P-wave $N-N$ coupling and the spin-orbit splitting of 9Be

Y. Fujiiwara1, M. Kohno2 and Y. Suzuki3

1 Department of Physics, Kyoto University, Kyoto 606-8502, Japan
2 Physics Division, Kyushu Dental College, Kitakyushu 803-8580, Japan
3 Department of Physics, and Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan

(Dated: April 21, 2013)

We examine the spin-orbit splitting of 9Be excited states in terms of the SU$_6$ quark-model baryon-baryon interaction. The previous folding procedure to generate the spin-orbit potential from the quark-m model N LS interaction kernel predicted three to five times larger values for E'$_{9} = E_{9}(3^{-2}) - E_{9}(5^{-2})$ in the model FSS and fss2. This time we calculate LS Born kernel, starting from the LS components of the nuclear matter G-matrix for the hyperon. This framework makes it possible to take full account of an important P-wave N (N coupling through the antisymmetric LS$^-$ force involved in the Fermi-iBreit interaction). We find that the experimental value, $E_{exp}^{9} = 43.5$ keV, is reproduced by the quark-m model G-matrix LS interaction with a Fermi momentum around $k_F = 1.0$ fm$^{-1}$, when the model FSS is used in the energy-independent renormalized RGM formalism. On the other hand, the model fss2 gives too large splitting of about 200 keV. Based on these results and the analysis of the Scheerbaum factors, it is concluded that the model fss2 should be improved to reproduce small single-particle spin-orbit potentials of the hyperon.

PACS numbers: 21.45.-v, 13.75.Ev, 21.80.+a, 12.39.Jh

Study of hypernuclei based on the fundamental baryon-baryon interactions is important, since the available scattering data for the hyperon-nucleon (YN) interaction are very scarce. The SU$_6$ quark-m model (QM) baryon-baryon interaction developed by the Kato-Niigata group is a comprehensive model for all the octet-baryons (B), which is formulated in the (3q)-(3q) resonating-group method (RGM) using the spinor SU$_6$ QM wave functions, a color version of the one-gluon exchange Fermi-iBreit interaction, and the effective meson-exchange potentials acting between quarks. The early version, the model FSS2 includes only the scalar (S) and pseudoscalar (PS) meson exchange potentials as the effective meson-exchange potentials, while the modified one, fss23, introduces also the vector (V) meson exchange potentials and the momentum-dependent Bryan-Scott term for the S and V mesons.

As an important application of four QM baryon-baryon interactions, we have carried out Faddeev calculations for the triton and the hypertriton in Ref. 3, in the most reliable form of using the energy-independent renormalized RGM kernel. The triton binding energy predicted by the fss2 is very close to the experimental value with around 350 keV less bound, and the separation energy of the hypertriton is 262 keV vs. the experimental value 130-150 keV. In the hypertriton calculation, the detailed information is obtained for the central force of the N interaction, since this system is a S-wave dominant. On the other hand, the information on the NLS force is obtained, for example, from the very small spin-orbit (‘s) splitting of the 5=2$^-$ and 3=2$^-$ excited states of 9Be, $E_{exp}^{9} = 43.5$ keV [3]. In the previous papers [2,3], we performed Faddeev calculations of the two-alpha plus (1) system by assuming a single p-shell fss2 shell-model potential for the clusters. For the interaction, a microscopic RGM kernel is used with an effective NN force, Minnesota three-range force. The interaction is generated from a simple two-range Gaussian central potential (SB potential), which simulates the S-wave phase-shifts of the N interaction of fss2 with a slight modification to the bound state. The Pauli forbidden states between the two clusters are exactly eliminated in the three-cluster Faddeev formalism using two-cluster RGM kernels [2,3].

The origin of the 5=2$^- $ and 3=2$^- $ splitting in the cluster model is the spin-orbit potential between the two clusters, which is known to be very small due to the strong cancellation between the symmetric (LS) and antisymmetric (LS$^-$) LS forces of the N interaction. As a first step, we directly used in Ref. 3 the QM NLS RGM kernel to generate the LS potential by simple cluster folding. In this procedure, the QM NLS interaction of fss2 predicted a 3 to 5 times larger value for E_{exp}^{9}, which is not much improved in comparison with the results of the eigen-simulated potentials [3]. It was pointed out in Ref. 3 that a further reduction is possible in the model FSS2 if one can properly take into account the short-range correlation of the P-wave N N coupling by the LS$^-$ force. This was conjectured through the analysis of the Scheerbaum factors for the single-particle (sp.) spin-orbit potentials, calculated in the G-matrix formalism.

In this new calculation, we generated LS Born kernel from the LS component of the nuclear-matter G-matrix

\[\text{YS} \@\text{phys}ky\text{uto-u}\text{.ac.Jp} \]
for the hyperon. For the $(0s)^4$ -cluster folding, a new method developed in Refs. [1,2] is employed to derive direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrix with explicit treatment of the nonlocality and the center-of-mass motion between the hyperon and the cluster. The G-matrix calculations are carried out by assuming a constant Fermi momentum k_F, since the local density approximation does not seem to work in light nuclear systems. The G-matrix equation is solved for the energy-independent Q-matrix with the k_F term explicitly included in the renormalized G-matrix [1,3,4], and the continuous prescription for intermediate states is employed. A similar procedure of the energy-independent renormalized G-matrix is also used for the RGM kernel.

We start from the $N\{N$ coupled-channel G-matrix equation [1,3,4]:

\[
G(p\,q;K;\!;k_F) = U_{RGM}(p\,q) + \frac{1}{(2\pi)^3}\,d\,k \int \text{ }^{RGM}(p\,q;K;\!;k_F) \quad (1)
\]

where $Q(k;K)$ stands for the average of Pauli operator and $E(k;K;\!;k_F)$ is the energy denominator. Here, we use the notation etc. to specify N and N channel and k_F for the corresponding or explicit expressions for Q and k_F as given in Refs. [1,3]. The s.p. energy $E_b(k)$ is defined by

\[
E_b(k) = M_b + \frac{1}{2M_b}k^2 + U_b(k) \quad (2)
\]

with $U_b(k)$ and M_b being the s.p. potential and the mass for the baryon b, respectively. The starting energy E is a sum of the s.p. energies of two interacting baryons:

\[
E = E_a(q_1) + E_N(q_2) = M_a + M_N \\
\quad + \frac{1}{2(M_a + M_N)}k^2 + \frac{1}{2}q^2 + U_a(q_1) + U_N(q_2) \quad (3)
\]

where K and q are the total and relative momentum corresponding to the initial s.p. momenta q_1 and q_2. The s.p. potentials $U_a(q_1), U_N(q_2)$, and $U_N(q_2)$ are determined self-consistently in the standard procedure by assuming a constant k_F. The treatment of q_1 and q_2 is discussed below, in relation to the folding formula of the Born kernel.

We employ the energy-independent Born kernel [1,3,4] for the $N\{N$ coupling:

\[
V_{RGM}(p\,q) = V_D(p\,q) + G(p\,q) + W(p\,q) \quad (4)
\]

with

\[
W = \frac{1}{N}(T_T + V_D + G) \quad (5)
\]

Here, T_T is the kinetic-energy operator for the relative motion and N stands for the normalization kernel in the $N\{N$ space. This energy-independent treatment of the Q-matrix baryon-baryon interaction in the G-matrix formalism requires some kind of orthogonalization procedure for the $N\{N$ channel, since this channel involves a Pauli forbidden state at the quark level. The redundant correction of the G-matrix is carried out in a similar way to the RGM T-matrix used in the Faddeev formalism. The details will be published elsewhere [1].

The derived G-matrix interaction is expressed in the form of the invariant G-matrices as [1]:

\[
G_{N\{N}(p\,q;K;\!;k_F) = h_{N\{N}(p\,q;K;\!;k_F) \\
G(p;K;\!;k_F) \quad (6)
\]

Here, $h_{N\{N}$ is defined by

\[
V_q = V_{C}(q;\!;j_1) + V_{LS}(q;\!;j_1) \quad (7)
\]

and $V_{LS}(q;\!;j_1)$ is calculated by the folding formula derived in Ref. [13]. Here, $b_n = n-j$ with $n = [p^0, p^1]$, and the invariant functions, g_0 (central), $g_1 = (\text{spin-spin}), g_2 = (\text{LS}), g_3 = (\text{LS}, \text{LS})$, etc. depend on $p = [p^0, p^1]$, $g_0 = \cos \theta$, and $g_1 = \cos \theta$, as well as the G-matrix parameters K_0 and k_F. These are expressed by the partial-wave components of the G-matrix as in Appendix D of Ref. [11]. The spin-spin term and the omitted noncentral term s in Eq. (6) do not contribute to the Born kernel, due to the spin-saturated property of the cluster.

The Born kernel

\[
V_q = V_C(q;\!;j_1) + V_{LS}(q;\!;j_1) \quad (7)
\]

is calculated by the folding formula derived in Ref. [13]. Here, $b_n = n-j$ with $n = [q_1, q_2]$. For the angular momentum projection of the central and LS term s, it is convenient to use the m-on-m momentum transfer $k = q_1 q_2$, and the local on-momentum $q = (q_1 + q_2)$ is the same system, together with the similar relationship $k_0 = (p + p') = 2$ at the two-baryon level. For example, the central Born kernel $V_C(q_1;\!;j_1)$ in Eq. (7) is expressed as

\[
V_C(q_1;\!;j_1) = 4\pi \frac{21}{3} \frac{1}{2} \quad (8)
\]

where $M = M_a + M_N$ is the harmonic oscillator size parameter of the cluster. Transformations from g_0 to $G_0(k^2,q^0)$ and from $V_C(k^2,q^0)$ to $V_C(q_1;\!;j_1)$ are carried out numerically for the partial-wave components. For the direct and knock-on terms s, we use $k = k_0$. The relationship $K = (1 + j)g_0 q_1^0$ in Eq. (3) implies that the local on-momentum q of the Born kernel corresponds to the initial on-momentum q_1 for the G-matrix equation and q_0 to the relative on-momentum q in Eq. (3). The standard angular averaging procedure for the q_1^0 integral in Eq. (3) gives the starting energy E as a function of q_1 and q_0, which we call q_1 prescription. We therefore
assign $q_i = jy$ and $q_i = yz$ in Eq. (3) and obtain a simple folding formula for the partial-wave components. In the application to the n RGM using the G-matrix NN interaction, we have proved this method to make possible the treatment of other interaction types. This in proved version especi es as a function of q and K (nam efly, $! = (qK)$) by applying the angular-averaging procedure to K. The explicit angular-momentum projection on the q^2-dependence in K makes it possible to deal with the Pauli-forbidden state in the n relative motion. In the following, we will also show the results by this $(q; K)$ prescription, but the difference from the $(q; q_2)$ prescription is only quantitative.

For the Faddeev calculation, we use the same conditions as used in Ref.[8], except for the exchange rattle parameter u of the SB N potential. We here use $u = 1$, which is the same value as in Ref.[8]. The increase from $u = 0.82$ to $u = 1$ is because the energy-independent treatment of the RGM kernel gives slightly more repulsive e-shift than the previous energy-dependent treatment. With this value, the ground-state energy of 6Be is 6.596 MeV, which corresponds to the experimental value 6.52 MeV. We have used the central Born kernel obtained from the G-matrix calculation, since the interaction strength is rather sensitive to the assumed k_F value. For example, the bound-state energy, predicted by FSS in the $(q; q_2)$ prescription is $2.95 \text{ (2.96)} \text{ MeV}$ for $k_F = 1.20 \text{ fm}^{-1}$ and $4.04 \text{ (3.43)} \text{ MeV}$ for $k_F = 1.07 \text{ fm}^{-1}$, compared with the experimental value 3.12 MeV. The purpose of the present investigation is to examine the LS component from the QM N N interaction.

Table I shows the results of Faddeev calculations in the jj-coupling scheme, obtained by using the QM G-matrix LS Born kernel. The Fermi momentum $k_F = 1.07; 1.20, \text{ and } 1.35 \text{ fm}^{-1}$ correspond to the densities $0.5 \rho_0; 0.7 \rho_0, \text{ and } 0.9 \rho_0$, respectively, with $\rho_0 = 0.17 \text{ fm}^{-3}$ being the normal saturation density. The natural values for the 'splitting of the $5+2$' and $3+2$ excited states are $E_{\gamma} = 39 - 96 \text{ keV for FSS and } 205 - 223 \text{ keV for } f_{ss2}$, depending on the k_F values in the range of $1.07 - 1.35 \text{ fm}^{-1}$. If the $(q; K)$ prescription is used, the results by f_{ss2} are similar, but those by FSS are $56 - 118 \text{ keV}$. A smaller k_F value gives a smaller 'splitting'. If we compare these results with the experimental value $E_{\gamma} = 43 \text{ keV}$, we nd that the model FSS can reproduce the experimental value if the k_F value around $1.09 - 1.02 \text{ fm}^{-1}$ is used. We nd that the excitation energies of the $5+2$' and $3+2$' states are almost 120 keV too low, when the 'splitting' is correctly reproduced with FSS. This is the result when the energy-independent renormalized RGM kernels are used for the RGM kernel and for the QM baryon-baryon interaction. On the other hand, f_{ss2} gives too large values around 200 keV.

These results are consistent with the tendency of the Scheunbaum factor S in the nuclear matter. Table I also lists the Scheunbaum factor S in symmetric matter, indicating the strength of the spin-orbit potential of the hyperon. A similar quantity can be derived for the zero-mode B R G transform calculated from the L S Born kernel in Eq. (4) (see Eq. (2.47) of Ref.[14]). This quantity, that we call the Scheunbaum-like factor S, is expected to give a better measure for the strength of the spin-orbit interaction, since it deals with the recoil effect of the cluster due to the correct treatment of the cm motion in the 'cluster folding'. The recoil effect is about $20-30\%$ and is by no means small, as discussed in our previous paper [8]. We nd that the strong cancellation between the LS and L^1 forces takes place in the QM Fermi Breit interaction for the P-wave $N \{ N$ coupling in the $^1P_1\{^2P_1, \text{ when the G-matrix interaction is solved especially in low-density nuclear matter. This is most prominently exhibited in the model FSS. The spin-orbit contribution from the effective meson exchange potentials in f_{ss2} does not lead to the small 'splitting of the hyperon, since the scalar-meson exchange LS force contains only the ordinary LS and does not produce the L^1 force.'

The previous energy-dependent treatment of the RGM kernels yields the results qualitatively similar to the present investigation. The reduction of the energy splitting and the S, S factors for the smaller k_F values is very drastic for FSS. We nd that $k_F = 1.25 \text{ fm}^{-1}$ will give the correct value of E_{γ} if FSS is used. On the other hand, the model f_{ss2} gives almost no reduction for the smaller k_F values.

In spite of the successful reproduction of the 6Be's splitting by the model FSS, there still remains an important issue on the P-wave characteristics of the N interaction. Owing to the very strong P-wave $N \{ N$ coupling in FSS, the $^3P_1 \text{ N resonance }$ moves to the $^1P_1 \text{ N channel}$, resulting in a very broad step-like resonance in this channel, as seen in Fig. 14 of Ref.[8]. As the result, the cusp structure in the p total elastic cross sections at the N threshold is largely enhanced compared with that of the f_{ss2} prediction, which is clearly overestimated even from the present experimental data with large error bars. See Fig. 19 (e) of Ref.[8]. The original $^1P_1 \text{ N resonance }$ is caused by the attractive Pauli efct from the exchange kinetic-energy kernel, related to the Pauli forbidden $(l_1, S U_3 \text{ state for the most compact } (0s)^6$-knoeck quark con quiration in the avor-symmetric channel. The resonance behavior in the $N \{ N (I = 1=2) ^1P_1\{^1P_1, \text{ state sensitively depends on the strength of the LS }^1\text{ force and the strength of the attractive central force in the } N (I = 1=2) \text{ channel}. Further on, the central } N \text{ interaction of FSS has a problem that the }^3S_1 \text{ interaction is too attractive, in comparison with the }^3S_1 \text{ interaction. For this reason, the hyperon calculation in Ref.[5] leads to the large overbinding when FSS is used. These inconsistencies between the central and LS components of the } N \text{ interaction imply that we still need better models to describe the hypernuclei by means of the SU_3 \text{ QM baryon-baryon interaction.}

Summarizing this work, we have carried out Faddeev calculations by employing the LS Born kernel...
The starting energies. The results by the continuous prescription is used for intermediate spectra in the G-matrix calculation. The energy-independent remainder of the matrix elements for the QM baryon-baryon interactions. The ! (qK) prescription is used for the starting energies. The results by the ! (qK) prescription are also shown in the parentheses. (See the text.)

<table>
<thead>
<tr>
<th>(k_F) (fm(^{-1}))</th>
<th>1.07</th>
<th>1.20</th>
<th>1.35</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5</td>
<td>0.7</td>
<td>1</td>
</tr>
<tr>
<td>G-matrix</td>
<td>118</td>
<td>121</td>
<td>123</td>
</tr>
<tr>
<td>S (M eV fm(^5))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSS</td>
<td>41</td>
<td>52</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>147 (148)</td>
<td>156 (156)</td>
<td>163 (163)</td>
</tr>
<tr>
<td></td>
<td>35 (46)</td>
<td>57 (67)</td>
<td>75 (87)</td>
</tr>
<tr>
<td></td>
<td>205 (204)</td>
<td>213 (214)</td>
<td>223 (220)</td>
</tr>
<tr>
<td></td>
<td>39 (56)</td>
<td>68 (87)</td>
<td>96 (118)</td>
</tr>
</tbody>
</table>

TABLE I: The Scheerbaum factor \(S \) for symmetric nuclear matter, the Scheerbaum-like factor \(\tilde{S} \) from the zero-mom entum Wigner transform for the spin-orbit force, and the energy splitting, \(E_{\gamma} = E_x(3^{-2}) - E_x(5^{-2}) \), of the \(^5\)Be excited states predicted from the \(G_{-\text{matrix}} \) and LS Born kernel. The model is fss2 and FSS and the continuous prescription is used for intermediate spectra in the G-matrix calculation. The energy-independent remainder of the matrix elements for the QM baryon-baryon interactions. The ! (qK) prescription is used for the starting energies. The results by the ! (qK) prescription are also shown in the parentheses. (See the text.)

\[E_{\gamma}^\text{exp} \text{ (keV)} \]

\[k_F \text{ (fm}^{-1}\))

\[\overline{E}_{\gamma} \text{ (keV)} \]

generated from the LS components of the nuclear-matter G-matrix for the hyperon. One of our SU\(_5\) QM baryon-baryon interaction FSS can reproduce the very small splitting of \(^3\)Be excited states, \(E_{\gamma}^\text{exp} = 43 \) keV, when an appropriate \(k_F \) value corresponding to the half density of the normal saturation density is employed in the G-matrix calculation. The explicit value of \(k_F \) depends on the model construction even within the framework of the cluster model for \(^3\)Be; \(k_F = 109 \) fm\(^{-1}\) for the model with FSS with the ! (qK) prescription and 102 fm\(^{-1}\) with the ! (qK) prescription, when the energy-independent remainder of the matrix elements for the QM baryon-baryon interactions. The previous energy-dependent version of the matrix elements requires \(k_F = 125 \) fm\(^{-1}\) to reproduce \(E_{\gamma}^\text{exp} \) by FSS. On the other hand, the model fss2 gives too large splitting of almost 200 keV. An essential ingredient of the present form of \(N \) N coupling through the antisymmetric LS (1) force involved in the Fermi INN interaction. From the present results and the analysis of the Scheerbaum factors for the s.p. spin-orbit potentials, we conclude that the spin-orbit contribution from the effective meson-exchange potentials in fss2 needs to be improved to reproduce the small spin-orbit interaction of the hyperon, experimentally observed. Construction of a new model with consistent N central and LS interactions is now in progress.

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (C) (Grant Nos. 18540261 and 17540263), and for Scientific Research on Priority Areas (Grant No. 20028003), and Bilateral Joint Research Projects (2006-2008) from the Japan Society for the Promotion of Science (JSPS). This work was also supported by the Grant-in-Aid for the Global COE Program "The Next Generation of Physics, Spun from Universality and Emergence" from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

