The Evolution Of Carbon, Sulphur, and Titanium Isotopes from High-Redshift to the Local Universe

G. L. Hughes, B. K. Gibson, L. Carigi, P. Sanchez-Blazquez, J. M. Chavez and D. L. Lambert

1 University of Central Lancashire, Centre for Astrophysics, Preston, PR1 2HE, United Kingdom
2 Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, A.P. 70-264, Mexico, 04510 D.F., Mexico
3 University of Texas, Department of Astronomy, Austin, Texas, 78712, USA

ABSTRACT

Recent observations of carbon, sulphur, and titanium isotopes at redshifts z \geq 1 and in the local stellar disc and halo have opened a new window into the study of isotopic abundance patterns and the origin of the chemical elements. Using our Galactic chemical evolution code 

GEtool, we have examined the evolution of these isotopes within the framework of a Milky Way-like system. We have three aims in this work:

1st, to test the claim that novae are required, in order to explain the carbon isotope patterns in the Milky Way; second, to test the claim that sulphur isotope patterns at high-redshift require an initial mass function biased towards massive stars; and third, to test extant chemical evolution models against new observations of titanium isotopes that suggest an anti-correlation between trace-to-dominant isotopes with metallicity.

Based upon our dual-infall Galactic chemical evolution modelling of a Milky Way-like system, and the subsequent comparison with these new and unique datasets, we conclude the following: novae are not required to understand the evolution of $^{12}\text{C}/^{13}\text{C}$ in the solar neighbourhood; a massive star-biased initial mass function is consistent with the low ratios of $^{12}\text{C}/^{13}\text{C}$ and $^{32}\text{S}/^{34}\text{S}$ seen in one high-redshift late-type spiral, but the consequent super-solar metallicity prediction for the interstellar medium in this system seems highly unlikely; and, recent isotope patterns of titanium are predicted to correlate positively with metallicity, in apparent disagreement with the new datasets.

If confirmed, classical chemical evolution models of the Milky Way (and the associated supernovae nucleosynthetic yields) may need a substantial overhaul to be made consistent.

Key words: galaxies; evolution; galaxies: abundances; galaxies: ISM; galaxies: high-redshift

1 INTRODUCTION

Galactic chemical evolution models are employed to study the spatial and temporal evolution of elements and isotopes throughout the Universe. When coupled to phenomenological representations of galaxy assembly, such models can be compared directly with the observed elemental and isotopic abundance patterns observed locally in the Milky Way. From these comparisons, conclusions can be drawn regarding the veracity of the underlying micro-physics governing stellar evolution and nucleosynthesis, in addition to the macro-physics governing the assembly of galaxies, the redistribution of the interstellar medium (ISM) over galactic time scales, and the relative birthrate of stars of various masses (the so-called initial mass function, or IMF).

While most galactic chemical evolution models to date have concentrated on predictions related to the total elemental abundance patterns, in unique circum-stances the availability of detailed isotopic patterns can enhance the predictive power of these models; such isotopic patterns ord additional leverage for discriminating between the various origins for the chemical elements. A full literature review of the field would be unwieldy, but we refer the reader to any number of comprehensive reviews and the many important references therein – e.g. Timmes et al. (1996), Prantzos & Aubert (1998, hereafter TW W 95), Reiprich et al. (1996), Fennessey & Gibson (2003), Romano & Matteucci (2003, hereafter, RM 03), and Chiappini et al. (2008).

Recent observational work has opened a new window into the study of isotopic abundance patterns – specifically, the identification of carbon and sulphur isotopes at redshifts $z \geq 1$ (Mueller et al. 2006, hereafter M 06;
Levshakov et al. (2006), coupled with the recent determination of titanium isotopic abundances in the local stellar disc and halo (Chavez 2008). The abundances of each of these isotopes, and their evolution with redshift, hold clues as to the relative in portance of supernovae versus asymptotic giant branch stars versus novae in seeding the Universe with these in portant elements.

In this work, we present predictions for isotopic ratios of carbon, sulphur, and titanium within the framework of a classical M 8-18 M⊙ galactic model. The paper is organized as follows: the fundamentals of nucleosynthesis of the relevant carbon, sulphur, and titanium isotopes are first (briefly) reviewed in x 1; in x 2, we introduce the chemical evolution code (GETool) and the four stellar yield components employed in our model; finally, the results are presented and summarized in x 4 and x 5, respectively.

2 ORIGIN OF CARBON, SULPHUR, AND TITANIUM ISOTOPES

Because we in the astronomical community are generally more accustomed to discussing stellar abundance patterns, rather than isotopic patterns, we felt it would be useful to provide an overview of the nucleosynthetic origins of these relevant isotopes. Much of this section has been derived and summarised from Clayton’s (2007) exceptional handbook, to which the reader is referred for detailed and comprehensive descriptions. Common entry discussions of the relevant nucleosynthesis processes and their products can be found in Woosley & Weaver (1995), Arnett (1996), Pagel (1997), and Matteucci (2001).

2.1 Carbon-12

As the initial product of helium burning (the classical triple process), 12C is the second most abundant nucleus formed by nucleosynthesis in stars. While the exact accounting remains uncertain, significant carbon production can likely be traced to massive stars that eventually become Type II supernovae (e.g. Chiappini et al. 1997), with a substantial contribution also derived from intermediate mass asymptotic giant branch (AGB) stars (e.g. Carigi et al. 2005). The newly created 12C nuclei in these latter stars is converted to the surface, often leading to the formation of a carbon star; ultimately, this carbon-enriched envelope is lost to the ISM through the process of stellar winds associated with planetary nebulae. The amount of 12C produced depends critically upon the 12C + 3He reaction.

13C nucleosynthesis also has a primary component (i.e., a production pathway that does not depend upon seed nuclei of 13C). For example, within AGB stars, periodic dredge-up episodes bring newly-formed 13C to the surface, converting AGB stars to carbon stars, as noted above. If the temperature at the base of the envelope is sufficient, this primary 13C can be partly converted to (primarily) 13C and 14N by the first two reactions of the CNO-cycle. However, if the star is massive enough (M > 4M⊙) then hot bottom burning can occur, delaying or preventing the AGB star from turning into a carbon star, and therefore this process.

2.2 Carbon-13

The 13C isotope is considered a secondary nucleus, produced not from the nuclear fusion of hydrogen and helium, but as a secondary process involving the nuclei of 12C. It is thought to originate within stars not massive enough to become supernovae, in particular, AGB stars. At such low temperatures, 13C is produced via the capture of a proton by the 12C nucleus, to form 13N, which itself undergoes decay to form 13C. The relative abundance depends upon both the relevant reaction and destruction rates.

Having said that, there is also evidence to suggest that 13C

2.3 Sulphur-32

32S is formed mostly through oxygen burning, two 16O nuclei colliding to form 32S and 2He, with these products subsequently fusing to yield 32S. A host of 32S is produced in Type II supernovae, which eject approximately ten times the quantity synthesised within Type Ia supernovae, and occur roughly twice as often.

2.4 Sulphur-34

34S originates as a byproduct of oxygen-burning. 34S is partly a secondary isotope as it is formed from newly-made 32S and 33S by neutron captures, which itself is aided if the star that creates them also has carbon and oxygen in its core. 18O and 22Ne created from this initial carbon and oxygen produce extra neutrons that are needed by heavier sulphur isotopes, but excess neutrons are also produced during oxygen burning by positron annihilations, and as such, 34S is also partly a primary isotope. As for 32S, 34S is produced primarily from supernovae.

2.5 Titanium-46

46Ti originates from oxygen- and silicon-burning in massive stars. Two 16O nuclei collide and subsequently capture protons to form 46Ti, which the capture of two free neutrons results in 46Ti. This can also be viewed as the addition of an 16O nucleus to 45Ca, to 46Ti. 46Ti becomes abundant in the same oxygen-burning zone that synthesises 42Ca. If the burning continues into that of silicon, then the 46Ti abundance erodes quickly.

46Ti cannot be labelled as a secondary nucleus as there are positive decays during the oxygen burning.

2.6 Titanium-47

47Ti also originates from oxygen- and silicon-burning in massive stars, but in this case, three free neutrons are captured. This can be viewed as the addition of a neutron to 46Ti, so 47Ti becomes abundant in the same oxygen-burning zone that synthesises 46Ti. Some models of Type Ia supernovae also contribute to interstellar 47Ti. There does appear to be an apparent problem though, in the sense that models of both supernovae types have been claimed to be consistent producers of 47Ti with respect to observations (Timmes et al. 1995).
2.7 Titanium -48

The production of $^{48}\text{Ti}$ is traced to the nucleosynthesis of $^{48}\text{Cr}$ in stellar explosions; two subsequent -decays after its ejection leads to $^{44}\text{Ti}$. This occurs mostly in explosive silicon-burning and during helium fusion. The latter could occur either by the -rich freezeout of shock-decomposed nuclear near the core of a Type II supernova, or as part of explosive helium burning associated with Type Ia supernovae.

2.8 Titanium -49

$^{49}\text{Ti}$ is produced mainly by the nucleosynthesis of radioactive $^{49}\text{Cr}$ in stellar explosions of both types of supernovae. The isotope $^{50}\text{Cr}$ is the result of the explosive fusion of helium as outlined above; $^{50}\text{Cr}$ is also synthesized during silicon-burning, as for the lighter titanium isotopes.

2.9 Titanium -50

It has been suggested that $^{50}\text{Ti}$ is produced primarily in sub-Chandra breathing mass Type Ia supernovae (Totma et al. 1995), during which electron capture turns the core position neutron-rich. Some fraction of the $^{50}\text{Ti}$ is likely also made by knock neutron capture within the burning shells of presupernova massive stars and AGB stars. It would appear that explosive burning in Type II supernovae does not produce significant quantities of $^{50}\text{Ti}$.

3 THE CHEMICAL EVOLUTION MODEL

Throughout our work, we use the GEn tool (Fenner & Gibson 2003; Fenner, Murphy & Gibson 2005) galactic chemical evolution package, emulating its default dual-infall (halo + disc) mode (similar in spirit to the standard models of Chieppini, Matteucci & Gratton 1997).

Within this framework, the halo phase occurs on a rapid timescale and enriches the initially primordial gas to a metallicity of 10% solar. The second (disc) phase is delayed by 1 Gyr with respect to the first, and acts over a more prolonged timescale. We assume the infall of fresh material during this second phase to be smeared metal-enriched (10% solar) and -enhanced (0.4 dex), consistent with patterns seen in metal-poor halo/thick disc stars (e.g., Ryan, Norris & Beers 1996) and present-day high-velocity infalling halo gas (e.g., Gibson et al. 2001).

The rate at which material is accreted is assumed to decline exponentially. The evolution of total surface mass density $\rho_{\text{tot}}(r,t)$ is given by:

$$\frac{d\rho_{\text{tot}}(r,t)}{dt} = A(r)e^{-\frac{t}{\tau}} + B(r)e^{-\frac{t-\tau_{\text{delay}}}{\tau}}$$

where the infall rate co-ent A(r) and B(r) are chosen in order to reproduce the present-day surface mass density of the halo and disk components, which we take to be 10 and 45 M$\odot$ pc$^{-2}$, respectively. The adopted timescales for the infall phases in the solar neighbourhood (r = 8.5kpc) are $\tau = 0.05$ Gyr and $\tau_{\text{delay}} = 10.5$ Gyr, with the functional form for the latter being $\tau_{\text{delay}}(r) = 1.38r + 1.27$, re ejecting the 'inside-out' form from work in which the dual-infall model operates. These timescales and co-ent conditions model predictions consistent with various local observational constraints such as the metallicity distribution function, age metallicity relation, and present-day gas surface density distribution, and are consistent with those from Farley et al. (2005).

We adopt a fairly conservative star formation prescription based upon a "Schmidt Law" of the form:

$$r(t) = \frac{2}{r(t)}$$

(2)

where the value of the star formation efficiency is constrained by the present-day gas fraction (for this work, $r = 0.06$ Gyr$^{-1}$).

3.1 Initial Mass Function

The shape of the initial mass function (IMF) controls the fraction of material locked-up in stellar generation, which in turn determines the rate at which different elements are released into the ISM. Our default assumption is that of the three-component IMF of Kouba, Tout & Graham (1993; hereafter, KTG), with lower- and upper-mass limits of 0.28 and 60 M$\odot$, respectively; the KTG IMF lies between those of Salpeter (1955) and Salpeter (1986), in terms of mass fraction tied up in Type II supernovae progenitors (e.g., Table 7 of Gibson 1997). Unless otherwise stated, we assume that the mass fraction of the IMF which is tied up in SNe Ia progenitor binary systems (total binary masses in the range 3-16 M$\odot$) is 4%; such an assumption yields, within our adopted model form (as shown, a disc-averaged present-day ratio between SNe Ia and SNe Ia rates of 4.1 consistent with the disc-averaged empirical SN Ia to SN Ia ratio of 3.7 (van den Bergh 1988). We supplement this by exploring a range of single power-law IMF slopes to isolate the relative contributions of low- and high-mass stars.

3.2 Stellar Yields

In order to sample the range of uncertainties inherent to stellar evolution modelling, we explore the use of several sets of metallicity-dependent nucleosynthesis yields, in this work (those of Woosley & Weaver 1995; Chieppini et al. 2004, Kobayashi et al. 2006 for Type II supernovae and those of Karakas & Lattanzio 2007, for low- and intermediate-mass single stars (hereafter, W, W, CL04, K06, and K07, respectively). For Type Ia supernovae, the yields of Nomoto et al. (1997) have been assumed.

As these yields only have data for M $\sim$ 40 M$\odot$, and our GEn tool models assumed an upper-mass limit of 60 M$\odot$, a linear extrapolation was used, to extend the yields to the highest mass stars. We stress though that the results do not depend upon the assumed form of linear, as opposed to logarithmic or, indeed, no extrapolation.

Kobayashi et al. (2006) provide yields for both Type Ia supernovae and hypernovae, the latter represented by explosion energies 10$^5$ those of their supernova models.

None of the Type II supernovae yield compilations in play here take into account the effects of rotationally-induced mixing; while this has little effect at moderate-to-high (e.g., Galactic discs) metallicity, it may have a significant impact at low (e.g., Galactic halo) metallicity (Meeney et al. 2006; Hirschi 2007).
Table 1. Observational Constraints Used

<table>
<thead>
<tr>
<th>Isotope</th>
<th>M meteoric G min a</th>
<th>ISM a</th>
<th>Z = 0.89 b</th>
<th>Z &gt; 115 c</th>
</tr>
</thead>
<tbody>
<tr>
<td>12C/13C</td>
<td>82.83</td>
<td>70</td>
<td>27</td>
<td>2</td>
</tr>
<tr>
<td>33S/34S</td>
<td>-</td>
<td>10</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Solar System a</th>
<th>Solar System a</th>
<th>ISM a</th>
<th>Z = 10 3 /3b</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12C/13C</td>
<td>89</td>
<td>-</td>
<td>-</td>
<td>19.38</td>
<td></td>
</tr>
<tr>
<td>33S/34S</td>
<td>22</td>
<td>22.64</td>
<td>24.4</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

aRM 03; bM 06; cLevshakov et al. (2006); dAnders G reeves (1989); eM auebmerger et al. (2004); fSpite et al. (2006).

\( t = 8.5 \text{ Gyr; } t = 13 \text{ Gyr; } t = 5.7 \text{ Gyr; } t = 4.8 \text{ Gyr; } t = 1 \text{ Gyr; } \) redshift-to-age conversion assuming CDM concordant cosmology (\( H = 71 \text{ km s}^{-1} \text{ Mpc}^{-1} \), \( M = 0.27 \), = 0.73).

* The mean 12C/13C value for the unmixed stars from Spite (2006).

A detailed isotope-by-isotope comparison between the constraints is beyond the scope of our work; indeed, end-users only of the products of the above-mentioned sophisticated stellar evolution and nucleosynthesis codes, one could argue it is not even a feasible undertaking. What is important though, from our perspective, is that by employing a range of yields in the primary isotopes of carbon, sulphur and titanium, in response to recent advances pertaining to their observation locally and in the distant Universe. To foreshadow the chemical evolution results described in x 4, in Figs. [3] and [4] we show the 12C/13C, 33S/34S, and 46Fe/56Ti isotopic ratios, as a function of stellar mass (at solar metallicity) for each of the yield compilations adopted here.

We can see from Fig. [3] that, for carbon, there is little difference between supernovae and hypernovae (K 06-SN e and K 06-H N e, respectively), whereas for sulphur, the explosion energetics lead to a factor of 3 variation in the predicted ejecta ratios. We will return to the issue of the mix of apparently ‘discrepant’ individual stellar models in x 4, but we should note now, for example, the obvious outliers seen in the K 06 M = 25 M\(_{\odot}\) solar metallicity model (upper panel of Fig. [3]); this two-orders-of-magnitude outlier is also seen in the K 06 M = 18 M\(_{\odot}\), Z = 0.004 (not plotted) model. In both cases, this can be traced to the respective model producing 100 the 12C of the \( ^{\text{c}}\) _{\text{ation}}\) in the stars. In Fig. [4] it is also seen that there is a factor of 3 variation in the predicted ejecta ratios of K 06-SN e and K 06-H N e.

Figures [3] and [4] show the variation of 12C/13C and 33S/34S with stellar masses, for different metallicities. For clarity, only the W W 95 and K 07 yields are shown, as the CL 04 and K 06 yields are more consistent in a similar metallicity-dependence as that of W W 95; the general trend of decreasing isotopic ratio with increasing metallicity can be seen. In massive stars of decreasing metallicity, it is expected that the mean counts of 12C and 33S would be similar, but the mean counts of 12C and 33S would decrease (W W 95).

3.3 New Boundary Conditions

The observational data used in the models in this paper have been taken from RM 03, M 06, Levshakov et al. (2006), Anders G reeves (1989), M auebmerger et al. (2004), Spite et al. (2006) and Chavez (2008). The data for the carbon and sulphur isotopes are summarised in Table 1. The ages used have been derived under the assumption of the concordant CDM cosmology.

3.3.1 Local Constraints

RM 03 have used the solar system value of carbon from Cameron (1982), and derive a local ISM value based upon the average of a range of observational data; the local ISM value employed in our work is taken directly from RM 03. Assuming a present-day age of 13 Gyr, the solar system is taken from Spite et al. (2006). Wherever possible and relevant, we have used the solar values of Anders & Grevesse (1989).

For 33S/34S, we use the data compilation from M auebmerger et al. (2004), itself based upon Ding et al. (2001) for the solar system value (derived using the Cannyon Diablo trilite) and Chin et al. (1999) for the local ISM.

Finally, Chavez (2008) has recently measured, for the first time, titanium isotope ratios in nearby low-mass stars by studying isotopic shifts seen in TiO spectra of M-dwarfs of the halo, and thin and thick discs. This was done using the 2d-coude spectrograph at the 2.7m telescope at M cDonald Observatory, with a nominal resolving power of 120k. In total, the isotopic ratios for 11 stars in the metallicity range 1< [Fe/H]< +0 have been derived. The data is shown in Fig. 5 and tabulated (and fully described) in Chavez (2008).

3.3.2 Higher Redshift Constraints

The values obtained recently by M 06 for a spiral arm at redshift z = 0.89 are listed in Table 1; the average value of the two spiral arm features seen in absorption towards a background radio-loud QSO is used. From M 06 ( gure 1), the mean galactocentric distance for these absorption features within the foreground galaxy’s spiral arm is 4.5 kpc.

In Levshakov et al. (2006), C I features associated with
a dam ped Ly system at z=1.15 seen in the spectrum of HE 0515-4414 were analysed to derive the 12C/13C ratio. The inferred lower limit of 12C/13C > 80 suggested, for the first time, that the abundance of 13C in extragalactic clouds was very low.

In order to infer the isotopic abundance patterns of the ISM at the time of formation of the M liky Way, we used a sample of extremely metal-poor giants (Fe/H < -3) from Spitze et al. (2006). We em played the umm ked stars from their sample (i.e., stars which have not had their surface abundances a ected by deep mixing) and taken the mean 12C/13C value (19.38) as representative of the time t = 1 Gyr (roughly the time scale of formation for the Galactic halo).

4 Results

Figure 2 shows the time evolution of the 12C/13C and 32S/34S ratios in our default dual-infall model for the solar neighbourhood (x 3) using three different SN II yield compilations. The observed values for the solar system (RM 03), local halo stars (Spitze et al. 2006), and the local interstellar medium (RM 03; M auersenber et al. 2004) are shown for comparison. The values from M 06 are also plotted; as mentioned earlier, the main galactocentric distance probed by the background QSO towards this high-redshift galaxy is 4.5 kpc; as such, besides the solar neighbourhood prediction, we have also plotted the results of our default model at a galactocentric radius of 4.5 kpc, using the W W 95 yields.

The evolution of 12C/13C, employing the W W 95 and CL04 yields, is essentially indistinguishable after 5 Gyr, while the discrepant nature of the two models employing the K 06 yields is self-obvious. We have not shown the models using the K 06 hypernovae yields, as their impact on the evolution of 12C/13C is negligible. In the case of 32S/34S, each of the yield compilations results in fairly self-consistent evolutionary trends, although the hypernovae do reduce the predicted ratio by a factor of two relative to the models neglecting them.

From Fig. 2, we also note the existence of predicted positive radial gradients in both 12C/13C and 32S/34S, reflecting both the inside-out galaxy formation from epoch and the consequent increase in proportion of the secondary production of 13C in the inner regions of the galactic model (e.g., RM 03). From the lower panel of Fig. 2, we can see that our triple-infall model is consistent with the extant galactic 32S/34S data (solar system and local ISM); the lower value observed at z=0.89 (M 06) can be partially reconciled with it being nearer its respective galaxy’s centre than the solar neighbourhood, a point to which we return in x 4.2.

4.1 The Need For Novae

Previous galactic models for 12C/13C (e.g., RM 03), while consistent with the local ISM, predicted an increase in 12C/13C over the past 5-10 Gyr, driven in part by the use of the older van den Hoek & Groenewegen (1997) yields. To am eliate that apparent discrepancy, RM 03 introduced an important additional source of 13C, in the form of novae. While successful in recovering the decline in 12C/13C with time, the overproduction of 13C resulted in a signiﬁcant mismatch between the model and the observations, as shown in Fig. 3, which required an a posteriori re-scaling of the model to the solar system value.

Conversely, the predicted decline in 12C/13C over the past 5-10 Gyr in our model is naturally consistent with the observed solar value and that of the local ISM. This behaviour is driven by the new KL07 yields (which obviously RM 03 did not have access to) without the need to recourse to any additional 13C novae contribution. The putative need for novae might even be exacerbated if one were to include, for example, 'born again' (i.e., re-ignited) stars such as Sakurai’s Object; it has been suggested recently that such objects might be the dominant source of 13C in the Universe (H a jik et al. 2005). In the future, a phenom enological treatment of both novae and such born-again objects will be implemented within GE tool.

4.2 Isotopes At High Redshift

As alluded to earlier, it can be seen in Fig. 2 that it is di cult for our ten plate model to reproduce the isotopic ratios observed in the spiral galaxy at z=0.89. As mentioned, the K 06 yields appear to provide a better t to 12C/13C at t = 5.7 Gyr (upper panel), although, at the same time, they are less successful for 32S/34S. We have examined two possible alternatives to our ten plate solar neighbourhood model which could explain the lower values observed at high-redshift: (i) varying the galactocentric distance of the model; (ii) varying the IMF.

First, as noted earlier, the data of M 06 probes a galactocentric distance closer to 4.5 kpc, rather than the solar galactocentric distance of 8.5 kpc; our ten plate M liky Way model for this radial bin would predict a 12C/13C evolution c set by 20% from the solar neighbourhood value, as shown in Fig. 4C. This, however, is not to reproduce the observed values.

Second, we explored the dependence of the predicted isotopic ratios upon the relative proportion of massive stars in the IMF. By assuming (signiﬁcant) the high-mass end of the IMF (representing the IMF by a single power-law of slope 0.9), Figure 4 shows the time evolution of the 12C/13C and 32S/34S isotopic ratios using both this massive-star biased IMF and the default KTG IMF. The main conclusion to be drawn is that both ratios decrease dram atically (by a factor of approximately four) when adopting the massive star-biased IMF. Having said that, it is inportant to be aware that in large part, this dramatic decrease is a consequence of the accelerated global chemical enrichment produced by the faster IMF, as these isotopic ratios decrease rapidly with increasing metallicity (recall the earlier discussion surrounding Figures 2C and 3, as opposed to any mass-dependency in the yields. While an IMF slope of 0.9 appears to be a viable solution to the low ratios seen at z=0.89, the predicted global metallicity would be 4 so-
Figure 1. Top panel: Carbon isotope ratios as a function of stellar mass at solar metallicity for the sets of yields indicated in the inset. Bottom panel: As above, but sulphur isotope. In both panels, the Type Ia supernova (SN e Ia) values were derived from Nomoto et al. (1997). The grey horizontal lines correspond to the various observational constraints described in §3.3.

Figure 2. Titanium isotope ratios as a function of stellar mass at solar metallicity for the sets of yields indicated in the inset. In all panels, the Type Ia supernova (SN e Ia) values were derived from Nomoto et al. (1997).
Figure 3. Top panel: Carbon (top panel) and sulphur (bottom panel) isotope ratios as a function of stellar mass for each of the metallicities used by WW95.

Figure 4. Top panel: Carbon (top panel) and sulphur (bottom panel) isotope ratios as a function of stellar mass for each of the metallicities used by KL07.
Figure 5. Evolution of carbon and sulphur isotope ratios in the solar neighbourhood ($r = 8.5$ kpc) using the KTG IMF for the Type II supernovae (SNII) models of WW95, CL04, and K06. For the carbon isotopes: The asterisk, arrow, and plus sign represent the solar value from RM03, the high-redshift Levshakov et al. (2006) lower limit, and the Spite et al. (2004) halo star data, respectively; the error bar at 5.7 Gyr represents the M06 data, and the error bar at 13 Gyr correspond to the local ISM values, as reported by RM03. For the sulphur isotopes: The asterisk represents the solar system value of Muellerberger et al. (2004), while the error bars at 5.7 and 13 Gyr correspond to the high-redshift data of M06 and the local ISM (Muellerberger et al. 2004), respectively.

4.3 Titanium Isotopes

Until recently, the chemical evolution of titanium isotopes has been more of an academic exercise than an experimentally-driven one, in the sense that observational constraints outside the pre-solar nebula did not exist (e.g. see the lack of data in TW95, figure 28). The classical TW95 models suggested that all of the titanium isotopes...
The Evolution of Carbon, Sulphur, and Titanium Isotopes

Figure 6. Comparison between the evolution of carbon isotope ratios using the WW95 yields (without novae; solid curve), for the template model described here, alongside the RM03 models both with (dashed curve) and without (dotted curve) the inclusion of a novae contribution. An important difference between the RM03 curves shown here, and those in the corresponding figure 1a of RM03, is that the models have not been re-scaled a posteriori to match the solar neighbourhood data. Contemporary low- and intermediate-mass stellar yields, such as those of KL07, obviate the need for any such "re-calibration". Symbols are as in Fig. 5.

Figure 7. The evolution of carbon and sulphur isotope ratios in the solar neighbourhood using a single power-law IMF slope of 0.9 (cf. slope of 1.35 for Salpeter 1955) for the SNeII models of WW95 and CL04. The metallicities compared to the solar value for each of the WW95 models used are also shown. Symbols are as in Fig. 5.
Figure 8. The evolution of titanium isotope ratios in the solar neighbourhood using the default dual-infall model with the KTG IMF. For $^{50}\text{Ti}/^{48}\text{Ti}$, an older single-infall model (akin to that of TW W 95) is shown for comparison. In the bottom panel, the 11 local disc + halo stars observed by Chavez (2008) are labelled accordingly. Representative uncertainties are shown in the lower left corner of the bottom panel; exact star-by-star uncertainties are tabulated in Chavez (2008).

were underproduced with respect to the solar values, with $^{47}\text{Ti}$ and $^{50}\text{Ti}$ being particularly problematic. Two developments over the past decade make it timely to revisit this issue: (1) dual-infall models such as RM03 and our own have supplanted the simpler monolithic-like collapse models of TW W 95, and (2) recent observational data from Chavez (2008) have, for the first time, provided stellar values outside the pre-solar nebula against which to confront models.

In Fig.8 (top panel) we show the predicted behaviour of $^{46}\text{Ti}/^{48}\text{Ti}$ vs [Fe/H] for our template dual-infall model, compared with the single-infall model used to replicate the results found by TW W 95.

Figure 8 (bottom panel) again shows the dual-infall model predictions as well as the ratios observed in the 11 disc and halo stars from Chavez (2008). We can identify three interesting conclusions from our preliminary analysis of this dataset:

(i) the underproduction of $^{50}\text{Ti}$ claimed by TW W 95 appears to be, in large part, an artifact of the single-infall model;

(ii) $^{47}\text{Ti}$ remains problematic; whether this reflects an important missing nucleosynthetic source from our chemical evolution models, such as helium detonation in sub-Chandrasekhar mass Type Ia supernovae, remains unclear;

(iii) most importantly, our models predict a positive correlation between metallicity and $^{46}\text{Ti}/^{48}\text{Ti}$ over the range of metallicity sampled by the observations, while the data are more suggestive of a lack of correlation (or even a slight anti-correlation). If confirmed, this would be very difficult to understand within the context of existing galactic chemical evolution models.
The Evolution Of Carbon, Sulphur, and Titanium Isotopes

5 SUMMARY

We have explored the evolution of carbon, sulphur, and titanium isotopes in both the local (Milky Way) and high-redshift Universe, using a suite of chemical evolution models generated with GECool. We examined the need for a nova contribution to explain the carbon isotope patterns in the Milky Way, the evidence for a massive star-biased IMF at high-redshift based upon sulphur isotope ratios, and the impact of new observations of titanium isotope patterns in nearby stars upon our picture of galactic chemical evolution. We have found:

- In contrast to earlier studies, the necessity for a significant contribution of $^{13}$C from novae is alleviated when employing present day models of asymptotic giant branch stars.

- A massive star-biased IMF at high-redshift results in a significant decrease in the predicted $^{12}$C/$^{13}$C and $^{32}$S/$^{34}$S ratios, consistent with those observed, but at the expense of predicting highly super-solar metallicity in otherwise normal looking spiral galaxies.

- Earlier studies suggested that $^{47}$Ti was significantly underproduced, which, in part, led to this conclusion by the adoption of older monolithic-style collapse models of galactic evolution. Our dual infall models eliminate these apparent problems, although it remains true that $^{47}$Ti is problematic (i.e., underproduced).

- Our chemical evolution models predict a positive correlation between trace-to-dominant inant titanium isotope ratios and metallicity, while the data is more suggestive of a lack of correlation.

ACKNOWLEDGMENTS

BKG acknowledges the support of the UK’s Science & Technology Facilities Council (STFC Grant ST/F002342/1) and the Cambridge Centre for Astrobiology, LC acknowledges the support of the CONACyT grants 46004 and 60354. PSB acknowledges the support of a Marie Curie Intra-European Fellowship within the 6th European Community Framework Programme. All model coding and analysis was carried out on the University of Central Lancashire’s High Performance Computing Facility.

REFERENCES


Amett D., 1996, Supernovae and Nucleosynthesis, Princeton University Press


Fenner Y. and Gibson B.K., 2003, PASA, 20, 189


Hajduk M. et al., 2005, Science, 308, 231


Karaka A. and Lattanzio J. C., 2007, PASA, 24, 103 (KL07)


van den Bergh S., 1988, Com m ents A strophys., 12, 131


6 It should be noted that novae, or some additional source, will be required to explain isotopic ratios such as $^{17}$O/$^{18}$O; the KL07 yields do not assist in this regard.