A utomatised full one-loop renormalisation of the MSSM I: The Higgs sector, the issue of tanβ and gauge invariance

N. Baro1), F. Boudjemâa1) and A. Semenov2)

1) LAPTH, Université de Savoie, CNRS, BP 110, F-74941 Annecy-le-Vieux Cedex, France
2) Joint Institute of Nuclear Research, JINR, 141980 Dubna, Russia

Abstract
We give an extensive description of the renormalisation of the Higgs sector of the minimal supersymmetric model in SloopS. SloopS is an automated code for the computation of one-loop processes in the MSSM. In this paper, the first in a series, we study in detail the non-gauge invariance of some definitions of tanβ. We rely on a general non-linear gauge fixing constraint to make the gauge parameter dependence of different schemes for tanβ at one-loop explicit. In so doing, we update, within these general gauges, an important Ward-Slavnov-Taylor identity on the mixing between the pseudo-scalar Higgs, A^0, and the Z^0. We then compare the tanβ scheme dependence of a few observables. We find that the best tanβ scheme is the one based on the decay $A^0
ightarrow τ^+τ^−$ because of its gauge invariance, being unambiguously defined from a physical observable, and because it is numerically stable. The oft used DR scheme performs almost as well on the last count, but is usually defined from non-gauge invariant quantities in the Higgs sector. The use of the heavier scalar Higgs mass in lieu of tanβ, though related to a physical parameter, induces too large radiative corrections in many instances and is therefore not recommended.
1 Introduction

Were it not for the radiative corrections to the lightest Higgs mass \([1]\), the minimal supersymmetric model or MSSM would have been a forgotten elegant model a long time ago. Indeed, at tree-level the mass of the lightest Higgs is predicted to be less than the mass of the \(Z^0\) boson, \(M_{Z^0}\). That would have been a reality from a model whose most appealing and finest partion was to solve the hierarchy problem and make the Higgs mass one natural, beside providing a very good Dark Matter candidate. The renormalisation of the Higgs sector of the MSSM is therefore in part. It is also in part because it provides a link to the other parameters of the Standard Model, namely all the masses of the particles. It also encodes another parameter that can be seen to describe the relative scale of the two vacuum expectation values needed for each Higgs doublet of the SM, often referred to as tan \(b\) and which permeates all the other sectors of the MSSM: the gaugino/higgsino sector and the fermion sector. Many renormalisation schemes or definitions of this parameter are unsatisfactory, as we will see, mainly because they lack a direct physical interpretation or do not correspond to a physical and gauge independent parameter.

The aim of this paper is to give an extensive description of the renormalisation of the Higgs sector in SloopS at one-loop. SloopS is a fully automated code for the one-loop calculation of any cross section or decay in the MSSM at one-loop. Although there have been a few studies of the renormalisation of the Higgs sector,
(see \[4,5\] for a recent review of the Higgs in supersymmetry) some perform even beyond the one-loop approximation especially as concerns the mass of the lightest CP-even Higgs \([6,7]\), looking at the problem afresh while keeping the issue of gauge invariance in mind, will prove rewarding. Moreover our motivation in developing SloopS was also to have a full one-loop renormalisation of all the sectors of the MSSM in a coherent way and therefore the study of the Higgs sector is a first step. We will point at the non-gauge invariance of some definitions of tan \(b\). Although this has been known, see for example \([8]\), and pointed out at two-loop in the usual linear gauge \([9]\), most practitioners have kept the usage of some non-gauge invariant definitions of tan \(b\) because of their simplicity at the technical level being based on definitions involving two-point function selfenergies. With the automation of the loop calculations, considerations and definitions of tan \(b\) based on three-point functions (decays) are hardly more involved than those based solely on two-point functions describing selfenergies, including transitions.

In the approach adopted within SloopS, we strive for an on-shell, OS, renormalisation scheme in particular for tan \(b\). We rely on a general non-linear gauge fixing constraint to make the gauge parameter dependence of different schemes for tan \(b\) at one-loop explicit. In so doing we redefine and update the Ward-Slavnov-Taylor identity on the \(A^S\) boson, \(W\) mixing in the non-linear gauge. We then compute qualitatively and quantitatively the tan \(b\) scheme dependence of a few observables. \(A^S\) is the CP-odd Higgs scalar and \(H^\pm\) are the charged Higgses. We end that the best tan \(b\) scheme is the one based on the decay \(A^S\to W^+\) because of its gauge invariance, being unambiguously defined from a physical observable, and because it is numerically stable. The oft used DR scheme performs as well on the last count, but is usually defined from non-gauge invariant quantities in the Higgs sector. The use of the heavier CP-even scalar Higgs mass in lieu of tan \(b\) though related to a physical parameter induces too large radiative corrections in many instances and is therefore not acceptable. It has been argued that the definitions within the Higgs sector may be considered universal compared to a definition involving a particular Higgs decay for example. However, as stressed in \([5]\), staying within the confines of the Higgs sector and the Higgs potential, one faces the issue that many definitions may be basis dependent, as we will see this will translate at one-loop into issues about gauge invariance for these definitions. As concerns the application to the corrections to the lightest Higgs mass our one-loop treatment is certainly not up-to-date, however our motivation is to stress the gauge dependence issues and compare the impact of the scheme dependence for tan \(b\) for any observable starting for those directly related to the properties of the Higgses of the MSSM, before reviewing in our forthcoming studies \([23]\) the
in pact of tan β on observables in the charginos/neutralinos as well as the sfermion sectors. We feel that this issue is of importance as is a consistent one-loop OS implementation.

The present paper is organised as follows. In Section 2 we review the Higgs sector of the MSSM at tree-level. This may, by now, be considered trivial but it is a necessary step before we embark on the renormalisation procedure. We also detail this part in order to show what might qualify as a physical basis independent observable. Section 3 presents the non-linear gauge xing condition that we use. This includes 8 gauge xing parameters which are crucial in studying many issues related to gauge invariance that are not easily uncovered when one works within the usual linear gauge. Section 4 constitutes the theoretical core of our analyses and deals with renormalisation, introducing counterterms for the Lagrangian parameters and the field renormalisation constants. We expose our renormalisation conditions and update the Slavnov-Taylor identities involving the $A^0 - Z^0$ and $H^0 - W^\pm$ transitions. Section 5 is devoted to defining $\tan \beta$. We consider a few schemes. Before turning to applications and numerical results we briefly describe how our automatic code is set-up in Section 6. In Section 7 a numerical investigation of the scheme dependence and gauge dependence of these schemes is studied taking as exam ples loop corrections to Higgs masses, decays of the Higgs bosons to fermions and to gauge and Higgs bosons. Section 8 gives our conclusions. The paper contains two appendices. Appendix A details the derivation of Slavnov-Taylor identity for the $A^0 - Z^0$ transition. Field renormalisation may be introduced at the level of the unphysical fields before rotation to the physical fields is performed. Appendix B relates these field renormalisation constants on the Higgs fields to the one we introduce directly after the physical fields are defined. This may help in comparing different approaches in the literature.

To avoid clutter we use some abbreviations for the trigonometric functions. For example for an angle θ, $\cos \theta$ will be abbreviated as c, etc... so that we will from now on use t for $\tan \theta$.
where,

\[
V_{\text{linear}} = m_2^2 v_1 + m_{12}^2 v_2 + \frac{g^2 + g'^2}{8} (v_1^2 - v_2^2) v_1 \\
+ m_2^2 v_2 + m_{12}^2 v_1 + \frac{g^2 + g'^2}{8} (v_1^2 - v_2^2) v_2 \\
T_{\frac{1}{2}}^0 + T_{\frac{1}{2}}^0 \tag{2.5}
\]

and

\[
V_{\text{mass}} = \frac{1}{2} \begin{pmatrix} 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \end{pmatrix} m_2^2 + \frac{g^2 + g'^2}{4} (v_1^2 - v_2^2) v_1 v_2 \\
\text{with} \quad N_{GP} = v_2 v_2 - v_1 v_1 \text{ :} \tag{2.6}
\]

It is illuminating to express the mass matrices in terms of the tadpoles especially for the pseudo-scalar states

\[
M_0^2 = \begin{pmatrix} 0 & 1 \\
T_{\frac{1}{2}}^0 & 0 \\
0 & T_{\frac{1}{2}}^0 \\
0 & 0 \end{pmatrix} A \begin{pmatrix} m_2^2 & N_{GP} \\
v_1 v_2 & 0 \\
v_1 v_2 & 0 \\
v_1 v_2 & 0 \end{pmatrix} \\
N_{GP} = v_2 v_2 - v_1 v_1 \tag{2.7}
\]

The requirement that \(v_1\) and \(v_2\) correspond to the true vacua is a requirement on the vanishing of the tadpoles. The tadpoles, by the way, are also a trade-off for \(m_0^2\) and \(m_2^2\). Indeed note that expressing everything in terms of \(T_{\frac{1}{2}}^0\), all explicit dependence on \(m_1^2\) and \(m_2^2\) has disappeared, even in the scalar (CP-even) sector. Note that once the tadpole condition has been imposed

\[
T_{\frac{1}{2}}^0 = 0; \tag{2.8}
\]

we immediately find that in both the charged sector and pseudo-scalar sector, there is a Goldstone boson (i.e. a zero mass eigenvalue). This is immediate from the fact that

\[
\det(N_{GP}) = 0; \tag{2.9}
\]

The masses of the physical charged higgs, \(M_H\) and the pseudoscalar higgs, \(M_A^0\), are then just set from the invariant obtained from

\[
\text{Tr}(N_{GP}) = v_1^2 + v_2^2 = v^2; \tag{2.10}
\]

which is another way of seeing that the combination \(v\) is a proper observable. Indeed after gauging we will find that the masses of the weak gauge bosons are

\[
M_\omega^2 = \frac{1}{4} g^2 v^2; \tag{2.11}
\]

\[
M_{Z_0}^2 = \frac{1}{4} (g^2 + g'^2) v^2.
\]
Then

\[M_{A^0}^2 = \text{Tr} M_{A^0}^2 = m_{12}^2 \frac{v^2}{v_1 v_2} = m_1^2 + m_2^2; \tag{2.12} \]

\[M_H^2 = M_{A^0}^2 + M_{Z^0}^2; \tag{2.13} \]

In Eq. (2.12), the first equality does not show an explicit dependence on the ratio of vev (t), but not through \(m_1^2 + m_2^2 \). The latter must be basis independent, as it is the combination \(m_{12}^2 = v_1 v_2 \). This is to keep in mind.

It is also interesting to note that for the scalar Higgses, there is a simple sum rule that does not involve any ratio of vev's. Indeed, taking the trace of \(M_{A^0}^2 \) and call the two physical CP-even Higgses \(h^0 \) with mass \(M_{h^0} \), and \(H^0 \) with mass \(M_{H^0} \), that would be obtained after rotation, we get the sum rule

\[M_{h^0}^2 + M_{H^0}^2 = M_{A^0}^2 + M_{Z^0}^2; \tag{2.14} \]

\(h^0 \) will denote the lightest CP-even Higgs. Let us as a book-keeping device introduce the angle \(\theta \).

At the moment this is just to help have easy notations:

\[c = \frac{v_1}{v}; s = \frac{v_2}{v} \] with \(v = \sqrt{v_1^2 + v_2^2}; \tag{2.15} \]

The determinant of the scalar Higgses on the other hand gives

\[M_{h^0}^2 M_{H^0}^2 = M_{A^0}^2 M_{Z^0}^2 c_2^2; \tag{2.16} \]

This shows that if we take \(M_{h^0} = M_{A^0} = M_{Z^0} \) as input parameters, we first derive \(M_{h^0} \) from Eq. (2.13), then \(c_2 \) from Eq. (2.16). In general, with a set of input parameters \(M_{h^0} = M_{A^0} = M_{Z^0} \), \(c_2^2 \) is not guaranteed though. We could of course \(\times c_2^2 \) (t) and derive \(M_{h^0} \) and \(M_{h^0} \), which is what is usually done.

The soft SUSY breaking mass parameters \(m_{12,12} \) can be expressed in terms of the physical quantities, \(M_{A^0}; M_{Z^0} \), and \(c \) (as for example derived from Eqs. (2.14, 2.16)):

\[m_{12}^2 = s^2 M_{A^0}^2 + \frac{1}{2} c_2 M_{Z^0}^2; \tag{2.17} \]

\[m_{12}^2 = \frac{1}{2} s^2 M_{A^0}^2; \tag{2.18} \]

\[m_{22}^2 = c^2 M_{A^0}^2 + \frac{1}{2} c_2 M_{Z^0}^2; \tag{2.19} \]

2.2 Basis and rotations

So far the properties of the physical fields like their masses have been derived without reverting to a specific basis. The angle \(\theta \) defined in Eq. (2.13) was just a book-keeping device. Still, to go from the fields at the Lagrangian level to the physical fields one needs to perform a rotation. This should have no effect on physical observables. This naive observation is in portant especially when we move to one-loop. The rotations we will perform will get rid of field mixing. With the tadpole condition set to zero, it is clear that the pseudoscalar and charged scalar eigenstates are diagonalized through the same unitary matrix. At tree level this is demanded precisely through the same angle \(\theta \) as in Eq. (2.13),

\[N_{U} = U(\theta) 0 \quad 0 \quad U(\theta); U(\theta) = \begin{pmatrix} c & s \\ -s & c \end{pmatrix}; U^Y(\theta) = U(\theta); \tag{2.20} \]

Call \(T_v \), the tadpole matrix defined as

\[T_v = \begin{pmatrix} 0 & T_v \\
\bar{T}_v & 0 \end{pmatrix}; \tag{2.21} \]

\[\begin{pmatrix} 0 & 1 \\ 0 & v_2 \end{pmatrix} \]

\[\begin{pmatrix} 0 & 1 \\ 0 & v_2 \end{pmatrix} \]
The diagonalisation produces other, sometimes useful, constraints and relations:

\[M_{h^0}^2 = M_{A^0}^2 s^2 + M_{h^0}^2 c^2 \]
\[M_{A^0}^2 = M_{h^0}^2 c^2 + M_{A^0}^2 s^2 \]
\[M_{A^0}^2 s_{2\gamma} = M_{A^0}^2 c_{2\gamma} \]
\[t_{Z^0} = t_{A^0} \frac{M_{Z^0}^2 + M_{h^0}^2}{M_{A^0}^2 + M_{h^0}^2} \]

Note that in the decoupling limit, \(M_{A^0} \rightarrow M_{Z^0} \), one has an exact decoupled one of the Higgs doublet, the other has the properties of the SM Higgs doublet. The decoupling parameter is also measured with the parameter \(M_{A^0}^2 \rightarrow M_{h^0}^2 \) for \(M_{Z^0} \rightarrow M_{h^0} \).

Therefore, the mass eigenstates in the Higgs sector are given by:

\[G^0 = U(\gamma) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]
\[A^0 = U(\gamma) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
\[H^0 = U(\gamma) \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
\[h^0 = U(\gamma) \begin{pmatrix} 1 \\ 0 \end{pmatrix} \]

2.3 Counting parameters

Before we embark on the technicalities of renormalisation and the choice of judicious input parameters, it is best to review how we are going to proceed in general and how to make contact with the renormalisation of the SM. This will help clarify what are the fundamental parameters and which are the physical parameters that can be used for a legitimate renormalisation scheme. Moreover, since some observables belong to the SM, like the \(W^+ \) and \(W^- \), masses and the electromagnetic coupling constants which are used as physical input parameters in the OS scheme, isolating these three parameters means that their renormalisation will proceed exactly as within the OS renormalisation of the SM, see [2] for details.

In the SM, the fundamental parameters at the Lagrangian level for the gauge sector are \(g \) and \(\phi \). The Higgs potential with the Higgs doublet \(H \)

\[V(H) = \frac{1}{2} H^T H + (H^T H)^2 \]
\[\phi_0^2 = \frac{\phi^2}{2} \]
\[0 \]
\[0 \]
\[; \]
\[0 \]
\[0 \]

\[\]
furnishes the following: \(2 \) (the Higgs mass \(m_H \)), \(\beta \) (the Higgs self-coupling) and \(\Gamma \) (the value of the vacuum expectation value). We thus have at Lagrangian level, 5 parameters between the Higgs sector and the gauge sector. \(\beta, \beta' \) are not all independent. \(\beta, \) the vacuum expectation value (vev), is defined as the minimum of the potential, this is equivalent to requiring no tadpoles. The no tadpole requirement amounts to no terms linear in the scalar Higgs. With the tadpole defined as \(T, \) we have at tree-level

\[
T = \beta^2 v^2 \Gamma ! 0; \tag{2.32}
\]

This requirement ent is to be carried to any loop level. Out of this constraint, the 5 physical parameters in the OS scheme are \(\beta M_w, \beta Z, \beta H, \beta T. \) At all orders one defines \(c_w = M_w, \) \(c_H. \) The latter is not an independent physical parameter. Therefore in the SM a one-to-one mapping between the physical set \(\beta M_w, \beta Z, \beta H, \beta T \) and the Lagrangian parameters \(g; \beta^2 v; \beta \) is made.

In the MSSM, the Higgs sector furnishes \(m_{1 \frac{1}{2}} m_{\frac{3}{2} 2} m_{12} \) the Higgs doublets soft masses and \(v_1, v_2 \) the vev of the Higgs doublets. The gauge sector is still governed by the \(U(1) \) and \(SU(2) \) gauge couplings \(\beta g^2. \) The requirement ent of no tadpoles from both Higgs doublets, and hence any linear combination of them, is also a strong constraint. From these seven parameters in all, the physical parameters are usually split between the SM physical O non-shell parameters

\[
e\beta M_w, \beta Z; \tag{2.33}
\]

which are a trade-off for \(\beta g^2 v^2 = v_1^2 + v_2^2 \) and the MSSM Higgs parameters

\[
M_s; \beta T; \beta T; \beta \phi \phi; \tag{2.34}
\]

which are a trade-off for \(m_{1 \frac{1}{2}} m_{\frac{3}{2} 2} m_{12} v_2 = v_1. \) At tree-level we can set \(t = v_2 = v_1 \) but this is, as yet, not directly related to an observable. While \(\beta, \) the Higgs boson mass, and the ratio \(v_2 = v_1 \) within the Higgs sector does not have an immediate simple physical interpretation, hence the difficulty with this Lagrangian parameter. One possibility is to trade it with the mass of one of the CP-even neutral Higgs through Eq. (2.16).

3 Non-linear gauge xing

In SloopS we have generalised the usual \(H \) O Hoft: linear gauge condition to a more general non-linear gauge that involves, thanks to the extra scalars in the Higgs sector, two extra parameters \(\gamma; \gamma'; \) the vev of the Higgs doublets. Such gauges with the Standard Model had proved useful and powerful[19] to check the correctness of the calculation. We have also exploited these gauges in the one-loop calculation of \(\gamma, \gamma' \) and to corrections to the relic density in [2]. A 7-parameter non-linear gauge xing Lagrangian based on the one we introduce here is used in [23]. We can extend this non-linear gauge xing so that the gauge- xing function involves the squarks also. We refrain, in this paper, from working through this generalisation.

Without these gauge xing terms to be renormalised. In particular the gauge functions involve the physical masses. As though this would maked all Green's functions finite, it is enough to make all S-matrix elements finite. The gauge xing writes

\[
L^{GF} = \frac{1}{w} \bar{F}^* \bar{F} + \frac{1}{2} \bar{F}^2 \bar{f} + \frac{1}{2} \bar{F} f ; \tag{3.1}
\]

where

\[
F^* = (\bar{e} - \frac{\alpha_w}{2 M_w} \bar{\gamma}_W) W^* + i \frac{\alpha_w}{2 M_w} (v + H^0 + h^0 + i-A^0 + i-G^0) G^* ;
\]

\[
F^2 = \bar{e} \bar{Z} + \frac{\alpha_w}{2 M_w} (v + H^0 + h^0) G^0 ;
\]

\[
F = 0 ; \tag{3.2}
\]
The ghost Lagrangian $L_{\bar{G}}^h$ is derived by requiring that the effective Lagrangian, L^0, be invariant under the BRST transformation. As discussed in \[3\], this is a much more appropriate procedure than the usual Faddeev-Popov approach especially when dealing with the quantum symmetries of the generalized non-linear gauges we are using. $BRSL_{\bar{G}}^F = 0$ therefore implies $BRSL_{\bar{G}}^G = BRSL_{\bar{G}}^h$.

It is very useful to also introduce the auxiliary B - eld from solution of the gauge - xing Lagrangian $L_{\bar{G}}^F$, especially from the perspective of deriving some Ward identities. The gauge xing can then be expressed as

$$L_{\bar{G}}^F = W B^*B + \frac{z}{2} B^Z \bar{j} + \frac{z}{2} B \bar{j} + B F^* + B F^* + B Z F^Z + B F :$$

From the equations of motion for the B - eld B we recover the usual $L_{\bar{G}}^F$, together with the condition $B_i = F_i (i = f, g)$. The anti-ghost, \bar{c}, is defined from the gauge xing functions, we write

$$BRSC = B^i :$$

Then the ghost Lagrangian writes as

$$L_{\bar{G}}^h = (B_{\bar{G}} F^* + B_{\bar{G}} F^* + B_{\bar{G}} F^2 + B_{\bar{G}} F^2 + B_{\bar{G}} F^2)_{BRSL_{\bar{G}}^F} :$$

The Faddeev-Popov prescription is therefore readily recovered, $L_{\bar{G}}^F$, but only up to an overall function, $BRSL_{\bar{G}}^h$, which is BRST invariant. The latter is set to zero for one-loop calculations. Our code SloopS in plans this prescription automatically leading to the automatic generation of the whole set of Feynman rules for the ghost sector.

For all applications we set the Feynman parameters $w \neq 1$ to one. This allows one to use the minimum set of libraries for the tensor reduction. Indeed, $w \neq 1$ can generate high rank tensor loop functions, that would take much time to reduce to the set of scalar functions.

It is important to stress, once more, that since we do not seek to have all Green's functions of the real S - m atrix elements, we take the gauge xing Lagrangian as being renormalised.

Judicious choices of the the non-linear gauge parameters can lead to simplifications like the vanishing of certain vertices. For example, $w = 1$, the W + G vertex cancels. More examples can be found in Appendix A for the vanishing of some ghost couplings to Higgses.

4 Renormalisation

Our renormalisation procedure is within the spirit of the on-shell scheme borrowing as much as possible from the program we carried strictly within the Standard Model in \[3\]. For the gauge sector and the fermion sector, beside the electromagnetic coupling which we x from the Thomas model, we take therefore the same set of physical parameters, namely the m asses of the W and Z together with the m asses of all the standard m odel fermions. To do ne the Higgs sector parameters, the set of Eq. \[2.34\] looks most appropriate were it not for the ill defined t. Indeed, the mass of the pseudoscalar A_0 within the MSSM with CP conservation is a physical parameter. As within the Standard Model, we also take the tadpole. For t the aim of this paper is to review, propose and compile di erent schemes. Renormalisation of these parameters would then lead to nine S - m atrix elements. For the mass eigenstates and thus a proper identication of the physical particles that appear as external legs in our processes, eld renormalisation is needed. S - m atrix elements obtained from these rescaled Green's functions will lead to external legs with unit residue and will avoid m xing. Therefore one also needs wave function renormalisation of the elds. Especially for the unphysical sector of the theory, the precise choice of the elds rede nition is not essential if one is only interested in S - m atrix elements of physical processes. It has to be stressed that one can do without this if one is willing to include loop corrections on the external
4.1 Shifts in mass parameters and gauge couplings

All elds and parameters introduced so far are considered as bare parameters with the exception of the singlet rotation Lagrangian which we choose to write in terms of renormalised elds. Care should be exercised when we split the tree-level contributions and the counterterms. Shifts are then introduced for the Lagrangian parameters and the elds with the notation that a bare quantity is labelled as \(X \). It will split in terms of renormalised quantities \(X \) and counterterms \(\delta X \)

\[
\begin{align*}
g_0 &= g + g_i; \quad g^{00} = g^{00} + g^{00}; \\
m^2_{ij} &= m^2_{ij} + m^2_{ij} \quad \text{for } i = 1; 2; \quad m^2_{120} = m^2_{12} + m^2_{12}; \\
V_{ij} &= V_{ij} \quad \text{for } i = 1; 2 \quad \text{hence} \quad \frac{t}{t} = \frac{v_1}{v_1} \quad \frac{v_2}{v_2};
\end{align*}
\]

In our approach the angles defining the rotation matrices, and in Eq. (2.30) are defined as renormalised quantities. For example, the relation between the Goldstone boson/pseudoscalar Higgs boson and the eld \(r_{12} \) is maintained at all orders. Indeed,

\[
\begin{align*}
G^0_{A0} &= U() \quad r_{12}^0 \quad \text{implies also} \quad G^0_{A0} &= U() \quad r_{12}^0 \\
\end{align*}
\]

Since in our approach we will always perform a eld renormalisation there is no need in inducing more shifts from \(U() \). Therefore \(U() \) is taken as renormalised. For example, if we perform a eld renormalisation in the \(r_{12}^0 \) basis

\[
\begin{align*}
r_{12}^0 &= Z_{12} \quad r_{12}^0 = \frac{Z_{12}}{Z_{12}} \quad Z_{12} = 1; 2 \\
\frac{Z_{12}}{Z_{12}} &= \frac{Z_{12}}{Z_{12}} \quad \frac{1}{Z_{12}} \quad \frac{1}{Z_{12}} \\
\end{align*}
\]

this will imply

\[
\begin{align*}
G^0_{A0} &= U()Z_{12}U() \quad G^0_{A0} = Z_{12} \quad G^0_{A0} = Z_{12} \quad G^0_{A0} = \frac{Z_{12}}{Z_{12}} \quad \frac{Z_{12}}{Z_{12}} \\
\end{align*}
\]

For the eld renormalisation we can perform this either at the level of the \(r_{12}^0 \), i.e., before any rotation on the eld in the Lagrangian is made, through \(Z_{12} \) as is done in Eqs. (4.4) or in a much easier way directly in the basis \(G^0_{A0} \) since the latter are directly related to our renormalisation conditions on the physical elds as we will see later. For instance, there is no need for \(Z_{12} \) in our approach since we will not be dealing with Goldstone bosons in the external legs.

4.2 Tadpole terms

We start with the terms linear in the Higgs elds which will lead to renormalisation of the tadpoles. With the tree-level condition on the tadpoles \(T_{11} = T_{22} = 0 \), eld renormalisation if it were performed does not contribute; we therefore have

\[
V_{\text{linear}} = \left(T_{0}^{0} + T_{0}^{0} \right);
\]

\[
\text{In the M SSM and in the Higgs sector in particular, mixing effects, especially at one-loop, are a nuisance that has introduced some confusion especially in defining the help of wave-function renormalisation can be achieved equivalently from two-point function describing particle mixing. For the Higgs sector one needs to be wary about mixing of the Goldstone with CP-odd Higgs or almost equivalently between the } Z^0 \text{ and the CP-odd Higgs or the } W^+ \text{ and the charged Higgs. These two-point functions are related through gauge invariance and pose strong constraints on the wave function renormalisation constants. We will derive Ward-Slavnov-Taylor identities relating these two-point functions, and hence their associated counterterms, before in posing any ad-hoc condition.}
\]
with
\[
\frac{T_i}{v_1} = \frac{M_0^2}{2} C_2 \left(\frac{g^2 + g^2}{g^2 + g^2} + m_1^2 + \frac{M_0^2}{2} C_2 \right) \left(\frac{\bar{v}_1}{v_1} \right) + m_{12}^2 + \frac{M_0^2}{2} s_2 t \frac{\bar{v}_1}{v_1} \right) \frac{v_1}{v_2} \right)
\]

\[
\frac{T_i}{v_2} = \frac{T_0}{v_1} (v_1 \$, $ v_2; m_1 \$, $ m_2) .
\]

(4.8)

The minimum condition requires the one-loop tadpole contribution generated by one-loop diagram s, T_i^{loop}, is cancelled by the tadpole counterterm. This imposes

\[
T_i = T_i^{\text{loop}} .
\]

(4.10)

T_i^{loop} is calculated from the one-loop tadpole amplitude for H^0, $T_{iH^0}^{\text{loop}}$ and h^0, $T_{iH^0}^{\text{loop}}$ by simply moving to the physical basis

\[
T_i^{\text{loop}} = C \cdot S \cdot T_{iH^0}^{\text{loop}} .
\]

(4.11)

4.3 Mass counterterm s in the Higgs sector

We now move to the mass counterterms induced by shifts in the Lagrangian parameters. We need to consider all terms bi-linear in the ϵs. From the bare matrices M_{i0}^2, M_i^2, and M_{i0}^2 (Eqs. (2.8), (2.22) - (2.24)), we end the corresponding counterterms in matrix form in the basis $\{0, \mu, \mu, \mu\}$

\[
M_{\mu0} = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} S_2
\end{pmatrix}
\]

\[
M = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
M_{\mu0}^2 = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
T_{iH^0}^{\text{loop}} = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
M_{\mu0}^2 + \frac{1}{4} C_2 M_{0\mu}^2 + \frac{1}{2} \frac{S_2}{2} + \frac{M_0^2}{2} \frac{S_2}{2}
\]

\[
M_{\mu0}^2 = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
T_{iH^0}^{\text{loop}} = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
M_{\mu0}^2 + \frac{1}{4} C_2 M_{0\mu}^2 + \frac{1}{2} \frac{S_2}{2} + \frac{M_0^2}{2} \frac{S_2}{2}
\]

\[
M_{\mu0}^2 = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
T_{iH^0}^{\text{loop}} = \begin{pmatrix}
0 & m_1^2 + \frac{1}{2} C_2 & M_{0\mu}^2 & \frac{M_0^2}{2} \frac{S_2}{2}
\end{pmatrix}
\]

\[
M_{\mu0}^2 + \frac{1}{4} C_2 M_{0\mu}^2 + \frac{1}{2} \frac{S_2}{2} + \frac{M_0^2}{2} \frac{S_2}{2}
\]

It is then straightforward to move to the physical basis through the rotation matrices $U\{v\}$ and $U\{\bar{v}\}$, to end the mass counterterms M_{AA}, M_{HH}, M_{H^0}, M_{H^0}, M_{H^0}, and M_{H^0} for, respectively, the pseudoscalar Higgs, A^0, the charged Higgs H^\pm, and the two CP-even Higgses h^0, H^0. A mass mixing between these two Higgses, $M_{H^0 h^0}$ is also induced.
\[M_{A_0}^2 = s^2 m_1^2 + c^2 m_2^2 + s_s^2 + \frac{1}{2} c_2^2 M_{Z_0}^2 + \frac{m_2^2}{2} s_2^2 c_2 \frac{t}{t}; \]

\[M_H^2 = M_{A_0}^2 + M_W^2; \]

\[M_{h_0}^2 = c_2^2 m_1^2 + s_s^2 + s_2^2 \]
\[+ \frac{1}{2} 4 (c^2 c^2 + s_s^2 c c) (M_{Z_0}^2) \frac{1}{2} M_{Z_0}^2 s_2^2 2 c_2 s_2 + s_2 c_2 \frac{t}{t}; \]

\[M_{h_0}^2 = s^2 m_1^2 + c^2 m_2^2 + s_s^2 + \frac{1}{2} 4 (c^2 s_s^2 + s_s^2 c c) (M_{Z_0}^2) \frac{1}{2} M_{Z_0}^2 s_2^2 2 c_2 s_2 + s_2 c_2 \frac{t}{t}; \]

\[M_{h_0}^2 = c_2 m_1^2 + \frac{1}{2} s_2^2 (m_2^2 - m_1^2) \]
\[-\frac{1}{2} 2 s_2 c_2 + s_2 c_2 M_{Z_0}^2 + \frac{m_2^2}{2} s_2^2 2 s_2 s_2 c c \frac{t}{t}; \] (4.12)

A mass term seems to be induced for the Goldstone bosons as well as a mixing between the Goldstones and the corresponding CP-odd Higgs

\[M_{G_0}^2 = c^2 m_1^2 + s^2 m_2^2 + s_2^2 \]
\[+ \frac{1}{2} 2 c_2^2 M_{Z_0}^2 \frac{1}{2} M_{Z_0}^2 s_2^2 c_2 \frac{t}{t}; \] (4.13)

\[M_G^2 = M_{G_0}^2; \] (4.14)

\[M_{G_A}^2 = c_2 m_1^2 + c c (m_2^2 - m_1^2) \]
\[\frac{1}{2} c_2 s_2 M_{Z_0}^2 + \frac{m_2^2}{2} s_2^2 c c \frac{t}{t}; \] (4.15)

\[M_{G_H}^2 = M_{G_A}^2; \] (4.16)

It is more transparent to re-express these mass counterterms by trading \(m_{1_2} \) and \(m_{1_2} \) with our input parameters \(t_{1_2}; M_A^2; t \) through

\[m_1^2 = c^2 s^2 + 1 \]
\[\frac{T}{v_1}; \]
\[c^2 s^2 \]
\[\frac{T}{v_2}; \]
\[s^2 \]
\[\frac{T}{v_1}; \]
\[+ c^2 \]
\[\frac{T}{v_2}; \]
\[M_A^2; \]
\[\frac{1}{2} c_2 \]
\[M_{Z_0}^2 + \frac{1}{2} s_2^2 \]
\[(M_A^2 + M_{Z_0}^2) \frac{t}{t}; \]

\[m_{1_2}^2 = \frac{1}{2} s_2^2 \]
\[\frac{T}{v_1}; \]
\[c^2 \]
\[\frac{T}{v_2}; \]
\[M_A^2; \]
\[\frac{1}{2} c_2 \]
\[M_{Z_0}^2 + \frac{1}{2} s_2^2 \]
\[(M_A^2 + M_{Z_0}^2) \frac{t}{t}; \] (4.17)

\[m_2^2 = c^2 s^2 \]
\[\frac{T}{v_1}; \]
\[s^2 \]
\[\frac{T}{v_1}; \]
\[+ c^2 \]
\[\frac{T}{v_1}; \]
\[M_A^2; \]
\[\frac{1}{2} c_2 \]
\[M_{Z_0}^2 + \frac{1}{2} s_2^2 \]
\[(M_A^2 + M_{Z_0}^2) \frac{t}{t}; \]
In terms of $T_{1/2}$; $M_{A^0}^2$; t, the mass counterterms of Eq. (4.12) and Eq. (4.14) write

$$M_{G^0}^2 = M_G^2 = \frac{1}{v} (s T_{H^0} + c T_{h^0});$$

$$M_{G^0_{A^0}}^2 = \frac{1}{v} (s T_{H^0} + c T_{h^0}) \approx \frac{M_{A^0}^2}{2};$$

$$M_{G^0_{H^0}}^2 = \frac{1}{v} (s T_{H^0} + c T_{h^0}) \approx \frac{M_{H^0}^2}{2};$$

$$M_R^2 = M_{A^0}^2 + M_W^2;$$

$$M_{h^0}^2 = \frac{1}{v} c s^2 T_{H^0} + s (1 + c^2) T_{h^0} + c^2 M_{A^0}^2 + s^2 M_{Z^0}^2 + s^2 T_{h^0} + c^2 M_{A^0}^2 + c^2 M_{Z^0}^2$$

$$+ s^2 S_2(\phi) M_{Z^0}^2 \frac{t}{T};$$

$$M_{H^0}^2 = \frac{1}{v} c (1 + s^2) T_{H^0} + s c^2 T_{h^0} + s^2 M_{A^0}^2 + c^2 M_{Z^0}^2$$

$$+ s^2 S_2(\phi) M_{Z^0}^2 \frac{t}{T};$$

$$M_{h^0}^2 = \frac{1}{v} s^3 T_{H^0} + c T_{h^0} + \frac{1}{2} s^2 (M_{A^0}^2 + \frac{1}{2} M_{Z^0}^2 + s^2 T_{h^0})$$

$$+ M_{Z^0}^2 S_2(\phi) \frac{t}{T};$$

(4.18)

It is very satisfying to see that $M_{G^0}^2 = M_G^2$ is accounted for totally by the tadpole counterterms.

4.4 Field renormalisation

We can now introduce field renormalisation at the level of the physical fields without the need to first go through field renormalisation in the basis $0\Gamma_0; 0\Gamma_1; 1\Gamma_0$. In most generality we can write, as in Eq. (4.19)

$$G^0 = Z_P^0 G^0; A^0 = Z_{A^0}^0 A^0; G^{1/2} = Z_{A^0}^{1/2} G^{1/2}; A^{1/2} = Z_{A^0}^{1/2} A^{1/2}; G^{0} = Z_{G^0}^0 G^0; Z_{A^0}^{1/2} A^{1/2}; G^{1/2} = Z_{G^0}^{1/2} G^{1/2};$$

$$Z_{G^0}^{1/2} A^{1/2}; G^0 = Z_{G^0}^0 G^0; Z_{G^0}^{1/2} A^{1/2}; G^{1/2} = Z_{G^0}^{1/2} G^{1/2};$$

$$H^0 = Z_C^0 H^0; H^{1/2} = Z_C^{1/2} H^{1/2}; H^0 = Z_C^0 H^0; Z_C^{1/2} H^{1/2}; H^{1/2} = Z_C^{1/2} H^{1/2};$$

$$Z_C^{1/2} H^{1/2}; H^0 = Z_C^0 H^0; Z_C^{1/2} H^{1/2}; H^{1/2} = Z_C^{1/2} H^{1/2};$$

(4.19)

It is always possible to move basis through Eq. (4.19). Field renormalisation will help get rid of mixing between physical fields when these are on-shell and set the residue to 1.
4.5 Self-energies in the Higgs sector

Collecting the contribution of all the counterterms, including wave function renormalisation, the renormalised self-energies write as

\[
\begin{align*}
\hat{\Sigma}^G_0(q^2) & = g^2 G^2 (q^2) + M^2 G (q^2) Z_G^0 \\
\hat{\Sigma}^A_0(q^2) & = g^2 A^2 (q^2) + \frac{1}{2} q^2 \frac{M^2 + M^2_A}{M^2_A} \frac{1}{2} (q^2) Z_A^0 \\
\end{align*}
\]

Note that as we stressed all along, since we are only interested in having finite S-matrix transitions and not finite Green's functions there is no need trying to make all two-point functions finite. For instance the diagonal Goldstone self-energies \(\hat{\Sigma}^G G \) and \(\hat{\Sigma}^G G \) do not need any self-renormalisation. Therefore we can set for example \(Z_G^0 = Z_W = 0 \) for simplicity. \(\hat{\Sigma}^A G \) is also not needed as it is only involved in the transition of Goldstone boson to the pseudo-scalar Higgs.

4.6 \(A^0 Z^0 \) and \(H W \) transitions

The (massive) gauge bosons and the pseudo-scalar mix. This originates from the same part of the gauge Lagrangian where the gauge bosons, at tree-level mix with the Goldstone bosons as in the Standard Model, see for example [9]. The latter is eliminated through the usual 't Hooft gauge fixing. To wit, from

\[
L_0^{G V} = \frac{g}{2} (v_1 \theta_1 + v_2 \theta_2) W^+ W^- + h \varepsilon:
\]

we end up with

\[
L_0^{G V} = L^{G V} + \left(\begin{array}{c}
\frac{1}{2} Z_G + Z_W + \frac{M^2}{M^2 W} (M_W \theta G W^+ + h \varepsilon:)

\frac{1}{2} Z_G + \frac{1}{2} Z_G G^0 + \frac{M^2}{M^2 G} M_W \theta G^0 Z^0

\frac{1}{2} Z_G M_Z \theta G^0

\frac{1}{2} Z_G H + \frac{1}{2} t \theta (M_W \theta H W^+ + h \varepsilon:)

\frac{1}{2} Z_G A^0 + \frac{1}{2} t \frac{1}{M_Z \theta A^0 Z^0:
\end{array} \right)
\]

For the sake of completeness, we have also kept in Eq. (4.21) the wave-function renormalisation constants of the gauge bosons, namely \(Z_W \); \(Z_G G^0 \) and \(Z_G H \) (for the \(Z^0 \) transition), see [9]. The conditions on the latter are the same as in the Standard Model, details are found in [3]. The novelty however is that now we have \(A^0 \), \(Z^0 \) and \(H W \) transitions whose self-energies...
write:

\[
\hat{A}^Z_\omega(q^2) = \hat{A}^Z_\omega(q^2) + \frac{M_Z^2}{2} Z_{G^Z_\omega} + s_2 \frac{t}{t}; \tag{4.22}
\]

\[
\hat{G}^Z_\omega(q^2) = \hat{G}^Z_\omega(q^2) + \frac{M_W^2}{2} Z_{G^W_\omega} + s_2 \frac{t}{t}; \tag{4.23}
\]

Note that apart from the same counterterm \(Z_{G^Z_\omega} \) appears in the \(G^Z_\omega \) transition. In fact there is a \(W \) and identity relating these two transitions. Contrary to what one might see in some papers [16,17,18], the relation is much more complicated for \(q^2 \neq M^2_{\omega} \) and gets more subtle in the case of the non-linear gauge. This identity is very important especially that in many approaches the transition has been used as a definition for \(t \). The identity can be most easily derived by considering the BRST transformation on the \(\langle \text{ghost} \rangle \) operator \(H F_{\bar{x}}(\chi) \langle y | A^Z_\omega (y) | 0 \rangle = 0 \). Full details are given in Appendix A. We have the constraint

\[
q^2 \hat{A}^Z_\omega(q^2) + M_Z^2 \hat{A}^Z_{G_\omega}(q^2) = (q^2 - M^2_{\omega}) \frac{e^2 M_Z^2}{4 y} \frac{s_2}{s_2^{\omega}} G_{\omega A}^{-\omega}(q^2)
\]

\[
+ \frac{M_Z^2}{2} (q^2 - M^2_{\omega}) \frac{2e^2}{4 y} \frac{s_2}{s_2^{\omega}} G_{cc}^{-\omega}(q^2) + s_2 \frac{t}{t} Z_{G_\omega}^{\omega}:
\]

\(G_{\omega A}^{-\omega}(q^2) \) and \(G_{cc}^{-\omega}(q^2) \) are functions defined in Appendix A. They vanish in the linear gauge with \(\omega = \omega = 0 \). The constraint shows that even in the linear gauge \(q^2 \hat{A}^Z_\omega(q^2) + M_Z^2 \hat{A}^Z_{G_\omega}(q^2) \) is zero only for \(q^2 = M^2_{\omega} \) and not for any \(q^2 \). We will get back to the exploitation of this constraint later. A similar constraint relates also \(\hat{G}^Z_\omega(q^2) \)

\[
q^2 \hat{G}^Z_\omega(q^2) + M_W^2 \hat{G}^Z_{G_\omega}(q^2) = (q^2 - M^2_{\omega}) \frac{e^2 M_W^2}{4 y} \frac{s_2}{s_2^{\omega}} G_{\omega W}^{-\omega}(q^2)
\]

\[
+ \frac{M_W^2}{2} (q^2 - M^2_{\omega}) \frac{2e^2}{4 y} \frac{s_2}{s_2^{\omega}} G_{cc}^{-\omega}(q^2) + s_2 \frac{t}{t} Z_{G_\omega}^{\omega}:
\]

\(G_{\omega W}^{-\omega}(q^2) \) and \(G_{cc}^{-\omega}(q^2) \) are defined in Eq. (A.26), see Appendix A.

4.7 Renormalisation conditions

4.7.1 Pole masses, residues and mixing

M masses are defined as pole masses from the propagator. Moreover this propagator must have residue 1 at the pole mass. In the case of particle mixing, the mixing must vanish at the pole mass of any physical particle, i.e., at the pole mass. In general, in the case of mixing this requires solving a system of an inverse propagator matrix with solutions given by the pole masses. For a 2-particle mixing one has to deal with the determinant of a \(2 \times 2 \) matrix which is a quadratic form in the self-energies whose solutions are the correct masses. The equation reads

\[
q^2 M^2_{\omega,\text{tree}} \hat{h}^{\omega}(q^2) - q^2 M^2_{\omega,\text{tree}} \hat{h}^{\omega}(q^2) - q^2 M^2_{\omega,\text{tree}} \hat{h}^{\omega}(q^2) - q^2 M^2_{\omega,\text{tree}} \hat{h}^{\omega}(q^2) = 0; \tag{4.25}
\]

M \(h^\omega_{\text{tree}} \) refers to the tree-level mass. This equation simplifies considerably at one-loop since one only has to keep the linear term, or 1st order in the loop expansion, in the equation. In principle, the argument that appears in the self-energy two-point functions is the pole mass which might get a correction from its value at tree-level. To get the corrections one can proceed through iteration, starting from the tree-level masses as argument ent of the two-point function. Higher order terms in the expansion will appear as higher orders in the loop expansion and we do not count them as being part of the one-loop correction. A genuine one-loop results for the pole mass, \(M_{\omega,\text{loop}} \), starting
from a tree-level mass M_{tree} with $\hat{\Theta}_{ij}(q^2)$ the diagonal renormalised self-energy is therefore the solution of

$$q^2 M_{\text{tree}}^2 \Re \hat{\Theta}_{ii}(q^2) = 0 \quad \text{at} \quad q^2 = M_{\text{1-loop}}^2,$$

which in the one-loop approximation means

$$M_{\text{1-loop}}^2 = M_{\text{tree}}^2 + \Re \hat{\Theta}_{ii}(M_{\text{tree}}^2) = M_{\text{tree}}^2 + M_{\text{1-loop}}^2 + \Re \hat{\Theta}_{ii}(M_{\text{tree}}^2).$$

(4.27)

The latter condition will constrain the Lagrangian parameters with $M_{\text{1-loop}}^2$ a gauge invariant quantity. Likewise, at one-loop, the requirement of a residue equal to one, for the diagonal propagator and vanishing mixing when the physical particle is on-shell leads to

$$\Re \hat{\Theta}_{00}(M_{\text{tree}}^2) = 0 \quad \text{with} \quad \frac{\hat{\Theta}_{00}(q^2)}{q^2} = \hat{\Theta}_{00}(q^2);$$

$$\Re \hat{\Theta}_{ij}(M_{\text{tree}}^2) = 0 \quad \text{in} \quad i \neq j:$$

(4.28)

In our renormalisation program we, Eqs. (4.28) set the scheme renormalisation constants and avoid having to include corrections on the external legs. The scheme renormalisation constants are therefore not necessarily gauge invariant nor gauge parameter independent.

4.7.2 Renormalisation conditions and corrections on the mass parameters

As we have explained earlier one needs to x the counterterms for $M_{A^0}^2$ and τ once tadpole renormalisation has been carried through to arrive at nine and gauge invariant S-matrix elements. Taking $M_{A^0}^2$ as an input parameter means that its mass is set from the same at all orders, we therefore set

$$M_{A^0}^2 = \Re_{A^0A^0}(M_{A^0}^2).$$

(4.29)

Finding a condition to τ, is an arduous task that has been debated for some time. We will study many schemes for τ in Section 5.

The charged Higgs mass is independent of τ, it gets a finite correction at one-loop once $M_{A^0}^2$ is used as an input parameter

$$M_{W^\pm,\mu,\tau,\tilde{\mu}}^2 = M_{W^\pm,\mu,\tau,\tilde{\mu}}^2 + \Re_{A^0A^0}(M_{W^\pm,\mu,\tau,\tilde{\mu}}^2) \Re_{A^0A^0}(M_{A^0}^2) \Re_{\tilde{W}^\pm,\tilde{W}^\pm}(M_{A^0}^2);$$

(4.30)

we have used $M_{W}^2 = \Re_{W^\pm}(M_{W^\pm}^2)$ where $T_{W^\pm}(q^2)$ is the transverse 2-point function of the W following the same in planar notation as performed in [9]. The vanishing of the corrected charged Higgs mass is the most non-trivial check on the code as concerns the Higgs sector.

The sum rule involving the CP-even Higgs mass Eq. (4.26) is also independent of τ. This sum rule gets corrected at one-loop

$$M_{H^0,\mu}^2 + M_{H^\pm,\tau,\tilde{\mu}}^2 = M_{A^0}^2 + M_{Z^0}^2 + \Re_{H^0H^0}(M_{A^0}^2) + \Re_{H^0H^0}(M_{H^0}^2) + \Re_{H^0H^0}(M_{Z^0}^2) + \Re_{H^0H^0}(M_{Z^0}^2) + \Re_{H^0H^0}(M_{Z^0}^2) + \Re_{H^0H^0}(M_{Z^0}^2):$$

(4.31)

Here also we have used $M_{Z^0}^2 = \Re_{Z^0}(M_{Z^0}^2)$ where $T_{Z^0}(q^2)$ is the transverse 2-point function of the Z^0 boson, see [9]. One then uses to predict $M_{Z^0,\mu}^2$ or $M_{H^\pm,\tau,\tilde{\mu}}^2$ one needs a prescription on τ, see Eq. (4.18). Obviously mixing one of these masses, for instance M_{H^\pm} in particular in analogy with M_{A^0}, is a scheme for τ. In this scheme therefore $\Re_{H^\pmH^\pm}(M_{H^\pm}^2) = 0$ which sets a gauge invariant counterterm for τ, see Eq. (5.23).
4.8 Constraining the field renormalization constants

We have introduced through the field renormalisation matrices $Z_p; Z_S; Z_{\phi}$ a total of 12 such constants, see Eq. (4.13). However as argued repeatedly, some of these constants are only involved in the transition involving an external Goldstone bosons, i.e., situations that do not correspond to a physical process. Therefore we can give the constants Z_{ϕ}; Z_ϕ; Z_{ϕ}^ϕ/ϕ; Z_{ϕ} any value, such that all elements will not depend on these constants. It is therefore easiest to set these 4 constants to 0 in actual calculations and give them arbitrary values in preliminary tests of a calculation of a physical process.

For the transitions involving physical Higgs particles we just go along the general lines described in Section 4.7, in order to avoid loop corrections on the external legs. In the following, in order to avoid too much clutter the m masses that will appear as argument are the tree-level masses (or the input mass for M_{A^0}). The conditions read

$$\text{Re}^0_{A^0} (M_{A^0}^2) = 0;$$
$$\text{Re}^0_{H^0} (M_{H^0}^2) = 0;$$
$$\text{Re}^0_{H^0 / H^0} (M_{h^0}^2) = 0; \quad \text{Re}^0_{H^0 / h^0} (M_{h^0}^2) = 0;$$

From these we immediately derive 6 out of the 8 field renormalisation constants in the Higgs sector

$$Z_{A^0} = \text{Re}^0_{A^0} (M_{A^0}^2);$$
$$Z_{\phi} = \text{Re}^0_{H^0 / H^0} (M_{H^0}^2);$$
$$Z_{\phi} = \text{Re}^0_{H^0 / h^0} (M_{h^0}^2);$$
$$Z_{h^0} = \text{Re}^0_{h^0 / h^0} (M_{h^0}^2);$$
$$Z_{h^0 / h^0} = \frac{\text{Re}^0_{H^0 / h^0} (M_{h^0}^2) + M_{h^0}^2}{M_{h^0}^2};$$
$$Z_{h^0 / h^0} = \frac{\text{Re}^0_{H^0 / h^0} (M_{h^0}^2) + M_{h^0}^2}{M_{h^0}^2};$$

When considering a process with A^0 as an external leg, in principle it involves the $A^0 \rightarrow A^0$ transition but also the $A^0 \rightarrow Z^0$ and the $A^0 \rightarrow G^0$ transitions. The field renormalisation constant Z_{A^0}, see Eq. (4.34), allows to set the $A^0 \rightarrow A^0$ transition to 0 and move its effect to a vertex counterterm correction. One therefore would be tempted by setting $\hat{\Lambda}_{A^0} (M_{A^0}^2) = 0$ together with $\hat{\Lambda}_{A^0} (M_{A^0}^2) = 0$ as is done almost everywhere in the literature. In our case this would mean that the remaing constant Z_{A^0} could be derived equivalently from one of these conditions. However the Ward identity we derived in Eq. (4.24) imposes a very important constraint. It shows that in a general non-linear gauge we can not impose both $\hat{\Lambda}_{A^0} (M_{A^0}^2) = 0$ and $\Lambda_{A^0} (M_{A^0}^2) = 0$. One looks at this point that this requires that one introduces loop corrections on the external legs when considering for example processes with the pseudoscalar Higgs as an external leg. In the linear gauge on the other hand this is possible since $F_{G \phi} (q^2) = 0$, we could then adjust $Z_{G \phi}$ and Z_{A^0} to have $\hat{\Lambda}_{A^0} (M_{A^0}^2) = 0$ and $\Lambda_{A^0} (M_{A^0}^2) = 0$. Notice however that contrary to what we encounter in some publications, see for example [13,17], $q^2 = \hat{\Lambda}_{A^0} (q^2) + M_{A^0} \Lambda_{A^0} (q^2)$ does not vanish for any value of q^2 but only for $q^2 = M_{A^0}^2$.

Let us show how despite the constraint in Eq. (4.24) we can still avoid one-loop corrections and counterterms in the external legs associated with an external pseudoscalar A^0. Of concern to...
us are the transition $A^0 \to Z^0$ and $A^0 \to G^0$. The idea is that although we can not make both $\hat{A}^{\pm 2}Z^0 (M^2_{A^0}) = 0$ and $\hat{A}^{\pm 2}G^0 (M^2_{A^0}) = 0$, we will try to make the combined contribution to the external leg vanish. This combined contribution is pictured in Fig. 1.

$$\begin{align*}
\begin{array}{c}
A \rightarrow Z^0(M^2_1) \\
G^0 \\
V_G \\
+ \\
A \rightarrow Z^0(M^2_2) \\
V_G \\
\end{array}
= M^{\nu \nu, G, Z}_{\text{ext, leg}}
\end{align*}$$

Figure 1: The combined contribution of the $A^0 \to Z^0$ and $A^0 \to G^0$ transitions

To the tree-level coupling of the A^0 to some vertex V, at one-loop the transition $A^0 \to G^0$ involves the coupling of the tree-level neutral Goldstone to this vertex V_G, while the Z^0 transition involves the corresponding vertex V_Z. The total contribution of Fig. 1 for A^0 with momentum q on-shell with $q^2 = M^2_{A^0}$ writes

$$M_{\text{ext, leg}}^{A^0G^0} = \frac{\hat{A}^{\pm 2}G^0 (M^2_{A^0}) V_G + qV_Z \hat{A}^{\pm 2}Z^0 (M^2_{A^0})}{M^2_{A^0} M^2_{Z^0}}$$

$$= \frac{V_G}{M^2_{A^0} M^2_{Z^0}} \hat{A}^{\pm 2}Z^0 (M^2_{A^0}) + \frac{M_{Z^0} \hat{A}^{\pm 2}Z^0 (M^2_{A^0})}{(4)^2 S^2_{Z^0} S^2_{Z^0}} F_{G^0} (M^2_{A^0})$$

(4.43)

In the second step of Eq. (4.43) we used another identity that can be readily derived at tree-level from the invariance of the Lagrangian under gauge transformation. Therefore in order not to deal with any correction on the external pseudo-scalar leg we require

$$\hat{A}^{\pm 2}Z^0 (M^2_{A^0}) + M_{Z^0} \hat{A}^{\pm 2}Z^0 (M^2_{A^0}) = 0$$

(4.44)

For this requirement Eq. (4.44), which is a renormalisation condition, to be consistent with the W and identity in Eq. (4.23) leads to

$$\hat{A}^{\pm 2}Z^0 (M^2_{A^0}) = \frac{1}{M^2_{Z^0}} \hat{A}^{\pm 2}G^0 (M^2_{A^0}) = \frac{1}{(4)^2 S^2_{Z^0} S^2_{Z^0}} F_{G^0} (M^2_{A^0})$$

(4.45)

In particular with $F_{G^0} (M^2_{A^0}) = 0$ in the linear gauge, we can make $\hat{A}^{\pm 2}Z^0 (M^2_{A^0}) = \hat{A}^{\pm 2}Z^0 (M^2_{A^0}) = 0$. This condition readily gives

$$Z_{G^0 A^0} = \frac{q}{t} \left[2 \frac{\tan^2 \theta}{M^2_{Z^0}} \hat{A}^{\pm 2}Z^0 (M^2_{A^0}) + \frac{2}{(4)^2 S^2_{Z^0} S^2_{Z^0}} F_{G^0} (M^2_{A^0}) \right]$$

(4.46)

Since $Z_{G^0 A^0}$ only enters in o-shell processes, A^0 o-shell or an external Goldstone boson, there is no need to constrain it through some other renormalisation condition. Our aim, as stressed repeatedly, is not to renormalise all the renormalisation functions, but only S-matrix elements without the need for external leg corrections. The W and identities that we derived in this section were, numerically, checked extensively in our code for various values of q^2, including $q^2 = M^2_{A^0}$ and $q^2 = M^2_{Z^0}$ and for different values of the non-linear gauge parameters. Moreover it is thanks to the $F_{G^0} (M^2_{A^0})$ contribution in $Z_{G^0 A^0}$ that we are able to obtain finite and gauge invariant results for processes involving A^0 as an external particle. For $Z_{H^0 A^0}$ a similar derivation gives

$$Z_{H^0 A^0} = \frac{q}{t} \left[2 \frac{\tan^2 \theta}{M^2_{H^0}} \hat{A}^{\pm 2}Z^0 (M^2_{A^0}) + \frac{8}{(4)^2 S^2_{Z^0} S^2_{Z^0}} G_{H^0 W} (M^2_{A^0}) \right]$$

(4.47)

\(^{2}\)Consider the part of the Lagrangian with the Z^0 and the neutral Goldstone G^0. Before gauge-fixing this Lagrangian is invariant under the transformation $Z^0 \to Z^0 + \lambda \gamma_5 G^0$, $G^0 \to G^0 + M_{Z^0} \gamma_5$. If the Z^0 (vector) current is V_G, and the Goldstone current V_G, that is we have the interaction $Z^0 V_G$, then $V_Z = M_{Z^0} V_G$. Invariance of the Lagrangian implies $\lambda \gamma_5 V_Z + M_{Z^0} V_G = 0$. In Eq. (4.47), this is implied by $qV_Z = M_{Z^0} V_G$ where q is the Z^0 momentum.
With $Z_G^{A^0}$ and Z_G^{H} all our old renormalisation constants are set and defined.

5 Definitions of t and the t schemes

5.1 Dabelstein-Chankowski-Pokorski-Rosiek Scheme (DCPR)

This scheme, which we will refer to as the DCPR scheme, has been quite popular and is based on an $O(3)$ renormalisation scheme in the Higgs sector [14,15] working in the usual linear gauge. The definition of t however is difficult to reconcile with an on-shell quantity that represents a direct interpretation in terms of a physical observable. One first introduces a wave function renormalisation constant, Z_{H_i}, for each Higgs doublet H_i, i.e. before rotation

$$H_i! \left(1 + \frac{1}{2} Z_{H_i} \right) H_i = 1;$$

(5.1)

To make contact with our approach and parameters, as concerns wave function renormalisation, we refer to Appendix A. The vacuum expectation values are also shifted such that the counterterm for each v_i writes

$$v_i! v_i 1 \frac{\sim v_i}{v_i} + \frac{1}{2} Z_{H_i} !;$$

(5.2)

giving

$$\frac{t}{t} = \frac{\sim v_1}{v_1} \frac{\sim v_2}{v_2} \frac{1}{2} \left(Z_{H_1} \right);$$

(5.3)

The DCPR scheme takes $\frac{\sim v_1}{v_1} = \frac{\sim v_2}{v_2}$ such that in effect

$$\frac{t}{t} = \frac{1}{2} \left(Z_{H_2} \right);$$

(5.4)

t is defined by requiring that the (renormalised) $A^0 Z^0$ transition vanish at $q^2 = M^2_{A^0}$, therefore from

$$\text{Re} A^0 Z^0 (M^2_{A^0}) = 0;$$

(5.5)

with

$$A^0 Z^0 (q^2) = A^0 Z^0 (q^2) + \frac{M_{A^0}^2}{4 s_2} \left(Z_{H_2} \right);$$

(5.6)

one obtains that

$$\frac{t}{t}^{\text{DCPR}} = \frac{1}{M_{A^0}^2} \text{Re} A^0 Z^0 (M^2_{A^0});$$

(5.7)

This definition is clearly not directly related to an observable. Moreover t is expressed in terms of wave function renormalisation constants, see Eq. (5.4).

5.2 DR Scheme (DR)

In this scheme the counterterm for t is taken to be a pure divergence proportional to the ultraviolet (UV) factor in dimensional reduction, C_{UV}

$$C_{UV} = 2 \times (4 \pi E^3 + \ln(4 \pi));$$

(5.8)
where n is the dimensionality of space-time. In this scheme the finite part of the counterterm is therefore set zero:

$$\frac{\mathcal{O}_\text{DR}^{n}}{t} = 0.$$ \hfill (5.9)

The divergent part can be related to a few quantities not necessarily directly related to an observable. In the vein of the DCPR approach within the linear gauge where t is defined in Eq. (5.2), solving for Z_{f}, Z_{i}, leads to the HHW prescription of Hollik, Heinemeyer and Weiglein [19], see also Eq. (5.13):

$$\frac{\mathcal{O}_\text{DR}^{\text{HHW}}}{t} = \frac{1}{2c_{2}} (\Re e^{\frac{s}{h^{2}h^{3}}}(M_{h}^{2}) \Re e^{\frac{h^{2}h^{3}}{h^{2}}}(M_{H}^{2}))^{1}.$$ \hfill (5.10)

The superscript 1 means that only the finite C_{UV} part in dimensional reduction is taken into account. A more satisfactory \mathcal{O}_DR scheme can be based on a physical observable. Pierce and Papadopoulos [20] have defined t by relating it to the divergent part of $M_{H}^{2} + M_{h}^{2}$. Note that the sum $M_{H}^{2} + M_{h}^{2}$ does not depend on t as can be seen from the tree-level sum rule in Eq. (2.14). Hence, see also Eq. (4.31):

$$\frac{\mathcal{O}_\text{DR}^{\text{PP}}}{t} = \frac{1}{2s_{2}} \left[\frac{1}{t_{2}} \left(c + 2\alpha^{2} \right) T_{\alpha} + \left(1 + 2\alpha^{2} \right) \frac{T_{\alpha}}{t_{1}} \right]$$

$$+ \Re e^{\frac{s}{h^{2}h^{3}}}(M_{h}^{2}) \Re e^{\frac{h^{2}h^{3}}{h^{2}}}(M_{H}^{2}) + C_{2}(1 + \Re e^{\frac{s}{h^{2}h^{3}}}(M_{h}^{2})) Q_{2} + \Re e^{\frac{T_{\alpha}^{2}}{Z_{\alpha}}}(M_{\alpha}^{2})^{1}.$$ \hfill (5.11)

5.3 An On-Shell Scheme ($\mathcal{O}_{\text{SM}_{h}}$) with M_{H}^{2} as an input

In this scheme one takes M_{H}^{2}, the largest of the two scalar Higgs masses, as an input parameter. This trade-off is operative in the Higgs sector independently of any process. Therefore M_{h}^{2} is no longer a prediction but is extracted from a measurement taken together with M_{H}^{2}. As such it does not receive a correction at any loop order, t is defined from the constraint

$$\Re e^{\frac{s}{h^{2}h^{3}}}(M_{H}^{2}) = 0;$$ \hfill (5.12)

which leads to

$$\frac{\mathcal{O}_{\text{SM}_{h}}}{t} = \frac{1}{s_{2}^{2} s_{21}} \left[\frac{1}{M_{\alpha}^{2}} (c^{2} - s^{2} c^{2}) \frac{T_{1}^{2}}{v_{1}} + (s^{2} - c^{2} c^{2}) \frac{T_{2}^{2}}{v_{2}} \right]$$

$$+ \Re e^{\frac{s}{h^{2}h^{3}}}(M_{h}^{2}) \Re e^{\frac{h^{2}h^{3}}{h^{2}}}(M_{H}^{2}) \Re e^{\frac{h^{2}h^{3}}{h^{2}}}(M_{\alpha}^{2}) Q_{2} + \Re e^{\frac{T_{\alpha}^{2}}{Z_{\alpha}}}(M_{\alpha}^{2})^{1}.$$ \hfill (5.13)

This scheme has been advocated in [7,13] and is one of the schemes implemented in Sloops. At tree-level, t is extracted from the relation defined in Eq. (2.13):

$$c_{2}^{2} = \frac{(M_{H}^{2} + M_{Z}^{2})}{M_{H}^{2} M_{Z}^{2}}.$$ \hfill (5.14)

In our numerical examples the input parameters are chosen such that the requirement $c_{2}^{2} = 1$ is always met. In fact given a set $M_{\alpha}^{2}, M_{Z}^{2}$ we generate M_{H}^{2} through a given value of t. The value M_{H}^{2} is taken as the physical mass at all loop orders, in particular at one-loop it does not receive a correction. As pointed out in Section 2, in general with a set $M_{\alpha}^{2}, M_{Z}^{2}, c_{2}^{2} = 1$ is not guaranteed. With this in mind we first we extract $\tan \beta$ (with $\tan \beta > 1$) as

$$\tan \beta = \sqrt{\frac{M_{\alpha}^{2} M_{Z}^{2} + M_{H}^{2} M_{Z}^{2}}{M_{\alpha}^{2} M_{H}^{2} + M_{\alpha}^{2} M_{Z}^{2} + M_{Z}^{2} M_{H}^{2} + M_{H}^{2} M_{Z}^{2}}}.$$ \hfill (5.15)
That this choice might lead to large corrections and large uncertainty can already be guessed by considering the uncertainty on tan β given an uncertainty on $M_{H^0}; M_{A^0}; M_{Z^0}$ with respectively $M_{H^0}; M_{A^0}; M_{Z^0}$. For clarity let us take $M_{Z^0} = 0$ as would be the case from an experimental point of view since M_{Z^0} is known with an excellent precision from the LEP measurements. We find

$$
\frac{t}{t} = \frac{M_{A^0}^2}{M_{H^0}^2} + \frac{M_{Z^0}^2}{M_{H^0}^2} + \frac{M_{H^0}^2}{M_{Z^0}^2} + \frac{M_{Z^0}^2}{M_{H^0}^2} + \frac{2M_{H^0}^2}{M_{A^0}^2} + \frac{M_{H^0}^2}{M_{A^0}^2} + \frac{M_{Z^0}^2}{M_{H^0}^2} + \frac{M_{H^0}^2}{M_{Z^0}^2} + \frac{M_{Z^0}^2}{M_{H^0}^2}
$$

(5.16)

With typical input parameters in the decoupling limit $M_{A^0} = M_{Z^0}$ with $M_{A^0} = M_{H^0}$ a large uncertainty ensues, to wit

$$
\frac{t}{t} = \frac{M_{A^0}^2}{M_{Z^0}^2} + \frac{M_{Z^0}^2}{M_{A^0}^2} + \frac{M_{A^0}^2}{M_{Z^0}^2} + \frac{M_{Z^0}^2}{M_{A^0}^2} \quad : \quad (5.17)
$$

Therefore although t is manifestly gauge invariant one should expect large uncertainty from loop corrections. This scheme is similar to the one considered in [3] based on Eq. (5.14).

5.4 A^0 as an input parameter (O_{SA})

which appears in the Higgs sector relies on the assumption of a basis, only quantities which are basis independent are physical quantities [3, 20]. The Higgs potential of the MSSM appears as a general two-Higgs doublet model if one restricts oneself solely to the Higgs sector. The degeneracy is lifted when defining the Yukawa Higgs coupling to fermions. This picks up a specific direction. One should therefore define t from the Higgs couplings to fermions. Since M_{A^0} is used as an input parameter assuming one has had access to the pseudoscalar Higgs, it looks natural to take a coupling $A^0 \overline{t} t$. Since couplings to quarks are subject to large QCD radiative corrections the best choice is to consider the A^0 coupling which is the largest coupling to leptons,

$$
L_{A^0} = \frac{m}{t} v_1 - A^0 \overline{t} t = \frac{M_{A^0}}{2M_{W^0}} + \frac{M_{A^0}}{2M_{W^0}} \quad t = 0, \quad A^0 \overline{t} t \quad \text{with} \quad v_1 = v_c : \quad (5.18)
$$

This coupling can be extracted from the measurement of the width Γ_{A^0} with m the mass of the A^0. Note also that $\frac{t}{t} = 2$ so that contrary to the on-shell scheme based on M_{H^0}, O_{SA}, this scheme should therefore not introduce additional large uncertainties assuming of course that this decay can be large and be measured precisely. This scheme appears therefore very natural, however it has not been used in practice because one has considered it as being a process dependent on nonet set outside the purely Higgs sector. The mass of the Higgs sector is considered independent of the mass of the quarks and the Higgs sector, and the couplings are defined as for the on-shell scheme. The scheme involves a three-point function. This last argument is unjustified, take for example the G scheme in the SM where the mass of the decay is used as a trade-off for m taking advantage of the fact that m for a long time was much better measured than M_{H^0}. The G scheme involves four-point functions. We end that technically this scheme is not more difficult to implement than a scheme based on two-point functions. The full counterterm to A^0 involves the G^0! A^0 shift, the A^0 and ϕ wave function renormalization constants among other things, we get

$$
\begin{align*}
L_{A^0} &= \frac{L_{A^0}}{t} + \frac{A^0}{m} \overline{t} t + \frac{1}{2} Z_{G^0 A^0} + 1 + \frac{1}{2} (Z_{L^0} + Z_{R^0}) ; \\
\frac{1}{2t} Z_{G^0 A^0} &= \frac{1}{1 + t^2} \frac{M_{Z^0}^2 - M_{A^0}^2}{M_{Z^0}^2} + \frac{1}{1 + t^2} \frac{M_{Z^0}^2 - M_{A^0}^2}{M_{Z^0}^2}
\end{align*}
$$

(5.19)
are defined on-shell exactly as in the SM \[9\]. The full one-loop virtual corrections consist of the vertex corrections, \(\frac{A}{V} \), which contributes a one-loop vertex correction to the decay rate as:

\[
V_{\text{vertex}} = 2 \cdot \frac{A}{V} \quad :
\]

(5.20)

The latter are made \(UV\)-finite by the addition of the counterterm in Eq. (5.13). These virtual QED corrections, both vertex and counterterm (from \(m\) and \(Z_{\mu R}\)) include genuine QED corrections through photon exchange which are infrared divergent. In our case the infrared divergence can be trivially regularised through the introduction of a small c\(\epsilon\)\(\text{it}\)ious mass, \(\epsilon\), for the photon. As known, the c\(\epsilon\)\(\text{it}\)ious mass dependence is cancelled when photon beam \(m\) straing is added. Taking into account the latter may depend on the experimental set-up that often requires cuts on the additional photon kinematical variables. Therefore it is much more appropriate to take as an observable a quantity devoid of such cuts, knowing that hard/soft radiation can be easily added. Fortunately for a neutral decay such as this one which is of an Abelian nature, the virtual QED correction constitutes a gauge-invariant subset that can be trivially calculated separately. The virtual QED corrections to the decay width \(A^0\) are known \[22\], they contribute a one-loop correction

\[
Q_{\text{ED}} = 2 \cdot Q_{\text{ED}} \quad :
\]

(5.21)

\[
\begin{align*}
Q_{\text{ED}} & = \frac{A}{V} + \frac{1 + 2}{2} \ln \frac{1 + 1}{2} \ln \frac{m^2}{2} + 1 \\
& + \frac{1 + 2}{2} \ln \frac{1 + 1}{2} + \ln \frac{1 + 2}{2} \ln \frac{1 + 1}{1} - \frac{1}{4} \ln^2 \frac{1 + 2}{1} + \frac{2}{3} ;
\end{align*}
\]

(5.22)

\[
L_\mu(k) = \frac{4m^2}{M_{\mu}^2} Z \times \frac{dt}{t} \ln(1 - t);
\]

(5.23)

This QED correction only depends on \(M_{\mu}\) as it should and does not involve any other (MSSM) parameter. Subtracting this QED correction from the full one-loop virtual correction in Eq. (5.13) will give the genuine SUSY non QED contribution that does not depend on any c\(\epsilon\)\(\text{it}\)ious photon mass nor any experimental cut. Our scheme is to require that \(\epsilon\) is such that this contribution vanishes and that therefore \(A^0\) is only subject to QED corrections. This gives

\[
\frac{t}{t}^{OS} = \frac{A}{V} + \frac{A}{CT \text{ QED}} ;
\]

(5.24)

This definition is independent of the c\(\epsilon\)\(\text{it}\)ious mass of the photon used as a regulator. We have checked this explicitly within SloopS.

6 Set-up of the automatic calculation of the cross sections

All the steps necessary for the renormalisation of the Higgs sector as presented here together with a complete definition of the MSSM have been implemented in SloopS. As we will discuss in a forthcoming publication \[23\] the other sectors have also been implemented and results relying on the complete renormalisation of the MSSM have been given in \[12\]. Since even the calculation of a single two-point function in the MSSM requires the calculation of a hundred of diagrams, some automaticisation is unavoidable. Even in the SM, one-loop calculations of 2! processes involve hundreds of diagrams and a hand calculation is practically infeasible. Efficient automatic codes for any generic 2! process, that have now been exploited for many 2! 3 \[24\], 25\] and
even some 2! 4 processes, are almost unavoidable for such calculations. For the electroweak theory these are the GRACE-loop [9] code and the bundle of packages based on FeynArts [28], FormCalc [29] and LoopTools [30], that we will refer to as FFL for short. With its much larger content and for greater number of paramaters and more complex structure, the need for an automatic code at one-loop for the Minimal Supersymmetric Standard Model is even more of a must. A few parts that are needed for such a code have been developed based on an extension of [31] but, as far as we know, no complete code exists or is, at least publicly, available. Grace-susy [32] is now also being developed at one-loop and many results exist [13]. One of the main difficulties that has to be tackled is the implementation of the model, since this requires that one enters the thousands of vertices that define the Feynman rules. On the theory side a proper renormalisation scheme needs to be set up, which then means extending many of these rules to include counterterms. When this is done one can just use, or hope to use, the machinery developed for the SM, in particular the symbolic manipulation part and most importantly the loop integral routines including tensor reduction algorithm(s) or any other e cient set of basis integrals.

SloopS combines LANHEP [33] (originally part of the package COMPHEP [34]) with the FFL bundle but with an extended and adapted LoopTools [11]. LANHEP is a very powerful routine that automatically generates all the sets of Feynman rules of a given model, the latter being defined in a simple and compact form at very similar to the canonical coordinate representation. Use of multiplets and the superpotential is built-in to minimal size hum an error. The ghost Lagrangian is derived directly from the BRST transformations. The LANHEP module also allows us to shift fields and parameters and thus generates counterterm s most e ciently. Understandably the LANHEP output must be in the form of the model of the code it is interfaced with. In the case of FeynArts both the generic (Lorentz structure) and classes (particle content) had to be given. Moreover, because we use a non-linear gauge fixing condition [9], see below, the FeynArts default generic had to be extended.

7 scheme dependence of physical observables, gauge invariance: A numerical investigation

In this rst investigation we will restrict ourselves to Higgs observables. Other observables involving other supersymmetric particles require that we rst expose and detail our renormalisation procedure of the chargino/neutralino and the sfermion sector. This will be presented in [23]. We have however presented some results on the tan scheme dependence of a few cross sections that are needed for the calculation of the relic density in the MSSM [12].

7.1 Parameters

To make contact with the analysis of [6] and also allow comparisons we will consider the 3 sets of benchmark points for the Higgs based on [35]. The 3 sets of parameters called m h m A, large and nom are as in [35] except that we set a common tri-linear A f to all sfermions for convenience. For each set there are two values of t : t = 3, 50.

7.2 Gauge independence and the finite part of t

In t is dened as a physical parameter then t must be gauge invariant and gauge parameter independent. Our non-linear gauge fixing allows us to check the gauge parameter independence of t and hence t. Even when two schemes are gauge parameter independent the values of t
are not expected to be the same. It is therefore also interesting to inquire how much two schemes differ from each other. Naturally since t is not ultraviolet finite we split this contribution into a finite part and in the part, the latter being regularised in dimensional reduction, such that

\[t = t^n + t^\gamma C_{UV}. \]

(7.1)

The schemes have by definition \(t^n = 0 \). When calculating observables in this scheme we will also need to specify a scale \(\Lambda \) which we associate with the scale introduced by dimensional reduction. For the latter our default value is \(\Lambda = m_{A^\circ} \). Our set of non-linear gauge parameters is defined as \(\lambda_{nlgs} = (\ldots, \ldots, \lambda, \ldots, \lambda, \ldots, \lambda, \ldots) \).

The usual linear gauge, \(\lambda_{nlgs} = 0 \), corresponds to all these parameters set to 0. For the gauge parameter independence we will compare the results of the linear gauge to a non-linear gauge where all the non-linear gauge parameters have been set to 10, referring to this as \(\lambda_{nlgs} = 10 \).

To make the point about the gauge parameter dependence it is enough to consider only one of the benchmark points.

<table>
<thead>
<tr>
<th>(m_{hm ax})</th>
<th>(\text{Value})</th>
<th>(\text{Parameter})</th>
<th>(\text{Value})</th>
<th>(\text{Constant})</th>
<th>(\text{Value})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
<td>200</td>
</tr>
<tr>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
<td>800</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>2000+ = t</td>
<td>A_f = t</td>
</tr>
</tbody>
</table>

Table 1: The set of SM and MSSM parameters for the benchmark points. All mass parameters are in GeV. We take \(m_1 \) according to the so-called gaugino mass unification with \(m_1 = \frac{\mu^2 M_0}{\tilde{M}_0} \).
extensive analysis will show that this is, after all, not the case. Schemes where the finite part of \(t \) is large do, generally, induce large corrections. It is important to note that for the linear gauge, all schemes give the same \(C_U \) part. Having made the point about the gauge parameter dependence, we will now work purely in the linear gauge since some of the schemes introduced in the literature are acceptable only within the linear gauge. Therefore in this case the results for DR-HHW and DR-PP are the same and will be denoted as DR in what follows.

7.3 \(t^\mathrm{fin} \)

<table>
<thead>
<tr>
<th>(t = 3)</th>
<th>m hm ax</th>
<th>large</th>
<th>nom ix</th>
<th>(t = 50)</th>
<th>m hm ax</th>
<th>large</th>
<th>nom ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCPR</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.08</td>
<td>DCPR</td>
<td>+3.42</td>
<td>+14.57</td>
<td>+0.48</td>
</tr>
<tr>
<td>(O_S_{M})</td>
<td>+0.92</td>
<td>-1.31</td>
<td>+0.64</td>
<td>(O_S_{M})</td>
<td>-385.53</td>
<td>-2010.84</td>
<td>-290.18</td>
</tr>
<tr>
<td>(O_S_{A})</td>
<td>-0.10</td>
<td>-0.06</td>
<td>-0.08</td>
<td>(O_S_{A})</td>
<td>+0.12</td>
<td>-4.72</td>
<td>+0.16</td>
</tr>
<tr>
<td>DR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>DR</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: \(t^\mathrm{fin} \) for the Higgs benchmark points.

First of all, let us mention that our numerical results concerning the DCPR and DR schemes agree quite well with those of [6] concerning the shifts in \(t \) and the lightest CP-even Higgs mass. Our results for \(O_S_{M} \) follow sensibly the same trend as the scheme denoted as the Higgs mass scheme in [6]. We see that for small \(t \) DCPR and \(O_S_{A} \) give sensibly the same result with a tiny relative shift of a few percent. For larger \(t \) the difference is much larger, we notice that \(O_S_{A} \) gives much smaller shifts. On the other hand, the \(O_S_{M} \) gives huge corrections for \(t = 50 \) well above 100%. As we will see this will have an impact on the radiative corrections on some observables based on this scheme.

7.4 Higgs masses and their scheme dependence

<table>
<thead>
<tr>
<th>(t = 3)</th>
<th>m hm ax</th>
<th>large</th>
<th>nom ix</th>
<th>(t = 50)</th>
<th>m hm ax</th>
<th>large</th>
<th>nom ix</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_{h^ \mathrm{fin}}) = 72.51</td>
<td>134.28</td>
<td>97.57</td>
<td>112.26</td>
<td>(M_{h^ \mathrm{fin}}) = 91.61</td>
<td>144.50</td>
<td>35.88</td>
<td>124.80</td>
</tr>
<tr>
<td>DCPR</td>
<td>134.25</td>
<td>97.59</td>
<td>112.27</td>
<td>DCPR</td>
<td>144.50</td>
<td>35.73</td>
<td>124.80</td>
</tr>
<tr>
<td>(O_S_{M})</td>
<td>140.25</td>
<td>86.68</td>
<td>117.37</td>
<td>(O_S_{M})</td>
<td>143.76</td>
<td>13.21</td>
<td>124.16</td>
</tr>
<tr>
<td>(O_S_{A})</td>
<td>134.25</td>
<td>97.59</td>
<td>112.27</td>
<td>(O_S_{A})</td>
<td>144.50</td>
<td>35.73</td>
<td>124.80</td>
</tr>
<tr>
<td>DR - = M_{A}</td>
<td>134.87</td>
<td>98.10</td>
<td>112.86</td>
<td>(\frac{\Delta M_{h}}{M_{h}} = M_{A})</td>
<td>144.50</td>
<td>35.77</td>
<td>124.80</td>
</tr>
<tr>
<td>DR - = M_{\ell}</td>
<td>134.47</td>
<td>97.55</td>
<td>112.38</td>
<td>(\frac{\Delta M_{h}}{M_{h}} = M_{\ell})</td>
<td>144.50</td>
<td>35.77</td>
<td>124.80</td>
</tr>
</tbody>
</table>

Table 4: Mass of the lightest CP-even Higgs at one loop in different schemes, All masses are in GeV.

We start with the one-loop correction to the lightest CP-even Higgs. Of course, this has now been calculated beyond one-loop as the one-loop correction is large, however a study of the scheme dependence is important. Moreover, this study represents a direct application of the code that can be compared to results in the literature. We note that all schemes apart from \(O_S_{M} \) are in very good agreement with each other for both values of \(t \). Leaving aside the case of \(t = 50 \) in the large \(t \) scenario, despite the very large shifts we observed in \(t^\mathrm{fin} \) for the \(O_S_{M} \) scheme, the \(t \) dependence is much suppressed such that the \(O_S_{M} \) scheme compares favourably with the other schemes. In the case of the correction to the heaviest CP-even Higgs at one loop, by definition there is no correction in the \(O_S_{M} \) scheme, the other schemes agree with each other at a very high level of precision. Moreover, especially at high \(t \), the correction is very small.
Table 5: Mass of the heaviest CP-even Higgs at one loop in different schemes. All masses are in GeV. The one-loop result is based on the relation \(M_{h^0}^2 = M_{h^0\text{tree}}^2 + \text{Re}^2(M_{h^0\text{tree}}^2)\).

The mass of the charged Higgs does not depend on \(t \), so the correction is scheme independent, with the counterterm \(M_H^2 = M_W^2 + M_{A^\pm}^2 \).

7.5 Higgs decays to SM particles and their scheme dependence

7.5.1 \(A^0 \) ! + , the non QED one-loop corrections

Table 6: Corrections to the decay \(A^0 \) ! + at one loop without the universal QED correction. All widths in GeV.

We now study the non QED corrections to the decay with \(A^0 \) ! + , see Section 5.4 for our benchmark points. By definition there is no correction in the OS scheme. Many interesting and important conclusions can be drawn from Table 6. First of all we note that the scheme dependence is quite large here. After all this is an observable which is directly proportional to \(t \). In fact the difference between schemes can be accounted for by \(2t \) read off from Table 3. For this decay the OS scheme is totally unsuitable, for \(t = 3 \) the correction are of order 100%, whereas for \(t = 50 \) the one-loop correction is of order of magnitude, at least, larger than the tree-level. Especially for \(t = 3 \) in \(\text{DR} \) the scale dependence is not negligible. For example with \(t = m_t \) in \(\text{DR} \) the correction is of order 1% and 5% for \(t = M_{A^\pm} \). The corrections are much smaller in DCPR being at the permil level. The scale dependence is much smaller for \(t = 30 \) and the corrections in \(\text{DR} \) are now smaller than in DCPR. Note also that in the large scenario the corrections are large.
7.5.2 $H^0!^+$, the non QED one-loop corrections

<table>
<thead>
<tr>
<th>$t = 3$</th>
<th>m hm ax</th>
<th>large</th>
<th>nom lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t^L = 9\times 10^4$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCRPR</td>
<td>-1.09 10^{-4}</td>
<td>-7.96 10^{-3}</td>
<td>-1.09 10^{-4}</td>
</tr>
<tr>
<td>$O_{S_{M_{S}}}$</td>
<td>+ 6.28 10^{-3}</td>
<td>-7.91 10^{-3}</td>
<td>+ 4.47 10^{-3}</td>
</tr>
<tr>
<td>$O_{S_{A}}$</td>
<td>-1.45 10^{-4}</td>
<td>-7.09 10^{-5}</td>
<td>-1.01 10^{-4}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{A_{0}}$</td>
<td>+ 5.08 10^{-4}</td>
<td>+ 3.24 10^{-4}</td>
<td>+ 4.17 10^{-4}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{t}$</td>
<td>+ 8.57 10^{-5}</td>
<td>-9.75 10^{-5}</td>
<td>-4.52 10^{-6}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t = 50$</th>
<th>m hm ax</th>
<th>large</th>
<th>nom lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t^L = 2.81 \times 10^5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCRPR</td>
<td>+ 3.54 10^{-1}</td>
<td>+ 2.02 10^{-1}</td>
<td>+ 4.31 10^{-2}</td>
</tr>
<tr>
<td>$O_{S_{M_{S}}}$</td>
<td>-4.03 10^{-1}</td>
<td>-2.09 10^{-1}</td>
<td>-3.03 10^{-1}</td>
</tr>
<tr>
<td>$O_{S_{A}}$</td>
<td>+ 9.52 10^{-3}</td>
<td>+ 1.94 10^{-3}</td>
<td>+ 9.55 10^{-3}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{A_{0}}$</td>
<td>-2.59 10^{-3}</td>
<td>+ 4.94 10^{-1}</td>
<td>-7.00 10^{-3}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{t}$</td>
<td>-2.04 10^{-2}</td>
<td>+ 4.76 10^{-1}</td>
<td>-2.49 10^{-2}</td>
</tr>
</tbody>
</table>

Table 7: Corrections to the decay $H^0!^+$ at one loop without the universal QED correction. All widths in GeV.

Similar conclusions can be drawn from the study of the non-QED corrections to $H^0!^+$, see Table 1. The QED corrections for this decay can be implemented as in [22]. The only difference is that now there is a correction also in the case of the $O_{S_{A}}$ scheme. But as expected this correction is very small for both values of t. Note that for $t = 50$ the DCRPR scheme gives very large corrections in the large scenario. For this process we have not taken into account the one-loop correction to $M_{H_{0}}$, since we have seen this correction is very small for all schemes and also because one is much too far from the threshold $M_{H_{0}} = 500$ GeV $2m$, where this effect can play a role.

7.5.3 $H^0!Z^0Z^0\text{ and }A^0!Z^0h^0$

<table>
<thead>
<tr>
<th>$t = 3$</th>
<th>m hm ax</th>
<th>large</th>
<th>nom lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t^L = 8.97 \times 10^3$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCRPR</td>
<td>+ 1.59 10^{-2}</td>
<td>-6.32 10^{-3}</td>
<td>+ 8.47 10^{-3}</td>
</tr>
<tr>
<td>$O_{S_{M_{S}}}$</td>
<td>+ 1.40 10^{-2}</td>
<td>-4.00 10^{-3}</td>
<td>+ 7.12 10^{-3}</td>
</tr>
<tr>
<td>$O_{S_{A}}$</td>
<td>+ 1.59 10^{-2}</td>
<td>-6.32 10^{-3}</td>
<td>+ 8.47 10^{-3}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{A_{0}}$</td>
<td>+ 1.57 10^{-2}</td>
<td>-6.44 10^{-3}</td>
<td>+ 8.32 10^{-3}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{t}$</td>
<td>+ 1.58 10^{-2}</td>
<td>-6.32 10^{-3}</td>
<td>+ 8.44 10^{-3}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$t = 50$</th>
<th>m hm ax</th>
<th>large</th>
<th>nom lx</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t^L = 6.40 \times 10^5$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCRPR</td>
<td>+ 2.18 10^{-2}</td>
<td>-5.14 10^{-3}</td>
<td>+ 3.89 10^{-2}</td>
</tr>
<tr>
<td>$O_{S_{M_{S}}}$</td>
<td>+ 1.01 10^{-2}</td>
<td>+ 4.66 10^{-3}</td>
<td>+ 7.81 10^{-4}</td>
</tr>
<tr>
<td>$O_{S_{A}}$</td>
<td>+ 3.02 10^{-5}</td>
<td>-4.65 10^{-4}</td>
<td>+ 3.97 10^{-5}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{A_{0}}$</td>
<td>+ 3.05 10^{-5}</td>
<td>-4.77 10^{-4}</td>
<td>+ 4.01 10^{-5}</td>
</tr>
<tr>
<td>$\overline{D}{-} = M{t}$</td>
<td>+ 3.09 10^{-5}</td>
<td>-4.76 10^{-4}</td>
<td>+ 4.05 10^{-5}</td>
</tr>
</tbody>
</table>

Table 8: Corrections to the decay $H^0!^+$ at one loop. All widths in GeV.

$H^0!Z^0Z^0$ was studied by [20], where a large correction was found. We confirm here, see Table 8, that a large correction is indeed induced with the one-loop result of the same order if not exceeding
both at $t = 3$ and $t = 50$ the tree-level result. This larger correction is not due to the scheme dependence since in this process the latter is very small whereas one sees a large correction with all the schemes. The correction is large because the benchmark points with $M_{A^0} = 500$ GeV are in the decoupling regime where H^0! Z^0! Z^0 practically vanishes at tree-level. The H^0! Z^0! Z^0 is proportional to M_{A^0}, the coupling is therefore almost induced at one loop without the $1=M_{A^0}$ suppression. Here again because $M_H > 2M_Z$ the one-loop correction on M_{H^0} is negligible. Very similar results and conclusions can be drawn for the process A^0! Z^0! h^0, see Table 9.

<table>
<thead>
<tr>
<th>$t = 3$</th>
<th>$t = 50$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tilde{t}L = 9.03 \times 10^3$</td>
<td>$\tilde{t}L = 6.50 \times 10^5$</td>
</tr>
<tr>
<td>DCPR</td>
<td>+2.42 10^2</td>
</tr>
<tr>
<td>OS$_2$</td>
<td>+2.23 10^2</td>
</tr>
<tr>
<td>OS$_3$</td>
<td>+2.50 10^2</td>
</tr>
<tr>
<td>DR $\rightarrow M_{A^0}$</td>
<td>+2.48 10^2</td>
</tr>
<tr>
<td>DR $\rightarrow M_{t}$</td>
<td>+2.41 10^2</td>
</tr>
<tr>
<td>m h_{mx}</td>
<td>+3.26 10^3</td>
</tr>
<tr>
<td>large</td>
<td>+6.20 10^3</td>
</tr>
<tr>
<td>nom h_{mx}</td>
<td>+1.68 10^3</td>
</tr>
<tr>
<td>DR $\rightarrow M_{A^0}$</td>
<td>+3.74 10^3</td>
</tr>
<tr>
<td>DR $\rightarrow M_{t}$</td>
<td>+3.87 10^3</td>
</tr>
<tr>
<td>nom h_{mx}</td>
<td>+1.65 10^3</td>
</tr>
<tr>
<td>large</td>
<td>+1.67 10^3</td>
</tr>
</tbody>
</table>

Table 9: Corrections to the decay A^0! Z^0! h^0 at one loop. All widths in GeV.

8 Conclusions

The use of the non-linear gauge has allowed us, for the first time, to quantitatively and qualitatively, study different proposals for the ubiquitous parameter $\tan \beta$ and its effect on the Higgs observables, both the physical Higgs masses as well as their decays. Our first preliminary conclusion is that the scheme based on the extraction and definition of $\tan \beta$ from a decay such as A^0! h^0 is by far the most satisfactory. Not only is this definition directly related to a physical observable and therefore is gauge independent, the functional dependence of the physical width in $\tan \beta$ is linear and $\tan \beta$ is independent of the value of the pseudoscalar Higgs mass. Moreover, the definition is clean once we subtract the universal gauge invariant QED correction. The scheme is also most pleasing and satisfactory since it is the one where the observables we have studied show the least corrections, leading therefore to a stable prediction. On this last count the DR scheme performs almost just as well. However, the widely used DR scheme extracted from the A^0! Z^0 transition is not gauge invariant and therefore terribly unsatisfactory from a theoretical point of view. In the non-linear gauge with a general gauge-fixing set of parameters, the parameter dependence shows up already at one-loop, whereas it has been shown that the scheme fails even in the linear gauge but at two-loop [1]. A gauge independent DR scheme such as the one proposed in [2] is most satisfactory. A scheme based on the usage of M_{A^0} as an independent parameter from the Higgs sector leads to too large corrections in most of the observables we consider so far. We therefore propose that the decay A^0! h^0 be used as a definition of $\tan \beta$. This choice assumes that this decay will one day be measured with high enough precision but this depends on the spectrum of the MSSM. Were it not for the ambiguous extraction of the full QCD corrections, the decay of the charged Higgs to W^\pm may also qualify as a suitable input parameter, see [3] for prospects on the measurement of this decay. A part from the discussion on gauge invariance and the issue of the scheme dependence for $\tan \beta$, we have shown how a complete
one-loop renormalization of the M SSM can be automated and have given results and details as concerns the Higgs sector which is the first step in a successful implementation of this programme.

Acknowledgements
We would first like to thank David Temes whose help was invaluable in the first stages of the project. We also owe much to our friends of the Minam i-Tateya group and the developers of the Grace-SUSY code, in particular we learned much from Masakiki Kuroda. It is also a pleasure to acknowledge the fruitful discussions with Ben Allanach. This work is supported in part by GDR I-ACPP of the CNRS (France). The work of A.S. is supported by grants of the Russian Federal Agency of Science NS-1685.2003.2 and RFBR 04-02-17448. This work is also part of the French ANR project, ToolsDMColl.
Appendices

A The W ard–Slavnov–Taylor identity for the transitions A^0Z^0 and A^0G^0

There is an identity relating the A^0Z^0 and A^0G^0 transition. This is most useful for $q^2 = M_A^2$. Contrary to what one might see in some papers, the relation is much more complicated for $q^2 \not= M_A^2$ and gets more subtle in the case of the non-linear gauge.

The identity can be most easily derived by considering the BRST transformation on the (ghost) operator $h_0 \mathcal{F}^z(x)A^0(y)\bar{\psi}_1 = 0$. We find

$$b_{RS}h_0 \mathcal{F}^z(x)A^0(y)\bar{\psi}_1 = h_0 \mathcal{F}^z(x)A^0(y)\bar{\psi}_1 = 0; \quad (A.1)$$

with

$$b_{RS}A^0 = \frac{q}{2}(c^z + c H^*) + \frac{ie}{s_{2W}} c^z (c h^0 + s H^0); \quad (A.2)$$

and

$$b_{RS}\mathcal{F}^z = B^z; \quad (A.3)$$

Therefore,

$$h_0 \mathcal{F}^z(x)A^0(y)\bar{\psi}_1 + \frac{q}{2} h_0 \mathcal{F}^z(x)c^z(y)H^0(y)\bar{\psi}_1 + h_0 \mathcal{F}^z(x)c(y)H^0(y)\bar{\psi}_1 = 0; \quad (A.4)$$

At tree-level, there is no vertex involving $c^z c H^0$. Using the equation of motion of the BRST operator, we obtain a relation for the following Green’s functions (external legs are not amputated):

$$\nabla_x h_0 \mathcal{F}^z(x)A^0(y)\bar{\psi}_1 + M_z h_0 \mathcal{F}^z(x)A^0(y)\bar{\psi}_1$$

$$+ \frac{e}{s_{2W}} h_0 \mathcal{F}^z(x)G^0(x)A^0(y)\bar{\psi}_1 + h_0 \mathcal{F}^z(x)c^z(x)A^0(y)\bar{\psi}_1$$

$$+ \frac{e}{s_{2W}} c h_0 \mathcal{F}^z(x)c^z(y)H^0(y)\bar{\psi}_1 + s h_0 \mathcal{F}^z(x)c^z(y)H^0(y)\bar{\psi}_1 = 0; \quad (A.5)$$

In a diagrammatic form, we have

$$\frac{1}{q^2} \frac{1}{M_{Z^0}^2} \frac{1}{M_{A^0}^2} iq \ Z \ 99K \ 99K A^0 + M_{Z^0} G^0 99K \ 99K A^0$$

$$= \frac{i}{q^2} \frac{e}{M_{A^0}^2} \frac{c}{s_{2W}} \sim \frac{G^0}{h^0} \ 99K A^0 + \sim \frac{G^0}{h^0} \ 99K A^0$$

$$+ \frac{1}{q^2} \frac{e}{M_{Z^0}^2} \frac{c}{s_{2W}} \sim \frac{c^z}{h^0} 99K \ 99K c^z_h + \sim \frac{c^z}{h^0} 99K c^z_h; \quad (A.6)$$

and obtain the relation

$$q^2 A^z Z^0 (q^2) + M_{Z^0}^2 A^z G^0 (q^2) = (q^2) \frac{c^z}{M_{Z^0}^2} \frac{c^z}{s_{2W}} \sim \frac{G^0}{h^0} \ 99K A^0 + \sim \frac{G^0}{h^0} \ 99K A^0$$

$$+ (q^2) \frac{c^z}{M_{A^0}^2} \frac{c^z}{s_{2W}} \sim \frac{c^z}{h^0} 99K \ 99K c^z_h + \sim \frac{c^z}{h^0} 99K c^z_h; \quad (A.7)$$

With the following vertices

$$L \frac{cM_{Z^0}}{s_{2W}} s + h^0 c; \quad (A.8)$$

$$L \frac{cM_{Z^0}}{s_{2W}} (s \sim) h^0 c^z; \quad (A.9)$$

$$L \frac{cM_{Z^0}}{s_{2W}} (s \sim) h^0 c^z; \quad (A.9)$$
we calculate all the \lollipops"

\[G \left(\frac{h}{s} \right) A^0 = e M z^2 s_2 s + B_0 (q_i^2 M_{h,2}^2) ; \]
\[G \left(\frac{h}{s} \right) A^0 = e M z^2 s_2 c + B_0 (q_i^2 M_{h,2}^2) ; \]
\[G \left(\frac{h}{s} \right) z^2 = e M z^2 (s - \sim) B_0 (q_i^2 M_{h,2}^2) ; \]
\[G \left(\frac{h}{s} \right) z^2 = e M z^2 (c + \sim) B_0 (q_i^2 M_{h,2}^2) ; \]

with

\[B_0 (q_i^2 M_{h,2}^2) = C_{UV} \int_0^1 Z \ln \left(\frac{q_i^2 M_{h,2}^2}{M_{2}^2} \right) ; \]
\[(q_i^2 M_{h,2}^2) = q_i^2 x^2 \left(\frac{q_i^2 + M_{2}^2}{M_{2}^2} \right) x + M_{2}^2 ; \]

We finally obtain the identity

\[q_i^2 A_{2} + (q_i^2 + M_{2}^2 + M_{2}^2 q_i^2) = \frac{1}{4} \frac{e^2 M_{2}^2}{s_{2}^{\prime}} (q_i^2 M_{2}^2) s_{2} F_{GA}^{-}\left(q_i^2 \right) + (q_i^2 M_{2}^2) F_{cc}^{-}\left(q_i^2 \right) ; \]

with \[F_{GA}^{-}\left(q_i^2 \right) = \sim c + B_0 (q_i^2 M_{h,2}^2 M_{0}^2) ; \]
\[F_{cc}^{-}\left(q_i^2 \right) = \sim c + B_0 (q_i^2 M_{h,2}^2 M_{0}^2) ; \]

To implement this formula into SloopS and check it numerically, we need to introduce the tadpole part in FormCalc and we define the self-energy without tadpole:

\[q_i^2 q_i^2 A_{2} + (q_i^2 + M_{2}^2 + M_{2}^2 q_i^2) T = \frac{1}{4} \frac{e^2 M_{2}^2}{s_{2}^{\prime}} (q_i^2 M_{2}^2) s_{2} F_{GA}^{-}\left(q_i^2 \right) + (q_i^2 M_{2}^2) F_{cc}^{-}\left(q_i^2 \right) ; \]

where

\[T = e \frac{T_0}{M_{2}^2} (s - T_0) + c + T_0 ; \]

where \[T = e \frac{T_0}{M_{2}^2} (s - T_0) + c + T_0 ; \]

We rem ark on some simplifications in the functions \[F \] for specific choices of the non-linear gauge parameters

\[F_{GA}^{-}\left(q_i^2 \right) = \sim 0 ; \]
\[F_{GA}^{-}\left(q_i^2 \right) = \sim c + s ; \]
\[F_{cc}^{-}\left(q_i^2 \right) = \sim c + 0 ; \]
\[F_{cc}^{-}\left(q_i^2 \right) = \sim 0 ; \]

In terms of renormalized self-energies,

\[A_{2} q_i^2 \left(q_i^2 \right) = A_{2} A_{2} \left(q_i^2 \right) + \frac{M_{2}^2}{t} \left(Z_{G} A_{2} + s_{2} \right) ; \]
\[A_{2} A_{2} \left(q_i^2 \right) = A_{2} A_{2} \left(q_i^2 \right) + \frac{1}{2} q_i^2 \left(Z_{G} A_{2} + \frac{1}{2} \frac{M_{2}^2}{t} \right) \left(Z_{A} A_{2} + \frac{1}{2} \frac{M_{2}^2}{t} \right) ; \]

with (Eq.4.16)

\[M_{2}^2 \left(A_{2} A_{2} \right) = T \frac{1}{2} s_{2} \frac{M_{2}^2}{t} ; \]
we obtain the following constraint on the renormalised two-point functions

\[
q^2_{\, A_{\epsilon} G} \left(q^2 \right) + M_{\, Z \, A_{\epsilon} G} \left(q^2 \right) = \left(q^2 - M^2_{\, Z} \right) \frac{1}{4} \frac{e^2 M_{\, Z}^2}{s_{2W}^2} s_2 - F^{-1}_{\, G A} \left(q^2 \right) \\
+ \frac{M_{\, Z}^2}{2} \left(q^2 - M^2_{\, A} \right) \left(\frac{1}{4} \frac{2e^2}{s_{2W}^2} \right) F^{-1}_{\, G A} \left(q^2 \right) + \frac{s_2}{t} Z_{\, G} ;
\]

(A.25)

Note that in this identity, \(B_{\epsilon} \) and more importantly, \(Z_{\, A_{\epsilon}} \) drop out.

The derivation of the identity for the charged Higgses follows along the same steps. We only quote the result:

\[
q^2_{\, H \cdot M} \cdot \left(q^2 \right) + M_{\, H \cdot M} \cdot \left(q^2 \right) = \left(q^2 - M^2_{\, H} \right) \frac{1}{4} \frac{e^2 M_{\, H}^2}{s_{2W}^2} \left(\frac{1}{4} \frac{2e^2}{s_{2W}^2} \right) G^{H \cdot M} \left(q^2 \right) + \frac{s_2}{t} Z_{\, H} ;
\]

with the functions \(G^{H \cdot M} \left(q^2 \right) \) and \(G^{C \cdot C} \left(q^2 \right) \) defined as:

\[
G^{H \cdot M} \left(q^2 \right) = \left(s_2 - 2 M_{\, H} \right) B_0 \left(q^2, M_{\, H}^2, M_{\, H}^2, M_{\, H}^2 \right) \left(s + s_2 \right) \left(s \right) + \left(s - s_2 \right) B_0 \left(q^2, M_{\, H}^2, M_{\, H}^2, M_{\, H}^2 \right) ;
\]

\[
G^{C \cdot C} \left(q^2 \right) = \left(s_2 - 2 M_{\, H} \right) B_0 \left(q^2, M_{\, H}^2, M_{\, H}^2, M_{\, H}^2 \right) \left(s \right) \left(s + s_2 \right) B_0 \left(q^2, M_{\, H}^2, M_{\, H}^2, M_{\, H}^2 \right) \left(s \right) + \left(s - s_2 \right) B_0 \left(q^2, M_{\, H}^2, M_{\, H}^2, M_{\, H}^2 \right) .
\]

(B.26)

\[\quad \]

B W ave function renormalisation constants before rotation

In our approach, the renormalisation was performed on the physical fields, or better said, after rotation to the \(\tilde{H}^0, H^0, A^0, \tilde{G}^0, \bar{H}, G \) basis. We could have applied the renormalisation on the components of the doublets \(H_1, H_2 \), Eq. (2.3). To make contact with some of the early papers [13, 15, 19] on the renormalisation of the Higgs sector we therefore introduce the most general renormalisation in the components of \(H_1, H_2 \). We define:

\[
\begin{align*}
0_{\, 1}^{\, 0} &= Z_{\, 1}^{0} Z_{\, 1}^{0} Z_{\, 1}^{0} \quad 0_{\, 1}^{\, 0} \\
0_{\, 1}^{\, 2} &= Z_{\, 1}^{2} Z_{\, 1}^{2} Z_{\, 1}^{2} \\
0_{\, 2}^{\, 0} &= Z_{\, 2}^{0} Z_{\, 2}^{0} Z_{\, 2}^{0} \\
0_{\, 2}^{\, 2} &= Z_{\, 2}^{2} Z_{\, 2}^{2} Z_{\, 2}^{2} \\
1_{\, 1}^{\, 1} &= Z_{\, 1}^{1} Z_{\, 1}^{1} A_{\, 1} \quad 1_{\, 1}^{\, 1} \\
1_{\, 1}^{\, 2} &= Z_{\, 1}^{2} Z_{\, 1}^{2} \quad 1_{\, 1}^{\, 2} \\
1_{\, 2}^{\, 1} &= Z_{\, 2}^{1} Z_{\, 2}^{1} A_{\, 2} \quad 1_{\, 2}^{\, 1} \\
1_{\, 2}^{\, 2} &= Z_{\, 2}^{2} Z_{\, 2}^{2} \quad 1_{\, 2}^{\, 2} \\
2_{\, 0}^{\, 2} &= Z_{\, 2}^{0} Z_{\, 2}^{0} Z_{\, 2}^{0} \\
2_{\, 0}^{\, 2} &= Z_{\, 2}^{2} Z_{\, 2}^{2} Z_{\, 2}^{2} ;
\end{align*}
\]

(B.1)

(A.21)

As explained in the text, these constants are immediately transformed into the set of matrices \(Z_P, Z_C, Z_S \). Or we can go from the set \(Z_P, Z_C, Z_S \) to the set defined by Eqs. (B.1-B.3). For
In fact in [14, 15, 19] only two renorm alisation constants are introduced, one for each doublet through

$$\hat{H}_i = (\frac{1}{\sqrt{2}} Z_{\hat{H}_i})_{12} \ i = 1, 2.$$ (B.12)

This means that

$$Z_{\hat{H}_i 1} = Z_{\hat{H}_i 2} = Z_{\hat{H}_i};$$
$$Z_{\hat{H}_i 12} = Z_{\hat{H}_i 21} = 0 \ i \neq j.$$ (B.13)

Since wave function renorm alisation is applied on the doublets it also contributes a shift to v_i. A nother shift on this parameter is also applied, ν_i, to all other Lagrangian parameters. Compared to our shift ν, we have

$$\nu = \frac{1}{2} Z_{\hat{H}_i} v_i.$$ (B.14)

Note that with only $Z_{\hat{H}_i}$ and $Z_{\hat{H}_j}$, in view of Eqs. (B.10) - (B.11) and Eq. (B.13) we have

$$Z_{\hat{H}_i} = \frac{1}{2c_0} \text{Re} \left(0^{\hat{H}_i} (M_{\hat{H}_i}^2) \right) \text{Re} \left(0^{\hat{H}_i} (M_{\hat{H}_i}^2) \right).$$ (B.15)
References

There is a long list of papers on the one-loop corrections to the lightest Higgs mass. It is fair to add to the list the seminal paper, written with the assumption that the top is not heavier than 60 GeV:

[4] For a review on the corrections at the two-loop order, see for example

[arXiv:0803.0672 [hep-ph]].

099902], [hep-ph/0504050].

H. Eck and J. Kubbeck, Guide to FeynArts 1.0, Wurzburg, 1991;
H. Eck, Guide to FeynArts 2.0, Wurzburg, 1995;

