Supernovae, weak lensing, cluster counts and baryon acoustic oscillations.

In this paper we have studied future constraints on \(w \)-bins for four dark energy probes, Type Ia Supernovae, weak lensing, cluster counts and baryon acoustic oscillations.

Instead of assuming that the equation of state parameter \(w \) can be modeled by a simple function with a few parameters, we bin \(w \) given by Eqn. (1) and treat each \(w \) as independent parameter. Throughout this article, we choose \(\alpha = 0.05 \) to make sure that we can compare between different surveys. For each probe, we choose a few representative future surveys. We also use a prior from the forthcoming Planck CMB experiment as prior on all remaining cosmological parameters. We used that in future mainly weak lensing and BAO surveys are complete, in a sense that weak lensing gives tight constraint at low redshifts but BAO allows one to push to higher redshifts, however the role of Supernovae is also complete for low redshifts. The high redshift sensitivity of the BAO would allow one to study also early dark energy models (Caldwell et al. 2003) in an e cient way. However the redshift in the future weak lensing and Supernovae are the more e cient probes, with the exception of SKA BAO measurements. Typically forthcoming surveys constrain 2-3 modes. Since it is likely that there will be a multiple of stage III probes it is sensible to look at the combined power of these probes and we nd that in this case more modes would be complete. We would advocate that the number of well constrained modes is actually a better guide of merit than the one put forward by the DTF, since it encom passes the ability of future surveys not just to measure the equation of state at two redshifts, today and at the pivot point. We address the question of the number of modes in a Bayesian model selection way (Sahni et al. 2004; Lidsey 2004). A through this method has recently attracted some criticism (Efstathiou 2008) it provides a well de ned framework to establish the signi cance of number of modes for a particular survey. It takes into account the goodness of the model compared to a \\

<table>
<thead>
<tr>
<th>Expt.</th>
<th>SNe Ia</th>
<th>WL</th>
<th>CC</th>
<th>BAO</th>
<th>Joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>2(3)</td>
<td>1(3)</td>
<td>1(2)</td>
<td>1(2)</td>
<td></td>
</tr>
<tr>
<td>PS1</td>
<td>-</td>
<td>2(3)</td>
<td>-</td>
<td>1(2)</td>
<td></td>
</tr>
<tr>
<td>W FM OS (IDE)</td>
<td>-</td>
<td>-</td>
<td>3(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W FM OS (DEEP)</td>
<td>-</td>
<td>-</td>
<td>2(4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PS4</td>
<td>2(5)</td>
<td>3(3)</td>
<td>-</td>
<td>1(2)</td>
<td></td>
</tr>
<tr>
<td>EUCLID</td>
<td>-</td>
<td>3(4)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SNAP</td>
<td>2(5)</td>
<td>2(3)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SKA</td>
<td>-</td>
<td>-</td>
<td>10(9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint III</td>
<td>-</td>
<td>-</td>
<td>6(8)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Joint IV</td>
<td>-</td>
<td>-</td>
<td>12(12)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. The number of \(w \)-eigenmodes \(w \) in strong evidence according to Je rey’s scale. The number in brackets are for the biased case, which is the realistic scenario. For each survey, we marginalize over a Planck prior on the cosmological parameters. Note that EUCLID has a BAO component, which we have not analysed in the paper.

10 CONCLUSIONS

In this paper we have studied future constraints on \(w \)-bins for four dark energy probes, Type Ia Supernovae, weak lensing, cluster counts and baryon acoustic oscillations.
be exploited to constrain eight modes for the joint stage III probes and twelve for stage IV. If we include SKA, one question we have not addressed in this paper is how useful surveys are to probe "dark energy" beyond the background evolution, for example by probing structure formation. It is likely that in this context future weak lensing, and to some extend galaxy cluster surveys, will play a pivotal role. To conclude we would argue that all four discussed probes have their merits, but weak lensing and baryon acoustic oscillation surveys seem to bear the largest promise for revealing the nature of the accelerated expansion of the Universe.

ACKNOWLEDGMENTS

We gratefully thank Peter Capak and Huan Lin for kindly providing us with simulation data. We sincerely thank Nick Kaiser for providing us information related to Pan-Starrs. We acknowledge Sarah Bridle, Rob Crittenden, Joshua Frieman, Gert Huts, Ofer Lahav and Antony Lewis for very helpful discussions.

REFERENCES

Abdalla F. B., Rawlings S. C., 2005, M N R A S, 360, 27
Abdalla F. B., Rawlings S. C., 2007, M N R A S, 381, 1313
A B recht A., Skordis C., 2000, Physical Review Letters, 84, 2076
B at tye R. A., Moss A., 2005, Journal of Cosmology and A stro-Particle Physics, 6, 1
Buchert T., 2005, C osmic L a ti tude and Q uantum Gravity, 22, L113

Future Probes of Dark Energy

21

Cole S., et al., 2005, M N R A S, 362, 505
Depp S. N., Padmanabhan T., Bridle S., 2003, M N R A S, 343, 533
Davall G., Turner M. S., 2003, A rX iv A strophysics e-prints
ESA -ScW(2005)1 P lanck - S c ient i f i c Progran m: B luebook. European Space Agency
Heymans et al., 2008, M N R A S, 386, 1323
Huterer D., Takada M., 2005, A stroparticle Physics, 23, 369
Kamionkowski M., 2004, M N R A S, 347, 909