1. Introduction

It is an experimental fact that atmospheric, solar, reactor and accelerator neutrinos change flavour. The present data [1] give the solar lepton mixing angle $\sin^2 \theta_{12} = 0.32$ with a relative error about of $25\% (\theta_3 \neq 0)$, the atmospheric angle $\sin^2 \theta_{23} = 0.5$ with a relative error about of $34\% (\theta_3 \neq 0)$ and $\sin^2 \theta_{13} = 0.05 (\theta_3 \neq 0)$. The complex phase has not been measured. Precise future data might confirm the maximality of the atmospheric angle within 10% error. The best fit values agree very well with the so-called Tri-Bimaximal (TB) lepton mixing matrix [2] where the atmospheric angle is maximal $\sin^2 \theta_{23} = 1/2$, the solar angle is large $\sin^2 \theta_{13} = 1=3$ and $\sin^2 \theta_{13} = 0$. Assuming the charged lepton mass matrix M_1 diagonal, $U_{TB} = \text{Diag}[m_1, m_2, m_3]$ U_{TB} takes the form:

$$M = \begin{pmatrix} 0 & a & b & c & d \frac{2a}{b} & \frac{a}{b} & \frac{a}{b} & \frac{a}{b} & \frac{a}{b} \end{pmatrix}$$

Here M has two important properties: i) it is S_3 invariant, so $\sin^2 \theta_{13} = 0$ and the atmospheric angle $\sin^2 \theta_{23} = 1=3$; ii) $a = b + c + d$ so from the relation

$$\sin^2 \theta_{12} = \frac{8b^2}{(a + b + c)(a + b + c)^2 + 8b^2}$$

(that is always true for S_3 invariant mass matrices [3]) we have that $\sin^2 \theta_{12} = 1=3$. The S_3 invariance in the diagonal charged lepton basis i) can be explained with the permutation symmetry S_3 [4], while the relation ii) is natural in A_4 models.
2. \(A_4\) models and the selecting criteria

\(A_4\) is a finite group of the even permutations of four objects. \(A_4\) is the smallest non-Abelian group that contains a triplet representation. It also contains three distinct singlets \(1;1;1;1\). We can accommodate the three families of fermions both in a triplet and/or in the three singlets representations. In Table I we report all possible assignments with at least one triplet representation. For instance, in ref.\([5]\) \(A_4\) leads to a \(\mathbb{Z}_3\) invariant neutrino mass matrix, therefore \(\nu_1 = \nu_2 = 0\), \(\nu_3\) maximal and \(\nu_2\) can be fitted within the experimental error. Recently in \([6]\) it has been studied a \(\mathbb{Z}_3\) model that predict also the solar angle. To distinguish these models we need some selecting criteria. One possibility could be to study their phenomenological implication:

- the neutrinoless double beta decay rate and the lepton \(CP\) phase;
- the stability under radiative corrections and the deviations from \(\mathbb{Z}_3\) mixing;
- \(LHC\) phenomenology, in instances, Higgs doublets and/or Higgs triplets.

From the theoretical point of view we have at least two general criteria:

- extend \(A_4\) to the strong sector with out spoiling the \(\mathbb{Z}_3\) mixing; explicitly breaking \(A_4\) \([7]\) assign \(q_L\) and \(q_R\) differently to \(A_4\) \(\mathbb{Z}_{n_1} \cdots \mathbb{Z}_{n_k}\) \([8]\); extra di mensions \([9]\);
- extend the \(A_4\) symmetry to grand unified models (GUT) \([9,10,16]\).

3. \(A_4\) and \(SO(10)\) grand unified model

In \(SO(10)\) all the SM matter fields belong to one 16-multiplet. Neutrinos get small masses in a natural way through the seesaw mechanism since the right-handed neutrinos get Majorana masses at the unification scale while the Dirac masses can have values at the electroweak scale. \(SO(10)\) forces to assign left and right handed fields in one triplet of \(A_4\) giving strong constraints in the model building. First we give an example at the electroweak scale compatible with such a matter assignment. Consider the following

\[
\begin{array}{lcccccc}
\text{SM} & L_1 & N_i^c & R_i & e & \nu & \text{References} \\
\hline
\text{type-I} & & & & & & \\
I & 1;1;1;1^3 & 3 & 3 & [5,6,7,11] \\
II & 1;1;1;1^3 & 3 & 3 & [14] \\
III & 1;1;1;1^3 & 3 & 3 & [15] \\
IV & 1;1;1;1^3 & 3 & 3 & - \\
V & 1;1;1;1^3 & 3 & 3 & - \\
VI & 1;1;1;1^3 & 3 & 3 & - \\
\hline
\text{type-II} & & & & & & \\
I & 1;1;1;1^3 & 3 & - & [12] \\
II & 1;1;1;1^3 & 3 & - & [13] \\
III & 1;1;1;1^3 & 3 & - & - \\
\end{array}
\]

Table I. \{ Different \(A_4\) matter assignments for type-I and II seesaw. \}

At the leading order and \(0\) interact respectively only with the charged and neutral sectors. When \(h_i = 1;1;1;1\), \(M-i\) is diagonalize from the magic matrix \(U_1\), see \([14]\). If
that has the properties i) and ii). Here we have used the relation \(m_D \) that is a consequence of the model. Such a relation could be a problem since in SO(10) we expect \(m_D \) to be wrong. This argument seems against SO(10) A4. In [16] we have studied the possibility to distinguish up quark and Dirac neutrinos through dimension six operators showed in Fig.(1) where \(16, s \) are extra messenger fields. When the adjoints \(45_x \) and \(45_y \) take the respective charge, such operators do not contribute to the Dirac neutrino.

REFERENCES

[16] S. Morisi, M. Pieriello and E. Torrente-Lujan, PRD, 75 (2007);