Precision study of ground state capture in the $^{14}\text{N} (p,)^{15}\text{O}$ reaction

M. Marta,1 A. Formica,2 G. Gyurky,3 D. Bemmerer,1 C. Boggioni,4 A. Caciolli,5 P. Corradi,5 H. Costantini,5 Z. Elekes,3 Zs. Fulop,3 G. Gervino,2 A. Guglielmetti,6 C. Gustavino,2 G. Imbriani,9 M. Junker,2 R. Kunz,10 A. Lennert,2 B. Limata,2 C. Mazzocchi,8 R. M. enegazz,6 P. Prati,6 V. Roca,9 C. Rolfs,10 M. Romano,9 C. Rossi Alvarez,4 E. Somorjai,11 O. Straniero,11 F. Strieder,10 F. Terrasi,12 H. P. Trautvetter,10 and A. vomiero13

(The LUNA Collaboration)

1Forschungszentrum Darmstadt-Rossendorf, Bautzner Landstr. 128, 01328 Dresden, Germany
2INFN, Laboratori Nazionali del Gran Sasso (LNGS), Assergi (AQ), Italy
3Institute of Nuclear Research (ATOMKI), Debrecen, Hungary
4Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Padova, Padova, Italy
5Dipartimento di Fisica, Università di Padova, Padova, Italy
6Università di Genova and INFN Sezione di Genova, Genova, Italy
7Dipartimento di Fisica Generale Applicata, Università di Milano and INFN Sezione di Milano, Milano, Italy
8Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", and INFN Sezione di Napoli, Napoli, Italy
9Dipartimento di Scienze Fisiche, Università di Napoli "Federico II", and INFN Sezione di Napoli, Napoli, Italy
10Institut für Experimentelle Physik III, Ruhr-Universität Bochum, Bochum, Germany
11Osservatorio Astronomico di Cossogno, Temano, and INFN Sezione di Napoli, Napoli, Italy
12Seconda Università di Napoli, Caserta, and INFN Sezione di Napoli, Napoli, Italy
13INFN, Laboratori Nazionali di Legnaro, Legnaro, Italy

(Dated: April 21, 2013)

The rate of the hydrogen-burning carbon-nitrogen-oxygen (CNO) cycle is controlled by the slowest process, $^{14}\text{N} (p,)^{15}\text{O}$, which proceeds by capture to the ground and several excited states in ^{15}O. Previous extrapolations for the ground state contribution disagreed by a factor 2, corresponding to 15% uncertainty in the total astrophysical S-factor. At the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy, a new experiment on ground state capture has been carried out at 317.8, 334.4, and 353.3 keV center-of-mass energy. Systematic corrections have been reduced considerably with respect to previous studies by using a Cover detector and by adopting a relative analysis. The previous discrepancy has been resolved, and ground state capture no longer dominates the uncertainty of the total S-factor.

The rate of the CNO cycle is controlled \[(1) \] by the $^{14}\text{N} (p,)^{15}\text{O}$ reaction. Its cross section (E), parameterized as the astrophysical S-factor

\[\text{S}(E) = E \exp \left(\frac{\hbar^2}{2mE} \right) \]
TABLE I: Measured quantities used to obtain an extrapolated $S_{2,8}(0)$ [keV barn] in recent studies.

<table>
<thead>
<tr>
<th>Group</th>
<th>Quantity used (taken from)</th>
<th>$S_{2,8}(0)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUNL [8]</td>
<td>- with [5]</td>
<td>0.12(0.45)</td>
</tr>
<tr>
<td>Brussels [10]</td>
<td>C cross section [8]</td>
<td>0.08 ± 0.01</td>
</tr>
<tr>
<td>LUNA [13]</td>
<td>C cross section [5,13]</td>
<td>0.25(0.06)</td>
</tr>
<tr>
<td>TUNL [14]</td>
<td>C cross section [14]</td>
<td>0.49(0.08)</td>
</tr>
</tbody>
</table>

For the Gamow peak of the Sun ($E_{p} = 27\text{ keV}$), however, extrapolations remain indispensable. For the dominant contribution to $S_{\text{tot}}(0)$, i.e., capture to the state at 6792 keV, recent experimental data and R-matrix are consistent [14,15]. For capture to the ground state, recent experimental data ($E = 120-480\text{ keV}$) from LUNA [13,16] and TUNL [14] are consistent with each other, and they both rule out a previous R-matrix [13]. However, the extrapolated $S_{2,8}(0)$ values [13,14] disagree significantly (table I). This discrepancy has 15% impact on $S_{\text{tot}}(0)$, limiting its precision. In addition to discrepancies between previous data [8] in the Refs. [13,14] had employed large germanium detectors in close geometry, enhancing the detection efficiency but incurring true coincidences summing-in corrections of 100-250% for the ground state data, which, in turn, lead to considerable systematic uncertainty.

The aim of the present work is to address the conflicting extrapolations [13,14] with a precision cross section measurement. In order to minimize the uncertainties, the analysis is limited to the ratio of the cross sections for capture to the ground state and to the 6792 keV state. An energy range above the 259 keV resonance, where the latter resonances are not present, is used in the measurement. The experiment was performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) at the Gran Sasso National Laboratory (Italy), which has a low-level γ-ray laboratory background [18]. A Clover detector was used, reducing the summing-in correction by a factor 30 (table II).

The H$^+$ beam of $E_{p} = 359,380$, and 399 keV and 0.25-0.45 mA intensity from the LUNA2 400 kV accelerator [19] impinged on a sputtered TiN target, with 55 keV thickness measured on the $E = 259\text{ keV}$ resonance. The γ-rays from the reaction were studied in a BGO detector system [20]. The front end of the Clover crystals was positioned at 9.5 cm distance from the target, at an angle of 55° with respect to the beam axis. The output signal from each of the four Clover segments was split into two branches; of these branches, one branch was recorded separately, and the other four spectra were summed in the offline analysis (singles mode). The second branches of the four signals were added online in an analog summing unit (addback mode). For experiments o the 259 keV resonance, the addback mode data were recorded in anticoincidence with the BGO anti-Compton shield.

The γ-ray detection efficiency was obtained using ^{137}Cs and ^{60}Co radioactive sources calibrated to 1.5% and 0.75%, respectively. The efficiency curve was extended to higher energy based on spectra recorded at the 259 keV resonance, using the known delayed γ-ray cascades for the excited states at 6792 keV and 6792 keV. The γ-rays from the decay of this 1/2$^+$ resonance are isotropic, and their angular correlations are well known [24]. The calculated summing-out correction in addback mode is 2.9%, with an assumed relative uncertainty of 10%, consistent with a GEANT4 [26] simulation showing (4.5-1.8)% correction. As a check on the quality of the efficiency curve, the experimental cross section ratio for the 5181 keV excited state (not used in the t) was found to be reproduced within 1% statistics.

The branching ratio for decay of the 259 keV resonance to the ground state was found to be 1.56(0.08)% in addback mode and 1.53(0.06)% in singles mode, taking into account (42.2)% and (7.4)0.3% summing-in correction, respectively. This confirms that the summing-in correction for the addback mode is accurate. Furthermore, the GEANT4 simulation showed (40.2)1.4)% and (7.8)0.9)% summing-in correction for addback and singles, respectively, in good agreement with the above data. The branching ratio is in good agreement with the previous LUNA value [15] and in fair agreement with TUNL [14].

The $^{14}\text{N} + p$ resonance, the spectra (g.e. row 1-3) show some on-resonance contribution due to the tail of the target profile. The secondary γ-rays from the decay of the 6792 keV level (g.e. middle column) therefore contains 13-55% on-resonance capture, and it was rescaled with the on/o -resonance ratio obtained from the primary γ-rays (g.e. left column). Subsequently, the cross section ratio

$$R_{G,S}=\frac{S_8(E)}{S_9(E)}$$

FIG. 1: Energy levels of ^{15}O, in keV [14,21].
FIG. 2: (color online) Solid red (dashed green) line: γ-ray spectra for addback (singles) mode. First three rows: Data at the E = 353.3 keV resonance. Fourth row: Laboratory background, negligible at high γ-energy. Fifth row: data at the E = 259 keV resonance.

TABLE II: Cross section ratio R_{GS=6792} (E) and relative uncertainty. The size of the summing-in correction is also given.

<table>
<thead>
<tr>
<th>E [keV]</th>
<th>mode</th>
<th>R_{GS=6792} (E)</th>
<th>stat. syst.</th>
<th>Summing-in (10^−2)</th>
<th>uncertainty correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>317.8</td>
<td>1.5</td>
<td>addback</td>
<td>4.71</td>
<td>5.9%</td>
<td>5.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>singles</td>
<td>4.67</td>
<td>14%</td>
<td>2.7%</td>
</tr>
<tr>
<td>334.4</td>
<td>1.5</td>
<td>addback</td>
<td>5.00</td>
<td>5.1%</td>
<td>3.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>singles</td>
<td>5.07</td>
<td>13%</td>
<td>2.5%</td>
</tr>
<tr>
<td>353.3</td>
<td>1.5</td>
<td>addback</td>
<td>5.30</td>
<td>3.6%</td>
<td>3.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>singles</td>
<td>5.15</td>
<td>10%</td>
<td>2.3%</td>
</tr>
</tbody>
</table>

The effective energy was determined from the centroids of the γ-lines for capture to the ground state and to the 6792 keV state and leads to 2.4% uncertainty.

The absolute cross section for the ground state transition obtained from the present data was determined by the ratios given in table II, normalized with the weighted detection efficiency cancel out in the relative experiment.
average (uncertainty 7.5%) of the S-factor results for the 6792 keV transition given in Refs. [6,14,15,13]. From such a combined an ANC of 4.8 fm$^{1+2}$ was obtained for the 6792 keV state, in good agreement with Refs. [11,23] and resulting in $E_2 = 0.4$ MeV for the reduced width of the subthreshold state. For the strength of the 259 keV resonance, 13.1 MeV (weighted average of $14,15,16,21$) was adopted, for its proton width 0.99 keV15, and for the ground state branching, 1.53% (weighted average of $14,15$ and the present work) was used. For all other parameters, the previous values were taken without any change 12; ANC for ground state capture: 7.3 fm$^{1+2}$. $E = 0.987$ MeV resonance: $E = 26$ MeV, $p = 3$ keV. $E = 2.178$ MeV resonance: $E = 4.47$ MeV, $p = 0.27$ MeV. Background pole at $E = 6$ MeV, $p = 8$ MeV. In order to limit the systematic uncertainty due to summing-in to less than the statistical error, only data with less than 50% summing-in correction were used for the R-matrix analysis: i.e. 8 (corrected 12 for summing-in) and the present data. The interference pattern around the 259 keV resonance is ideal by the results of 14,16,22, and the interaction radius was set to 5.5 fm 13. The best t (g*) varying only the widths of the subthreshold state and of the background pole results in $S_{0,5}(0) = 0.20$ keV barn with a width = 0.9 0.2 keV for the subthreshold state, in agreement with Coulomb excitation work 12 and with lifetime measurements 2,24. A full R-matrix analysis including a detailed error determination for all parameters is beyond the scope of the present work. Therefore, the previous relative uncertainty of 24% in $S_{0,5}(0)$ 13 is adopted here, giving $S_{0,5}(0) = 0.20 \pm 0.05$ keV barn.

In summary, owing to the present high precision data, ground state capture now contributes less than 4% uncertainty to the total $S_{tot}(0)$, instead of the previous 15%, based on a data set which is nearly free from summing problems. On the basis of the present result, $S_{tot}(0) = 1.57 \pm 0.13$ keV barn is recommended, with the uncertainty including also systematic errors. For this sum, $S_{6172}(0) = 0.09 \pm 0.07$ keV barn 11,12,13,23 has been adopted. Further in proven events in $S_{tot}(0)$ precision would require a fresh study of this contribution. In the meantime, the present ground state data pave the way for a measurement of the solar central metallicity 24.

The use of the R-matrix code 14 written by P. Descouvremont (ULB Brussels) is gratefully acknowledged. One of us (H.P.T.) thanks R.E. Asum a, E.Simpson, and A. Chamagne for fruitful discussions. The present work has been supported by INFN and in part by the EU (ILARS-TA RIDS-CT-2004-506222), OTKA (T 49245 and K 68801), and DFG (Ro 429/41).