Uncertainties in the Anti-neutrino Production at Nuclear Reactors

1 Department of Physics, Columbia University, New York, NY 10027
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720
3 Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487
4 Diablo Canyon Power Plant, Pacific Gas and Electric Company, Avila Beach, CA 93424
5 Physics Department, Stanford University, Stanford, CA 94305

(Dated: April 21, 2013)

Anti-neutrino emission rates from nuclear reactors are determined from the already measured and reaction rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor detectors.

PACS numbers: 13.15.+g, 14.60.Pq, 28.41.Va

I. INTRODUCTION

Electron anti-neutrinos from large commercial nuclear reactors are playing an important role in the exploration of neutrino oscillations [1]. The choice of distance between source and detector allows one to conveniently tune an experiment's sensitivity to either the atmospheric or solar neutrino mass splitting. KamLAND [2, 3, 4] has established a connection between the MSW effect in the sun [5] and vacuum oscillations with anti-neutrinos, and has provided the most accurate measurement of m21 to date. Earlier, CHOOZ [6] and Palo Verde [7] provided what are still the best upper limits on the mixing angle 13. A variety of new experiments are being constructed to perform more sensitive measurements of the mixing angle 13 [8, 9, 10, 11, 12, 13]. A neutrino detector at very short distance is being explored with the purpose of detecting coherent neutrino-nucleon scattering (CNS) [13], and for testing Plutonium diversion at commercial reactors [14]. A proper understanding of the systematics involved in the modeling of the reactor anti-neutrino ux and energy spectrum is essential for these experiments. Moreover, as most experiments measure the sum of fivemore than one reactor, it is important to understand not only the magnitude of these e events, but also the correlations between uncertainties from different sources.

Except for the case of CNS, which will not be addressed further here, reactor anti-neutrinos are usually detected using the inverse reaction e + p ! n + e, whose correlated signature helps reduce backgrounds but is only sensitive to the spectrum with energy above 1.8 MeV. The kinetic energy of the positron gives a measure of the incoming energy. Neutrino oscillation parameters may be extracted from the data by fitting the observed spectrum to the following equation:

\[
\frac{dn}{dE} = \sum_{k}^{reactors} N_{p} \left(E_{f} \right) \left(E_{p} \right) \left(E \right) \left(E_{\text{loss}} \right) \frac{P_{ee}(E, \nu_{\mu} \rightarrow \nu_{e})}{4 L_{\text{eff}}^{2}} S_{k}(E),
\]

Here, \(N_{p} \) is the number of target protons, \(E_{p} \) is the energy-dependent detection efficiency, \(E_{p} \) is the detection cross-section, \(P_{ee}(E, \nu_{\mu} \rightarrow \nu_{e}) \) is the oscillation survival probability for \(\nu_{e} \)s traveling a distance \(L_{\text{eff}} \) from reactor \(k \) to the detector, and \(S_{k}(E) \) is the spectrum emitted by reactor \(k \). The time variation of the uux may be included in the t to discriminate the time-varying reactor signal from constant backgrounds. Equation 1 should technically be multiplied by the detector resolution function and integrated over E, but this detail is inconsequential for our analysis.

Nuclear power reactors operate on the principle that the fission of U and Pu isotopes and the subsequent decays of their daughter fragments release energy, generating heat. Large Q-value decayss of unstable fission fragments are primarily responsible for the \(\nu_{e} \) e emission of nuclear reactors. Decays of long-lived isotopes in the nuclear fuel are spent fission elements stored at the reactor site contribute at the sub-percent level to the detected uux; this contribution has been treated elsewhere [15] and is beyond the scope of this paper. Considering only single reactions, the integral in Equation 1 may be expanded as

\[
S(E) = \sum_{i}^{isotopes} f_{i} \frac{dN_{i}}{dE};
\]

where \(dN_{i}/dE \) is the \(\nu_{e} \) e emission spectrum per second of isotope \(i \), and \(f_{i} \) is the number of decayss of isotope \(i \) during the data taking period. Since \(q > 99.9\% \) of the energy- and isotope-producing decays are from \(^{235}\text{U} \), \(^{238}\text{U} \), \(^{239}\text{Pu} \), and \(^{241}\text{Pu} \) (see Figure 1), the summation in Equation 2 is performed over just these 4 isotopes. For \(^{235}\text{U} \), \(^{239}\text{Pu} \), and \(^{241}\text{Pu} \), the observed spectra \(dN_{i}/dE \) are derived from single-spectrum measurements of the decays of the isotopes by their aliner ions [16, 17].
in the spectral shape derived from thermal measurements was investigated recently in \[23\]. For \(^{235}\text{U}\), no measurements are available, so theoretical calculations of its emission must be used \[22\].

The \(f_i\) can be obtained from detailed simulations of the reactor core through the data taking period. The output of a simulation must obey the thermal energy constraint:

\[
W_{th} = \sum_{i=1}^{N_{imp}} f_i \epsilon_i \tag{3}
\]

where \(W_{th}\) is the total thermal energy produced by the reactor during the time period considered, and \(\epsilon_i\) denotes the energy released per fission of isotope \(i\). To reduce sensitivity to errors in the simulation codes, the codes are typically used to obtain not the \(f_i\) directly but the sission fractions \(f_i = F_i\), where \(F = \sum f_i\). Measurements of the total generated thermal power taken regularly during reactor operation may then be used to obtain the total numbers of sissions of each isotope using Equation 4.

The appropriate simulation codes are cumbersome to run, and are often proprietary, and therefore are not always available for direct use by scientific collaborations. Obtaining the \(f_i = F_i\) therefore requires specialized agreements with reactor operators. Depending on the t of the agreement, the use of thermal sission fractions may be obtained. Fine-grained data for \(W_{th}\) are commonly available, since such information must be made available to the nuclear regulatory bodies. Reactor experiments then use this information to calculate the signal using an equation of the following form:

\[
n = \frac{W_{th}}{\sum_{i=1}^{N_{imp}} f_i} \epsilon_i \frac{f_i}{F} n_i \tag{4}
\]

where for simplicity we have assumed a single reactor, and have integrated over \(E\). The terms in Equations \[4\] and \[5\] not appearing in Equations \[6\] and \[7\] have been grouped into the \(n_i\), the numbers of detected \(\epsilon_i\) per sission of isotope \(i\).

Most recent reactor \(e\) experiments, including KamLAND \[2, 3, 4, 7\], CHOOZ \[6\], Palo Verde \[7\] and Bugey \[20\], have used Equation \[8\], or variations on it, to perform their calculations. In the result two reactor experiments, the systematics uncertainty in the signal calculation was taken to be the quadratic sum of the uncertainty in the reactor power measurements which yield \(W_{th}\), and the estimate of the error due to the uncertainty in the sission fractions \(f_i = F_i\). In the case of Palo Verde this latter term was estimated from \(f_i\) to \(f_i\) by comparing between calculated and measured isotopic concentrations in spent fuel elements \[15\]. In the case of KamLAND this term was taken from \(f_i\) to \(f_i\) by comparing with data from a simulation of the fuel element model to detailed simulations \[2, 3, 4, 22\], which assumes that the uncertainty in the fuel element model significantly exceeds that of the detailed simulations. However, no systematic uncertainty was assigned to the detailed reactor simulations. The CHOOZ experiment \[6\] leveraged the short baseline Bugey observation to limit the reaction cross section uncertainty, scaling their result to agree with the Bugey-2 measurement cross section per fission. This treatment allowed CHOOZ to significantly reduce the error associated with the emission spectra \(dn/dE\). However, their method is limited to only the extent that the reactor simulations were performed by the CHOOZ and Bugey reactor operators reliably model the different reactor operating conditions and operation histories. In all cases, the combined systematic error was estimated to be within \(2\%\). At this level, the different methods employed by each experiment are likely not overly aggressive.

With detector-based uncertainties in current and next-generation reactor \(e\) experiments approaching the \(1\%\) scale, a more careful treatment of these reaction-specific uncertainties is necessary, particularly for experiments with multiple reactor sources in which correlations become important. In this paper we outline such a detailed treatment of these uncertainties and constrain its application to a counting analysis of \(e_i\) from single and multiple commercial reactor sources.

We describe in detail the uncertainty in reactor therm power measurements. In Section \[II\] we examine Monte-Carlo estimation of the \(f_i\) and, expanding on the treatment in \[13\] and \[22\], derive uncertainties for these based on a large body of spent fuel isotopic comparison used to verify the codes. In Section \[III\] we combine the uncertainties from \(W_{th}\) and the \(f_i = F_i\) to estimate their contribution to the uncertainty in the anti-neutrino yield. We also discuss the applications of our calculation to specific experimental configurations, including multiple reactor sources. We draw our conclusions in Section \[IV\].

Our analysis addresses issues common to large commercial power reactors, especially Pressurized-Water Reactors (PWRS) and Boiling-Water Reactors (BWRs), using low-energy neutrons. Explanation of the operation of PWRS and BWRs may be found in \[23\]. M odern neutrino experiments are most exclusively using \(e_i\) from such reactors. Minor contributions from other reactor types are not considered here. All uncertainties are given at the 68.3% confidence level.

II. THERMAL POWER UNCERTAINTY

The most accurate measurement of a reactor's thermal power is given by a calculation of the energy balance around the reactor vessel (BWR) or steam generator (PW). This requires accurate measurement of seawater mass flow and temperature, steam enthalpy and moisture content, and reactor coolant-cycle heat gains and losses \[24\]. For the PWRS at Diablo Canyon Power Plant (DCPP) (California, USA), the thermal balance is written as

\[
Q_C = Q_S + Q_{LTND} + Q_{RGC} + Q_{RCP} + Q_{PS} \tag{5}
\]
\(Q_C \) is the core therm al output, the time integral of which gives \(W_{th} \). The largest com ponent of \(Q_C \), is the power extracted from the steam produced directly in the steam generator. Small correlations are represented by: \(Q_{LTND} \), the power lost in the water clean-up system; \(Q_{RSC} \), the power losses to the external environment due to radiation and convection; \(Q_{RCP} \), the contribution to \(Q_S \) from heating of the working uid by the circulation pumps; and \(Q_{pZ} \), the contribution to \(Q_S \) from heating of the working uid by the pressurizers. The correlation terms together account for 0.3–0.4% of the total \(Q_C \).

A similar analysis balance may be written for other PWPs as well as for BWRs. In the case of BWRs, the main component is also in the form of steam produced by the reactor. For both reactor types, \(Q_S \) is evaluated according to

\[
Q_S = m_s (h_{out} - h_{in});
\]

where \(m_s \) is the mass ow rate of the feed-water to the steam generator (PWR) or reactor vessel (BWR), and \(h_{out} \) and \(h_{in} \) are the speci c enthalpies in steam generation. We will discuss the uncertainties in these terms below. The uncertainties on the terms other than \(Q_S \) in the therm al balance equation (Equation 5) contribute negligibly to the uncertainty of the core therm al power and will not be addressed further here.

The enthalpy rise is calculated, using steam tables [23], from inlet and outlet values of the pressure and temperature, and from the moisture content on the secondary side of the steam generator or reactor vessel. The enthalpy uncertainty has several contributions deriving from measured and calculated quantities. The errors in the temperature and pressure measurements are assumed to be random after correction for known systematic contributions. The moisture content of the steam is generally known to grow during the operation cycle because of reduced moisture removal e ciency of the steam separators due to a slow deposition of eroded metal particles. The moisture content uncertainty of the steam may be treated as a systematic uncertainty since all reactors undergo this aging process. The calculation of the enthalpy rise from these inputs using steam tables introduces an additional systematic uncertainty of \(< 0.2\% \) [24].

As an example, Table I shows the uncertainties of the quantities relevant to the enthalpy calculation for DCCP. The moisture content at DCCP’s steam generators grows with time, as mentioned above; the number in Table I is an average over the period of operation. Over longer periods the moisture content may grow, as explained above, by a factor of two over the level represented in Table I, but even then it will not introduce a sub-component into the error budget. A similar analysis for Beaver Valley Unit 2 yields enthalpy-related contributions to the therm al power uncertainty totaling 0.16% [24]. A more general discussion in [29] uses an enthalpy uncertainty of 0.24% for a generic reactor when a more detailed analysis is unavailable, we suggest conservatively assuming a 0.15% random uncertainty (for the \(Q \) and \(m \) measurements) and a 0.2% systematic uncertainty (due to the moisture content and use of steam tables) for the enthalpy rise.

The uncertainty in \(m_s \) gives the largest contribution to the error in the therm al power [23,31]. In order to provide a clear picture of the uncertainties, we will provide the uncertainties of the other terms in this analysis. For each term, the uncertainty is given in the form of a standard deviation, expressed as a percentage of the mean value. These uncertainties are independent of each other and are assumed to be normally distributed.

Table I: Uncertainty contributions to the enthalpy

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Typical Value</th>
<th>Enthalpy Error [%]</th>
<th>Quantity</th>
<th>Typical Value</th>
<th>Enthalpy Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_{in})</td>
<td>6.9 M Pa</td>
<td>0.50</td>
<td>0.002</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>(T_{in})</td>
<td>211 C</td>
<td>0.12</td>
<td>1.153</td>
<td>0.138</td>
<td></td>
</tr>
<tr>
<td>(p_{out})</td>
<td>5.6 M Pa</td>
<td>0.94</td>
<td>0.018</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>Moisture content</td>
<td>0.99</td>
<td>0.05</td>
<td>0.562</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td>Steam tables</td>
<td>< 0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quadratic Sum</td>
<td></td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For reactors...
instrumented with Venturi meters, for which lower uncertainties cannot be denominated as a result of fouling, this in effect leads to operation at 2% below the plant's licensed operating power limit. A similar 2% safety margin is required in Japan [32]. Moreover, fouling itself results in an overestimation of the thermal power output, leading to actual operation up to a few percent below the indicated level, and thus a lower electric power output. This two-fold impact of fouling gives the nuclear power industry a high incentive to deploy a replacement technology with smaller, well-understood uncertainties.

Using a new generation of ultrasonic ow meters (UFM) not affected by fouling, the thermal power uncertainty may be significantly reduced. UFM's use an electronic transducer with no differential pressure elements. There are currently two types of UFM systems routinely used in the nuclear electric generation industry to accurately calculate feed-water ow in high purity water [34]. One style is the transit-time meter, while the other is the cross-ow meter. The transit-time UFM em its ultrasonic signals diagonally through the uid upstream and downstream along the same path. The measured time di erence between the two paths is proportional to the velocity of the uid in the pipe. A accuracy of 0.2-0.5% are reported [35,40] for transit-time type UFM s. The cross-ow UFM measures the time taken by a unique pattern of turbulent eddies in the uid to travel between two pairs of transducers at some known distance apart along the pipe. The cross-ow devices are mounted externally to the pipe. The cross-ow UFM with its associated hardware and software is able to achieve a ow measurement uncertainty of 0.25% or better, although the ability to achieve these uncertainties in real reactor conditions has been questioned [41]. This type of meter is employed at DCPP, with an uncertainty evaluated in-situ within the 0.4-0.7% range. The principles of operation of both transit-time and cross-ow UFM s are described in detail in [42].

The measurement uncertainties of transit-time type UFM s and their breakdown into statistical and systematic components were studied in detail by Estrada [40] of Caldon Inc., a ow meter manufacturer for the nuclear industry. This work found total uncertainties in the measured mass ow rates of 0.45% for models with externally mounted transducers, and 0.20% for intrusive-type models with 4 pairs of transducers. We refer to these as Type I and Type II UFM s, respectively. These uncertainties originate from the di erences between the water axial ow pro le in the test facility and in the measurement system in a plant, the uncertainty in the measurement of the ultrasonic acoustic path in the water pipe, the im perfect knowledge of the dimensions of the measurement system s, and the uncertainty in the measurement of the time of flight of the acoustic pulses, including non-uid delays. The water ow uncertainties are divided into random and systematic contributions in Table I.

We note that the 0.45% uncertainty based on Estrada's study is consistent with the 0.4-0.7% uncertainty estimated by DCPP for cross-ow meters. Several other assessors of mass ow rate uncertainties, also consistent with these values, may be found in the literature. The generic discussion in [34], for example, quotes feed-water ow uncertainties of 0.4%. For a generic UFM, we will use the values listed for the Type I transit-time UFM, which has the largest estimated systematic uncertainty, and gives a total error consistent with values considered by the US Nuclear Regulatory Commission in a discussion on the use of UFM s [41].

The errors on the enthalpy rise and m s may be added in quadrature to obtain the full error on Qs. Combining the mass ow uncertainty (as given in Table I for Type I transit-time UFM s) with an enthalpy uncertainty of 0.25% , we get a total thermal power uncertainty of 0.51%, of which 0.45% is systematic and 0.25% will vary from reactor-to-reactor. Typical values for the quantities describing the heat balance and their errors are given in Table III for DCPP, using two PRW s equipped with cross-ow type UFM s. An internal DCPP study characterized about a quarter of the thermal power uncertainty as correlated. The error in the detemination of Qs, which is the only non-negligible component of Qc and hence detemines the uncertainty on W th, is dominated by the uncertainty in m s. For precise evaluation of the errors, the enthalpy uncertainty has to be taken into account.

It is worth mentioning that most feed-water applications require two or more ow measurements. In

Table III: Typical ow meter uncertainties

<table>
<thead>
<tr>
<th>Flow Meter</th>
<th>Random [%]</th>
<th>Syst. [%]</th>
<th>Total [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Venturi</td>
<td>1.4</td>
<td>0.6</td>
<td>1.5</td>
</tr>
<tr>
<td>Type I ITT UFM</td>
<td>0.2</td>
<td>0.4</td>
<td>0.45</td>
</tr>
<tr>
<td>Type II ITT UFM</td>
<td>0.09</td>
<td>0.18</td>
<td>0.20</td>
</tr>
<tr>
<td>DCPP CF UFM</td>
<td>0.3-0.6</td>
<td>0.1-0.2</td>
<td>0.4-0.7</td>
</tr>
</tbody>
</table>

Table IV: Typical therm balance quantities for the Diablo Canyon PW R reactors

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Typical Value</th>
<th>Error [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qs</td>
<td>3433 MWt</td>
<td>0.7</td>
</tr>
<tr>
<td>QITD</td>
<td>1.83 MWt</td>
<td>nil</td>
</tr>
<tr>
<td>Q94C</td>
<td>0.65 MWt</td>
<td>nil</td>
</tr>
<tr>
<td>QDCP</td>
<td>14 MWt</td>
<td>nil</td>
</tr>
<tr>
<td>Qp2</td>
<td>0.21 MWt</td>
<td>nil</td>
</tr>
<tr>
<td>Qc</td>
<td>3421 MWt</td>
<td>0.7</td>
</tr>
</tbody>
</table>
PW Rs, for example, the ow is m easured in each steam generator. In BWRs, the ow is norm ally m easured in each of two main feed headers. In these cases, the r a d ion uncertainties m ay be reduced by a factor of $1 = \frac{1}{2}$, respectively.

It is also worth noting that estimates of ow rate m easurement uncertainties to date have been performed in laboratory settings at Reynolds numbers up to 10^6. However, Reynolds numbers in actual power plants are as high as 10^{17} [23,41]. The uncertainty estimates described above are therefore extrapolations from the lower Reynolds number evaluations. Although the uncertainty associated with these extrapolations is expected to be small, new test facilities have been proposed to generate realistic ow conditions with a higher Reynolds number to test these extrapolations [42].

III. UNEARTIES IN FISSION CALCULATIONS

During the power cycle of a nuclear reactor, the composition of the fuel changes as Pu isotopes are bred and U is depleted. At the end of the power cycle, some fraction of the fuel is replaced, and the remaining fuel elements are su to optimize burnup. Knowledge of the detailed, time-dependent radionuclide content of the spent fuel throughout the power cycle is of interest to reactor operators and regulatory groups because it impacts shielding requirements, dose rate analysis, toxicity, waste storage and handling considerations, and criticality safety [46]. To obtain this knowledge, reactor operators employ Monte-Carlo simulations of the reactor core. The simulations begin with an initial fuel composition and a physical model of the core assembly. An initial neutron flux solution for the core is computed based on a number of inputs, including the measured thermal power generation, and other operating parameters such as the pressure, temperature, and ow rate of the cooling system, neutron moderation param eters, etc. Cross-section and decay data libraries are used to compute the rate of various interactions and update the fuel composition as a function of position. This process is iterated in a series of time-steps throughout the reactor power cycle.

As a by-product, these reactor core simulations may be made to output the number of events f_1 needed for the estimation of the signal in reactor antimatter experiments. A plot of the time-dependent signal rates calculated for a typical power cycle of one of the reactors at the Palo Verde Nuclear Generating Station (PVNGS) in Arizona, USA, is shown in Figure 1. Integrating over the power cycle gives the f_1 required by Equation 1 to compute the signal.

Uncertainties in these simulation codes originate from a variety of sources [43]. These sources include the uncertainties in the input parameters, uncertainties in the nuclear cross-section and decay data used by the codes, approximations made in the modeling of the reactor core, and numerical approximations used in the computations them selves. Reference [16] explored the input parameter uncertainty contribution with the reactor core simulation code used at PVNGS [48,49] by calculating the signal variation for a given deviation of several of the input parameters. For the PVNGS simulation, the normalization to the measured al power represented by Equation 2 was done within the code. The code was run for a set of 500-day power cycles with one parameter varied at a time. The results of the study are shown in Figure 2. The thermal al power measurement has the largest eect with a slope of 0.96.

The most common means reactor operators use to globally assess the performance of the codes is to compare measured and calculated concentrations, in kilogram per metric tonne uranium (kg/M TU), of 235U, 239Pu, and 241Pu [11].

Fig. 1: Fission rates for various isotopes during a typical 500-day fuel cycle for one of the Palo Verde Nuclear Generating Station reactors in Arizona (USA). > 99.9% of the isotope is produced by 235U, 239Pu, 241Pu, and 242Pu [11].
241Pu as a function of burnup for a set of fuel elements processed at a typical PW R [48]. The quantity "burnup" in the abscissa is defined as the amount of energy (in G Joule per MWd) extracted from a fuel element per unit initial mass of uranium (in MTU). The burnup is measured to within 3% for each sample using the 144Nd method [49], in which the integral number of fissions, determined from the sum of the 144Nd fission product yields for the four isotopes of interest, is multiplied by the average energy released per fission, weighted according to the calculated fission fractions. During a typical reactor cycle, fuel elements near the center of the reactor core receive a higher burnup than those at the edges, due to the higher neutron flux at the center. This spatial variation, along with the number of cycles over which the samples were processed, is responsible for the different burnup values achieved in the samples plotted in Figure 5. During normal operations, fuel elements are processed over several power cycles, and are shuffled between each power cycle, until optimal burnup is reached for all fuel elements. In practice, burnups up to 50 GWd/MTU are achieved in the typical operation of modern commercial reactors [48].

Fractional differences in the heavy isotope concentrations \(q = c_{0} \) were calculated from the measured (M) and calculated (C) concentrations using the following signal convention:

\[
\frac{C}{C} = \frac{q_{i}}{q_{0}} = \frac{Q_{i}}{Q_{0}} ;
\]

In Figure 6 we plot the values of \(q = c_{0} \) (i.e., 235U, 238U, 239Pu, 241Pu), using 159 comparisons of fuel element samples taken from ten PW Rs and BW Rs, modeled by a variety of core simulation codes. Details of the codes and reactors included in our analysis are listed with their references in Table 1. Gaussian distributions are drawn for reference. The individual distributions for PW Rs and BW Rs (not shown) are equivalent within the available statistics. The concentration comparisons also do not exhibit a strong trend with burnup, as shown in Figure 5.

Unfortunately, these isotopic concentration comparisons only give indirect information on the uncertainty in the number of fissions. However, we can estimate \(f_{i} \) from \(q = c_{0} \) by considering the nuclear processes responsible for the changes in isotopic concentrations through the lifetime of a typical fuel element. The U isotopes are the most straightforward to diagnose, since U-breeding processes are negligible compared to U depletion processes. The decrease of the U concentrations with burnup results from a combination of fission and isotopic conversions due to other nuclear processes (e.g., n capture). The error on the total loss of U is the fractional error in the change in concentration after burnup B, so that the fractional error on the number of U fissions is at most:

\[
\frac{f_{U}}{f_{B}} = \frac{c_{0} (0)}{c_{0} (B)} \frac{c_{0} (B)}{c_{0} (0)} ;
\]

where \(c_{0} (0) \) and \(c_{0} (B) \) are, respectively, the initial and final concentrations of either U isotope after burnup B.
The initial 235U and 238U concentrations ($c_0(0)$) are determined by the enrichment level of the fuel elements under consideration and are known very precisely. Hence the uncertainty ($q_i(0)$) is dominated by the uncertainty in $c_0(B)$, allowing us to approximate

$$\frac{f_i}{f_0} = \frac{1}{c_0(0)} \frac{1}{c_0(B)} \frac{q_i(B)}{q_i(0)};$$

where the last term is the σ_c plotted in Figure 3. A scan be seen in Figure 3, which is typical for fuel processed in commercial PWRs and BWRs, the factor in parenthesis in Equation 5 as significantly different from one for 238U but not for 235U, except at low burnup.

For the Pu isotopes the relationship between the uncertainties $f_{Pu}=f_{Pu}$ and the $q_{Pu}=q_{Pu}$ is complicated by the presence of significant breeding processes. However, the sources of uncertainty in f_{Pu} are the same as those in q_{Pu}, indicating a similar magnitude. Moreover, since the Pu concentrations in fresh fuel used at typical commercial reactors starts at zero and the burnup rate is at all values of B proportional to the concentration $q_{Pu}(B)$, we simply assume that $f_{Pu}=f_{Pu}$ and $q_{Pu}=q_{Pu}$ directly.

The four values of $f_i=f_i$ ($i=^{235}$U, 238U, 239Pu, 241Pu) were calculated for each of the 159 comparisons of fuel elements from the reactors and core simulation codes listed in Table V., using Equation 9 for the U isotopes and $f_{Pu}=f_{Pu}$ for the Pu isotopes. The means and standard deviations of the distributions for each isotope were extracted from Gaussian fits. The results are listed in Table V. Note that with our sign convention devised in Equation 1, a positive $f_i=f_i$ corresponds to an over-estimated burnup count by the reactor core simulations.

Correlations between the $f_i=f_i$ were studied as well. Figure 5 plots the $f_i=f_i$ for pairs of fuel isotopes for...
W here Figu re 6 TABLE VI: Correl at i on co e ci ents all 159 f uel s am pl e s c om par i s ons . Corr e l at i on co e ci ents \(i,j \) obtained from 2-dim ensi onal Gaus si ans:

\[
G(i,j) = A e^{-\frac{1}{2} \left(t_{i}^2 + t_{j}^2 + 2 t_{i} t_{j} \right)} \]

(10)

where \(i)(1) = i \) and A is a nor m al ization cons tant. In the \(t_{i} \) and \(t_{j} \) are allowed to c eat, resul t i ng in t values cons istent in a l l cases with the values li sted i n Table VI. The t values of \(i,j \) are li sted i n Table VII.

We nd a weak anti- corr e l at i on be t wee n \(^{235} U \) and a l l o f the o ther i s ot ope s. Thi s is expected since \(^{235} U \) dom i nates the therm al powe r produ c t ion of the re ac tor, and so to maintain the energy bal ance, the over- sion of this isotope must be ac com paned by an under- sion of the o ther isotope s (and vice-ver sa). The fact that the largest anti-corr e l at i on is wi th \(^{239} Pu \), the next largest energy produ c t ion heavy isotope a fter \(^{235} U \), st re ngth ens this arg ument.

We also nd a strong corr e l at i on be t wee n the t wo Pu i s ot ope s, whi ch can be exp l ai ned by the fact that \(^{239} Pu \) is a pr e cu r sor to \(^{241} Pu \) in one of three ma in isotope trans- for m at i on cha i ns wi thin the re actor core [63]:

\[
^{238} U \to ^{239} Pu \to ^{240} Pu \to ^{241} Pu \to \ldots \to ^{244} Cm \]

(11)

S i nce there is l i t t l e or no Pu i n a f uel e le ment at zero burn- up, over- sion of a Pu isotope is as soci ated wi th its o verprodu c t ion i n the si m ul at i on via t hi s isotope trans- for m at i on chai n. If one Pu isotope is o verproduc ed, it is l i kely that the other wi ll also be o verproduc ed, resul ting, in m ore sions from both isotope s.

The corr e l at i on be t wee n \(^{238} U \) and Pu i s ot ope s is a bi t harder to di agno se. H owever, \(^{238} U \) is on l y a m inor player in the therm al powe r produc t ion, com pr i s i ng on ly 10% of the output, so a strong anti-corr e l at i on is not expected as i t is for \(^{235} U \). A nd w hile \(^{238} U \) is the par e n t of the trans- for m at i on chai n repre s e nt ed by Equation (11), that chai n repre s e nt s a series of neutron c aptures, wher eas the corr e l at i ons li sted i n Table VI co r r e s pond to sions. The o ver- sion of \(^{238} U \) does not a-priori imply a greater neutron c apture rate to produ ce ma i n of the Pu i s ot ope s (so that more are avai l abl e to sion), and vice-ver sa. The true \(^{238} U-Pu \) corr e l at i on is a com bi nat i on of these com pet i ng e c ts.

IV. U NCERTAINTY I N T HE A NTI-NEUTRINO S I GNAL C ALCUL AT ION

W e now ex a m i ne how to propagat e the un cer t ai n i ties i n \(W_{\text{th}} \) and the \(f_{i} \), f ond i n the prev i ous sec t i on s, i nt o the anti-neut ri no s i gnal un cer t ai n i ty. Thi s is not straight- for ward be c aus e of the signs i cant corr e l at i on be t wee n \(W_{\text{th}} \) and the \(f_{i} \), as indi c at ed by Equat i on [3]. T o r st- orde r, an i ncrease i n the t he rm al powe r by some e f fart i n pl us an i ncrease i n the \(i \) by the same e f fart. I n fact, i f we use the \(f_{i}=f_{i} \) f ond i n each s e pi nt f iel d e le men t di scussed i n the prev i ous sec tion to ex tract the t he rm al powe r un cer t ai n i ty via stand ar d error propa gat i on on Equat i on [3], we obtai n a di st r i but i on of \(W_{\text{th}}=W_{\text{th}} \) wi t h wi dth 2.5%, cons istent wi t h the expec t at i on for a set of re ac tors i nstru- mented wi t h Vent ur i-type om e m et e rs of varying ages.

The p oint of the t he rm al powe r nom al i z at i on i n Equat i on [3] is to b reak t his r st-orde r corr e l at i on be t wee n the \(f_{i} \) and \(W_{\text{th}} \), and work wi t h the sion f ra c t ions \(f_{i}=F \) rather than the bare \(f_{i} \). B ut even the \(f_{i}=F \) have a resi- dui al corr e l at i on wi t h the t he rm al powe r that is due to the fact that U isotope s are dep loi ted while Pu isotope s are bred du ring re ac tor operat i on. A n over-es timate of the power wi l l lead to an over-es timate of the Pu produc t ion, and hence a h i gher es timate f ra c t i on of sions from the
Pu isotopes. This is significant for the e signal estimation because, by coincidence, the e are slightly higher and the n are slightly lower for the Pu isotopes than for the U isotopes. Since the e appear in the denominator of Equation 3 and the n appear in the numerator, the e are to lower slightly the signal estimate.

Hence we see that the contributions to the signal uncertainty from the errors on W th and the f=F are slightly anti-correlated. This is an anti-correlation that is responsible for the slope of Power^* in Figure 4 being slightly less than one. However, the anti-correlation is only slight, and moreover implies a weak cancellation between the uncertainty contributions evaluated from the independent variation of W th and the f=F. To maintain simplicity in our analysis while remaining conservative in the error propagation, we ignore this anti-correlation and treat the errors due to these terms as being uncorrelated. We thus evaluate the uncertainty on the e signal, according to the simple quadratic sum of contributions from each of the term appearing in Equation 3:

$$ n = \frac{2}{w} + \frac{2}{f} + \frac{2}{e} + \frac{2}{\text{other}} : \quad (12) $$

Since Equation 3 is linear in W th, the 1st term, w, is given by the total power uncertainty, W th=W th, discussed in detail in Section 3. The contribution n from the ssion calculation uncertainties, n is more complex and will be described below. The third term e, is the contribution due to the uncertainty in the e. The last term, other, represents uncertainties in detector-specific components and other terms (such as the dN/e) that have been explored elsewhere. This term will not be addressed further here.

Before addressing e, we briefly note that e can be evaluated from error propagation on Equation 3. Assuming that the errors on each of the e are uncorrelated, we obtain

$$ e = \frac{F(f=F)^2}{i(f=F)e_i} \cdot \frac{2}{e} : \quad (13) $$

The values of the e and their uncertainties e are given in [62, 63] as e(235U) = 201.7 0.6 MeV, e(238U) = 205.5 0.9 MeV, e(239Pu) = 210.5 0.9 MeV, and e(241Pu) = 212.4 1.0 MeV. To evaluate e, we need to choose values for the ssion fractions, f=F. As examples, Table VII shows the ssion fractions for the three reactor units of PVNGS reactors (PV1, PV2, and PV3), as well as averaged ssion fractions of the reactors in Japan (KL), observed by the Kam LAND experiment. The ssion fractions vary from reactor to reactor depending on the initial enrichment level and power history of the fuel. Table VII gives the corresponding value of e calculated with Eq. (13). In all cases considered, the value of e is 0.2%.

Correlations between the f=F make an analytical esti-mate of e di cult. Instead we leverage the measured f=F from Section 11 to compute, for each of the 159 spent fuel element com pairs, a value of e according to

$$ e = \frac{n}{n} \cdot \frac{1}{f+1} \cdot \frac{\pi n}{\pi n} \cdot \frac{1}{f+1} \cdot \frac{1}{f} : \quad (14) $$

This equation may be obtained by replacing the f=F in Equation 3 with f=F and n with e. By substituting the 159 values of f=F into Equation 14, we maintain the implicit correlations between de erent isotopes. As expected above, the normalization by the total power removes the influence of the W th uncertainty on the e signal, so that e accounts for the contribution from f=F only. To compute the values of the n in Equation 14, we assume no oscillation (i.e., short L) and an energy-independent efficiency above the inverse beta-decay threshold. For the f=F we use the same sets of values used to evaluate e listed in Table VII.

An example e distribution is drawn in Figure 7 using f=F listed in the KL row of Table VII. Here we draw the distribution of e, we weight the value from each spent fuel element com pair according to its bump to account for the fact that the higher-bump sam ples near the center of the reactor contribute proportionally more to the e signal than the lower-bump sam ples near the core edges. The set of com pairs still includes a disproportionately large number of fuel elements from regions that are challenging for the simulation; by including all such sam ples we ensure a conservative estimate of e. These problematic sam ples are responsible for the relatively large tails and the few outliers in the distribution. In order to incorporate these sam ples without letting them dominate the characterization of the distribution, we t the distribution to a single Gausssian, and take the mean and standard deviation as estimates of the systematics and statistical com ponents, respectively, of e. We repeated this procedure for each of the four choices of the f=F listed in Table VII. As can be seen from these examples, e is typically about 0.9%, of which 0.1% is correlated between de erent reactors.

For an experiment at a single reactor, unless the experimenter enters and reactor operators have gone to extrem
to validate the core simulations, the uncertainty in the signal due to the error in the \(w\) fraction calculations should be taken to be the full statistical uncertainty on \(w\) added in quadrature with the systematic component. As an example, using the values listed in Table I with Type I transit-time UFM's and incorporating the enthalpy uncertainties (as given in Table II) to obtain the thermal power uncertainty, the resulting uncertainty in the antineutrino yield, ignoring other, is

\[
\sigma = \sqrt{\left(\frac{\text{stat}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2}
\]

\(1\%: \)

\(1\%: \)

If the reactor instead measures the thermal power output at the 2\% level, then this uncertainty evaluates to 2.2\%.

For a multi-reactor experiment, some reduction of the statistical components of \(w\) and \(e\) is achieved. If reactor \(k\) contributes a fraction \(p_k\) to the total reactor \(e\) signal, then the total random error in the summed signal is reduced by a factor of \(\frac{1}{\sqrt{p_k}}\). For example, consider the case of an experiment receiving an approximately equal signal from 2 reactors equipped with Type I transit-time UFM's. The resulting uncertainty in the antineutrino yield (again, ignoring other) is

\[
\sigma = \sqrt{\left(\frac{\text{stat}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2 + \left(\frac{\text{sys}}{\text{stat}}\right)^2}
\]

\(0.83\%: \)

As a more complex example, we study the thermal power and \(w\) fraction uncertainties in the KamLAND experiment. We consider the actual distance and nominal thermal power of the reactors to compute the fractions \(p_k\) they contribute to the signal. We then allow all random uncertainties to be reduced by a factor of \(\frac{1}{\sqrt{k}}\). For the \(w\) fraction uncertainty, the 2.8% statistical contribution for a single reactor is reduced to 0.18%. However, for KamLAND we must add an additional uncertainty, \(\frac{\sigma}{\mu}\), to account for the fact that to compute the fractions the KamLAND collaboration used a generic reactor simulation which was found to agree with detailed simulations, such as those considered in this paper, at the 1% level. In this reference, this uncertainty appears to be dominated by random errors, so it may be appropriate to allow this component to also be reduced by a factor of \(\frac{1}{\sqrt{k}}\).

| Table V: Signal uncertainties at KamLAND, \(\Delta\), obtained by combining \(\Delta\) with \(\mu\) and \(\sigma\). The calculations were performed assuming various power uncertainties. The 2.1% entry corresponds to the value used by the KamLAND collaboration. |
|---|---|---|---|---|---|---|
| \(\mu\) | \(\Delta\) | \(\sigma\) | \(\mu\) | \(\Delta\) | \(\sigma\) |
| \(\text{stat} + \text{stat} + \text{stat} + \text{stat} + \text{stat} + \text{stat} + \text{stat}\) | | | | | |
| 2.10 | 0.26 | 0.14 | 0.14 | 0.18 | 0.216 | 0.216 |
| 0.30 | 0.40 | 0.60 | 0.14 | 0.10 | 0.216 | 0.76 |
| 0.05 | 0.25 | 0.45 | 0.05 | 0.14 | 0.18 | 0.216 |

TABLE VIII: Signal uncertainties at KamLAND, \(\Delta\), obtained by combining \(\Delta\) with \(\mu\) and \(\sigma\). The calculations were performed assuming various power uncertainties. The 2.1% entry corresponds to the value used by the KamLAND collaboration.

\[
\frac{\sigma}{\mu}\]
probably somewhere in between the all-Venturi case and the ideal case of all UFMs. Many reactors may already be equipped with UFMs, but some may not, and those that are may simply use them to calibrate their Venturi meters. However, the total uncertainty, \(\sigma \), does not change much between these two cases. Thus for KamLAND, a reduced error of 0.5-0.8\% may be more appropriate. A better understanding of the nature of the Japanese instrumentation and reactor simulations may result in yet smaller overall uncertainties for KamLAND.

V. CONCLUSION

The uncertainty in the estimated antineutrino interaction rate at reactor experiment sites has contributions from the therm al power and the neutrino oscillation uncertainties. The dom inant contributions to the therm al power uncertainty come from the enthalpy rise and mass ow rate in the steam generator (PWR) or reactor vessel (BWR). The former has a system atic uncertainty of 0.2\% and a random uncertainty of typically 0.15\%. The uncertainty in the mass ow rate depends on the instrument used to perform the measurement. Traditional Venturi ow meters exhibit signi cant fluctuations of 1.4% and a system atic uncertainty of 0.6\% due to fouling. More precise ultrasonic ow meters have been evaluated to have system atic uncertainties below 0.5\% and typically show random fluctuations below this level.

We estimated, for the rst time to our knowledge, the contribution to the signal uncertainty from errors in the neutrino oscillation calculations. These errors were extracted from comparisons of heavy element concentration measurements in spent fuel elements with calculations of those concentrations by the same simulations that reactor experiments rely on to obtain the fraction of neutrons from each of four main heavy isotopes. Error propagation accounting for correlations between the four isotopes yielded a 0.1\% systematic uncertainty on the signal rate, and a 0.9\% random uncertainty. We also estimated a 0.2\% contribution due to the uncertainty in the measured energy release per reaction of each isotope.

We demonstrated how these errors can be combined for typical reactor experiment configurations, and highlighted situations in which cancellations occur between different reactor sites. With this methodology, we found that these contributions to the signal rate uncertainty in the KamLAND experiment may be reduced from 2.3\% to 0.76\%, or even 0.59\%, pending better understanding of reactor instrument. As we move deeper into the phase of precision reactor neutrino oscillation experiments, and in particular multi-reactor experiments, such sub-percent understanding of these errors and their systematic and random components will become more and more important. As a reactor engineering, ow rate measurement, and core modeling continue to improve, further reductions may be achievable in these uncertainties. Toward this end, closer relationships between neutrino scientists and reactor operators should be encouraged.

Acknowledgments

We are grateful to Harry Miley for providing some of the references used here and to Paul Verde Nuclear Generating Station for providing data used in the analysis. We thank Petr Vogel and Patrick Decow for their careful reading and useful comments. We would also like to thank Akira Sebe and Kazuhito Terao for their help in translating the Japanese references. This work was supported, in part, by U.S. National Science Foundation grant no. PHY-0758118, U.S. Department of Energy contract no. DE-AC02-05CH1123 and grant nos. DE-FG-02-01ER41166 and DE-FG-02-04ER41295.
