Fermion masses and mixing in models with \text{SO}(10) \text{ A}_4 symmetry

Federica Bazzocchi1, Michele Frigerio2 and Stefano Morisi1

1 AHEP Group, Instituto de Física Corpuscular (CSIC)/Universidad de Valencia
Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia, Spain
2 Institut de Physique Théorique, CEA-Saclay, 91191 Gif-sur-Yvette Cedex, France

We study the flavour sector in models where the three families of matter are unified in a \text{(16;3)} representation of the \text{SO}(10) \text{ A}_4 group. The necessary ingredients to realize tri-bimaximal mixing in the lepton sector are identified systematcally. The non-renormalizable operators contributing to the fermion mass matrices play an important role. We also present an mechanism to explain the inter-familly mass hierarchy of quarks and charged leptons, which relies on a 'universal seesaw' mechanism and is compatible with tri-bimaximal mixing.

I. INTRODUCTION

Before the experimental determination of neutrino oscillation parameters, a common theoretical prejudice was the expectation of small lepton mixing angles, by analogy with the CKM angles in the quark sector. This was thought to be a generic prediction of Grand Unification Theories, as they incorporate some form of quark-lepton symmetry. On the contrary, experiments have shown that the $2\rightarrow3$ lepton mixing is close to maximal, the $1\rightarrow2$ mixing is large, while the $1\rightarrow3$ angle can be as large as the Cabibbo angle \cite{1,2}. With the benefit of hindsight, this disparity between quarks and leptons was interpreted as a manifestation of the Majorana nature of neutrinos. From then on, many unied models have been built, in which large lepton mixing angles appear naturally (see e.g. \cite{3,4,5,6,7}).

Several conjectures on special 'symmetric' values of the lepton mixing angles have been also proposed. For example, the bimaximal mixing pattern ($\theta_{23} = \theta_{12} = \pi/4$ and $\theta_{13} = 0$) was extensively studied but it is now excluded, since solar neutrino experiments require $\theta_{12} = (35 \pm 4)$ at 3σ. Current data are in very good agreement, instead, with the so-called tri-bimaximal mixing (TBM) mixing scheme $\theta_{12,13} = 0$, where the second and third neutrino mass eigenstates have the following flavoured content: $\nu_2 = (e + \mu) = \frac{\nu_e}{\sqrt{2}}$ and $\nu_3 = (\tau)$. Such special values of the angles may point to a non-abelian family symmetry. In particular, the TBM scheme seems to require that the three families of lepton doublets belong to the same dimension three representation, the simplest suitable symmetry being the discrete group A_4 \cite{8,9,10} (early applications of A_4 as a family symmetry are discussed in \cite{11,12}).

While generally large lepton mixing angles found their place in the framework of Grand Unification, it is a much tougher task to justify special values of such angles. The first few attempts to build unified models with TBM mixing have encountered several difficulties and concrete realizations so far require many degrees of complication. In most A_4 models for TBM mixing, the lepton doublets and singlets transform differently under the family symmetry, so that the allowed embedding is SU(5) unification \cite{13,14,15}, or the Pati-Salam group \cite{16}. The alternative option, to take all leptons transforming as triplets under A_4, was later considered \cite{17} and was shown \cite{18} to be suitable to achieve TBM mixing. This assignment is compatible with SO(10) unification of the gauge interactions. Few models based on the SO(10) A_4 group
have been studied \[13,20\]. A different scheme to achieve TBM mixing in SO(10) unification makes use of an SU(3) family symmetry \[21\] or its discrete subgroup \(\text{SU}(5)\) \[22\].

In this paper, we investigate systematically the structure of fermion mass matrices and mixing in models with SO(10) unification and \(A_4\) family symmetry. This is the minimal framework for a complete unification of the three family-like fermions: since the three SO(10) spinors of dimension 16 can transform as a triplet under \(A_4\). The scheme for realizing TBM lepton mixing consists of breaking \(A_4\) into its \(Z_3\) and \(Z_2\) subgroups in the charged lepton and neutrino sectors, respectively. This misalignment results in TBM values for the lepton mixing angles. On the other hand, the flavor alignment of the up and down quark sectors should be approximately maintained, in order to explain the smallness of the CKM angles. Since in our framework all matter fields belong to the same representation of SO(10) \(A_4\), the Yukawa couplings of the different sectors are strictly related and it is particularly challenging to satisfy all constraints.

More specifically, one faces the need to generate two independent structures for the up-quark mass matrix \(M_u\) and the neutrino Dirac mass matrix \(M\), which in SO(10) are strictly related. It has been shown \[13\] that a sufficiently complicated arrangement of higher dimensional operators can disentangle the two structures. Another way out \[20\] is to assume that the light neutrino mass matrix \(m\), is independent from the form of \(M\) and it is instead generated by the coupling of two lepton doublets to a Higgs triplet. However, in the context of SO(10) theories this assumption cannot be realized exactly, as discussed later. Another difficulty of \(A_4\) models, which becomes even more severe in SO(10), is the need to introduce non-vanishing CKM paramters without generating too large deviations from the TBM lepton mixing. We will reconsider these issues, generalizing previous results and identifying new solutions.

Perhaps the most serious shortcoming of \(A_4\) flavor models is that the hierarchy between the mass of the three families can be accomodated, but is not explained. This problem can be addressed \[23\] in \(A_4\) models where lepton doublets transform as \(L_i \cong 3\) while charged lepton singlets transform as \(e_i \cong 1;\bar{1};1^0\). In this case one can introduce an extra family symmetry that distinguishes the three families. For example, a U(1) family symmetry of the Froggatt-Nielsen type \[24\], with different charges for the three \(e_i\), can explain the hierarchy of the charged lepton masses. This mechanism can be promptly extended in an SU(5)-invariant fashion to the down and up quarks. The origin of the inter-family hierarchy is a more general problem in SO(10), since both chirality of matter transform as \(A_4\) triplets. As a consequence, a universal mass term of the type \(m_i^c \cong 1\) is allowed \[25\] and no extra family symmetry can distinguish the three families. We will argue that a natural solution for this problem emerges from the mixing with heavy vector-like fermions. The hierarchy arises in the quark and charged lepton sectors precisely because there \(A_4\) is broken to \(Z_3\) and each family transform strictly under this residual symmetry.

The paper is organized as follows. In section \[II\] (and in appendix A) we recall the structure of the fermion mass matrices which lead to TBM mixing in \(A_4\) models. In section \[III\] (and in appendix B1) we study SO(10) \(A_4\) models with renormalizable Yukawa couplings and investigate the possibility to realize the TBM mixing scheme. In section \[IV\] (and in appendix B2) we extend our analysis to dimension-five operators, which overcome several difficulties of the renormalizable models. In section \[V\] we present the mechanism to explain the mass hierarchy between the three families, in a way that is compatible with TBM mixing. In section \[VI\] we summarize our main results.

II. THE ROUTE TO TRI-BI-MAXIMAL MIXING

In this section we review a scheme to achieve TBM lepton mixing, that was employed in the construction of several \(A_4\) models \[23,26,27,28,29,30,31,32,33,34,35,36,37,38,39\] and turns out to be the one
suitable in the context of \(SO(10) \) unification.

Let us introduce a set of simple mass matrix structures which can accommodate all fermion masses, leading at the same time to TBM lepton mixing and vanishing quark mixing. We adopt a supersymmetric notation, with

\[
0 = \begin{pmatrix}
A_{\ell} & B_{\ell} & C_{\ell} \\
B_{\ell} & C_{\ell} & A_{\ell} \\
C_{\ell} & A_{\ell} & B_{\ell}
\end{pmatrix}
\]

\[
0 = \begin{pmatrix}
a & 0 & b \\
0 & c & 0 \\
b & 0 & a
\end{pmatrix}
\]

These charged fermion and neutrino Majorana mass matrices can be diagonalized as follows:

\[
D_{\ell} = U_{\ell}^{T} M_{\ell} U_{\ell} = \text{diag}(A_{\ell} + B_{\ell} + C_{\ell}; A_{\ell} + B_{\ell} + C_{\ell}; A_{\ell} + B_{\ell} + C_{\ell})
\]

\[
d = U^{T} m U = \text{diag}(a + b; a; b)
\]

where \(\epsilon^{i-3} = (1 + P_{3})/2 \) and the unitary mixing matrices are given by

\[
U_{\ell} = U = \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

The matrix is known as the Majorana mixing matrix. We will refer to the matrix structures in Eq. (1) as Majorana and “cross” mass matrix, respectively.

There is no observable quark mixing, since

\[
U_{\text{CKM}} U_{d} = U_{\tau} U_{\tau} \equiv I_{3}.
\]

On the contrary, the leptons mix tri-bi-maximally:

\[
U_{\text{lepton}} U_{d} U = U_{\tau} U = \text{diag}(1; 1; 1) U_{\text{TBM}} \text{diag}(1; 1; 1)
\]

\[
U_{\text{lepton}} U_{d} U = U_{\tau} U = \text{diag}(1; 1; 1) U_{\text{TBM}} \text{diag}(1; 1; 1)
\]

The diagonal phase matrices can be absorbed by rephasing the charged lepton fields and \(m_{3} \). Notice that several different choices of the pair of unitary matrices \(U_{d} \) and \(U_{\tau} \) may reproduce TBM mixing. However, as shown in Appendix A, the choice made in Eq. (3) is the only one justified by the A4 family symmetry.

In ordinary \(SO(10) \) models, all light matter fields reside in three 16-16 representations, which also contain right-handed neutrinos. Then, the light Majorana neutrino mass matrix is given in general by

\[
m_{R} = M_{L} M_{R}^{-1} M^{T}
\]

where \(M_{L} \) is a direct Majorana mass term for the left-handed neutrinos, \(M \) is the Dirac-type neutrino mass matrix and \(M_{R} \) is the Majorana mass matrix of right-handed neutrinos. The second term in Eq. (5) is the outcome of the type I seesaw mechanism \([41, 42, 43, 44, 45]\), while the first term may arise from a type II seesaw \([41, 42, 43, 44, 45]\). The latter can be sizable in models with at least one 126 Higgs multiplet and a scalar potential such that the SU(2)\(_{L}\) triplet componet of 126 develops a vacuum expectation value (VEV). In all other cases the type I seesaw dominates and then the cross structure of \(m_{R} \) in Eq. (5) should emerge from the interplay of the \(M_{L} \) and \(M_{R} \) structures. The sign point possibility is, of course,

\[
0 = \begin{pmatrix}
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{pmatrix}
\]

\[
M = \begin{pmatrix}
B & 0 & C \\
0 & C_{R} & 0 \\
B_{R} & 0 & A_{R}
\end{pmatrix}
\]

\[
M_{R} = \begin{pmatrix}
B & 0 & C \\
0 & C_{R} & 0 \\
B_{R} & 0 & A_{R}
\end{pmatrix}
\]

\[
U_{\text{lepton}} U_{d} U = U_{\tau} U = \text{diag}(1; 1; 1) U_{\text{TBM}} \text{diag}(1; 1; 1)
\]

\[
U_{\text{lepton}} U_{d} U = U_{\tau} U = \text{diag}(1; 1; 1) U_{\text{TBM}} \text{diag}(1; 1; 1)
\]
with at least one amongst B_u and B_R being non-zero. Another possibility which may be justified by the A_4 family symmetry is given by

$$
M = \begin{pmatrix}
0 & 0 & A & 0 \\
0 & A & 0 & C \\
A & 0 & 0 & 0 \\
C & 0 & 0 & 0
\end{pmatrix}
$$

(7)

with M_{bb} as in Eq. (6). In this case one recovers the form of m in Eq. (4) with $b = a$, which implies a normal neutrino mass hierarchy.

III. MODELS WITH ONLY RENORMALIZABLE YUKAWA COUPLINGS

In this section we consider the Yukawa couplings Y invariant under $SO(10)$ A_4 and investigate whether they can generate the mass matrix structures in Eq. (1) and thus realize TBM lepton mixing.

We will indicate with $(R; R')$ a multiplet transforming in the representation R of $SO(10)$ and R' of A_4. Matter fields are unified into a single multiplet $(16;3)$. The structure of the mass matrices depends on the assignment of the Higgs multiplets under $SO(10)$ A_4 and on the components of which acquire a non-zero VEV. We will indicate with h_i the VEV of the component in the representation r of $SU(5)$. All the possible mass structures are listed in Appendix B.

Let us discuss first the mass matrices of charged fermions. As follows from Eq. (2), the masses of the three families can be accommodated only if the mass entries A_4, B_4 and C_4 are all non-zero, of the same order of magnitude, and different from each other. One can generate the up-quark mass matrix M_u introducing the Higgs multiplets $(16;1)$, $(10;3)$ and $(126;3)$. The VEVs

$$
h_i = v_5; \quad h_{S1} = (v_5 v_5 v_5) \quad h_{S2} = (v_5 v_5 v_5) \quad h_{S3} = (v_5 v_5 v_5)
$$

(8)

generate A_u, $B_u + C_u$ and $B_u - C_u$, respectively. Alternatively, and/or can be replaced by $(126;1)$ and/or $(126;3)$ with the same VEV alignment.

In the down quark and charged lepton sector, there are two classes of contributions to the mass matrices: those of the type $M_{dL} = M_d$ can be generated by the VEVs

$$
h_i = v_5; \quad h_{S1} = (v_5 v_5 v_5) \quad h_{S2} = (v_5 v_5 v_5) \quad h_{S3} = (v_5 v_5 v_5)
$$

(9)

those of the type $M_{dL} = 3 M_d$ can be generated by the VEVs

$$
h_{S5} = v_5; \quad h_{S2} = (v_5 v_5 v_5) \quad h_{S3} = (v_5 v_5 v_5) \quad h_{S3} = (v_5 v_5 v_5)
$$

(10)

The first, second and third term in Eqs. (9) and (10) contribute to A_{dL}, $B_{dL} + C_{dL}$ and $B_{dL} - C_{dL}$, respectively. When all six contributions are present, the three masses of down quarks and charged leptons can be tuned. If some of the VEVs are zero, non-trivial relations between the masses are predicted. For example, an economical scenario with no VEVs in the Higgs doublets of the 126 multiplets would imply $A_e = A_d$ and $B_e + C_e = B_d + C_d$. In this limit one predicts (i) $\bar{m}_e^2 = m_e^2 + m_e^2 m_j + m_j^2 m_e$ with m_j arbitrary, which may be compatible with the GUT scale values (see e.g. [50]), and (ii) $m_e = m_\mu$, which requires corrections of one or more Y.

Let us now move to the neutrino sector. Consider first the term M_{1L} in Eq. (5). It is generated when the SU(2) Higgs triplets in 126 multiplets receive a tiny VEV through a type II seesaw mechanism [46, 47, 48, 49]. Taking

$$
h_{15} = v_5; \quad h_{15}\bar{v} = (0 v_{15} 0); \quad (11)
$$
M_L acquires the structure of m in Eq. (1) with $a = c$. Therefore, if one assumes $m = M_L$, the TBM lepton mixing is realized with one constraint on the light neutrino mass spectrum [23].

One should stress, however, that the type I seesaw contribution (second term in Eq. (5)) is necessarily present in SO(10) models and it turns out to be incompatible with the TBM structure. In fact, the VEVs v_5 and v_6, which are necessary to generate M_w, also contribute to the neutrino Dirac mass matrix M_v, which takes the form

$$M = \begin{pmatrix} A & B & B \\ B & A & B \\ B & B & A \end{pmatrix}$$

with $A = A_u$ and $B = (B_u + C_u)/2$. The right-handed neutrino mass matrix M_R is generated by the VEVs of the SU(5) singlet components of the 126 Higgs multiplets. By constructing the combination $M \cdot M_R \cdot M^\top$ for all the possible A_4 structures of M_R (see Table V) and barring re-tuning of independent couplings, we find that the term B/v_5 is never compatible with the structure of m given in Eq. (1). This shows that the exact realization of the TBM mixing is not possible.

In order to estimate the deviation from TBM mixing, a reasonable hypothesis is that M_R acquires a structure analog to M_L from the VEVs

$$h_{11} i = v_1; \quad h_{12} i = (0; v_5; 0):$$

In this case M_R has the form in Eq. (6) with $A_R = C_R$ and one finds

$$M = \begin{pmatrix} a & 0 & 0 \\ 0 & 0 & C \\ 0 & A & B \end{pmatrix}$$

The effect of type I seesaw is to make a 6 c and to add the term. It is easy to check that, in the basis in which the charged leptons are diagonal, m is still symmetric, therefore the values of the mixing angles $12 = 0$ and $23 = -4$ are preserved. On the contrary, the TBM value of 12 and the light neutrino mass spectrum are corrected in a correlated way. Taking for simplicity all parameters real, one finds

$$\tan 2 = \frac{2 P Z}{9} \\ 1 + \frac{a + b + c}{a + b + c}$$

The TBM value of 12 is recovered for $= 0$. In order to accommodate the experimental value of 12 at the 2-level [14], one needs $0 \leq 0 = (a + b + c) < 0.04$, so that a few percent type I seesaw contribution can be tolerated. In the case $v_1 = 0$, the same discussion holds with $a = c$.

We have shown that, if M_u is given by Eq. (6), then the structure of M_L is not compatible with exact TBM mixing. Vice versa, it is instructive to consider the structures of M leading to TBM mixing and see what are the implications for the up quark sector. One possibility is to take the M_R structure of Eq. (6), generated by the VEVs in Eq. (16), and the M_L structure of Eq. (6) by the VEV

$$h_{11} i = (v_5; 0; v_5):$$

Even though this VEV alignment does not preserve any subgroup of A_4, we expect that it may be justified dynamically; the analog alignment has been obtained, e.g. in a model with SU(3) family symmetry [5]. This would be sufficient to achieve TBM mixing in the lepton sector. In the context of SO(10), however, the only VEV that may contribute to M_u without modifying the structure of M in Eq. (6) is v_{45} (see Table VI).
Therefore M_2 would be purely antisymmetric ($A_u = 0$ and $B_u = C_u$) and thus would have one zero and two equal eigenvalues, which clearly is not acceptable. A second possibility to realize exact TBM mixing is to generate the structure of M in Eq. (9) by modifying the VEV alignment of S_2 in Eq. (9) as follows:

$$h S_2 = (0; v_5; 0) :$$

In this case the up quark mass matrix takes the form

$$M_u = \begin{pmatrix} 0 & (B_u & C_u) = 2 & C_u & 1 \\ (C_u & B_u) = 2 & A_u & (B_u & C_u) = 2 A_u \\ B_u & (C_u & B_u) = 2 & A_u \end{pmatrix}$$

Since M_2 has the structure in Eq. (11), the requirement to have V_{CKM} would imply $C_u = B_u$ and thus lead to the wrong relation $m_c = m_t$ (see Eq. (12)). Vice versa, the requirement to get the three up quark masses force the V_{CKM} angles to be large. We conclude that the strong departures from the M_u structure in Eq. (11), required to achieve exact TBM lepton mixing, are not visible phenomenologically.

A comment is in order on the pattern of SO (10) A_4 spontaneous breaking. The triplet VEVs of the type $(1; 1; 1)$, introduced in Eqs. (13)–(15), break A_4 to a Z_3 subgroup at the electroweak scale. The VEV of the type $(0; 1; 0)$, introduced in Eq. (16), breaks A_4 to a Z_2 subgroup at the scale of light neutrino masses (notice that the large A_4 breaking VEV v_2 in Eq. (17) is not needed in a minimal scenario). This misalignment between the charged fermion sector and the neutrino sector is a crucial ingredient to explain TBM mixing. On the SO (10) side, one faces the problem to generate VEVs only in some specific components of the Higgs multiplets, specifically the Higgs doublets in 10 and 120 multiplets and the Higgs triplets and singlets in 126 multiplets. It is a difficult task to arrange for an appropriate scalar potential, also in view of the different energy scales of different sets of VEVs. The analysis of such potential, which is beyond the scope of this paper, may in principle reveal a connection between the VEV alignment dynamics in the A_4 and SO (10) sectors.

In the rest of this section, we will show that a relatively economical model can be built by using only SO (10) Higgs multiplets which are singlet under A_4, plus a set of gauge singlet avons, responsible for the breaking of the family symmetry. In this approach the problem of VEV alignment can be treated separately in the SO (10) and A_4 sectors. Another advantage is that the number of SO (10) multiplets can be considerably reduced, which is desirable to maintain the theory perturbative well above the GUT scale.

The avon content of the model is given in Table I. In order to couple the appropriate avons only to certain SO (10) operators, we introduced a Z_2 symmetry, the minimal choice being $N = 3$ with charges $m = 1$ and $r = 2$. The Yukawa superpotential is then given by

$$W_y = \frac{Y_3 + Y_6}{6} + \frac{Q_3}{6} + \frac{f_1 + f_3}{6} ;$$

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
 & m & H & g & avons \\
\hline
SO (10) & 16 & 10 & 120 & 126 \\
A_4 & 1 & 1 & 1 & 1 \\
Z_2 & 1 & 1 & 1 & 1 \\
\hline
\end{tabular}
\caption{Chiiral super avons in a minimal renormalizable model for approximate TBM mixing. Here $N = 1$ and $m \leq r < N$.}
\end{table}
where is a large energy scale where the $A_4 \times Z_N$ symmetry is realized. The avon eLts are assumed to acquire the VEVs

$$h i = \cdots, h_{i+1} = \cdots, h_{i+n} = \{0; i; 0\};$$

which break A_4 as well as Z_N at some scale , with < 1. The problem to achieve dynamically such VEV alignment has been addressed and solved in several papers [23, 25, 27, 30]. Notice that in Eq. (19) and also the avon VEV in Eq. (20) are at the same order. As discussed after Eq. (15), this ratio must be smaller than few percents, which is realized e.g. for $v_i \sim 100 \text{ GeV}, v_j \sim 10^6 \text{ GeV}$ and $v_{15} \sim 0 \text{ eV}$.

The matrix M_{τ} accommodates the three up quark masses and, combined with M_β, leads to vanishing CKM mixing. The matrices M_d and M_e depend only on four complex parameters, so that non-trivial relations are predicted among their eigenvalues, as discussed after Eq. (18). If one insists to relax this constraint in order to independently down quark and charged lepton masses, it suffices to introduce an extra Higgs m multiplet with VEV in the 45 component. The neutrino mass matrices are given by

$$M = \frac{1}{2} \begin{pmatrix} y_1 & y_3 & 1 \bigg| f_1 & 0 & f_1' \\ y_3 & y_1 & 1 \bigg| 0 & f_1 & 0 \\ 1 & 0 & 1 \bigg| f_1' & f_1 & 0 \\ \end{pmatrix}$$

The light neutrino mass matrix has the form in Eq. (19). The departure from the TBM value of the 1–2–3 lepton mixing angle is controlled by the ratio $(v_{15}/v_1)^2$, where we assume that the couplings in Eq. (15) and also the avon VEVs in Eq. (20) are of the same order. As discussed after Eq. (18), this ratio must be smaller than few percents, which is realized e.g. for $v_{15} \sim 10^6 \text{ GeV}$ and $v_1 \sim 0 \text{ eV}$.

In the above model there is no mixing in the quark sector. Let us briefly review possible mechanisms to generate non-vanishing CKM parameters in A_4 models where $V_{CKM} = B_3$ at leading order. In order to introduce the quark mixing, people considered (i) an explicit A_4 breaking Yukawa as [23]; (ii) A_4 breaking in the soft supersymmetry breaking terms [23]; (iii) one-loop corrections that contribute to the quark sector effects of the A_4 spontaneous breaking in the (0; 1; 0) direction [23, 24]; (iv) spontaneous A_4 breaking by a triplet with VEV $(v_{\nu}, v_{\nu}, v_{\nu})$ with $v_{\nu} \sim v_3$; (v) extra avons transforming as 1^5 or 1^6 coupled to the quarks [19, 34]. In most of these cases it is problem to generate a sufficiently large quark mixing, without introducing too large deviations from TBM lepton mixing [20]. One possible exception is provided by $SU(5)$
GUT models, where the CKM parameters can be introduced as a left-handed rotation in the down quark sector, which corresponds to a right-handed one in the charged lepton sector and therefore does not affect lepton mixing \[15\]. However, in our analysis of SO(10) GUT models we did not find a contribution to M_d and M_{τ} that introduces only a mixing on the left. At the end of section \[17\] we will present a different mechanism to accommodate non-zero CKM parameters, which does not perturb the TBM lepton mixing.

IV. MODELS WITH NON-RENORMALIZABLE OPERATORS

In the previous section we have shown that the TBM lepton mixing cannot be exactly realized by Yukawa couplings symmetric under SO(10) - A_4. In this section we solve this difficulty by considering the exact set of non-renormalizable operators that contribute to the fermion mass matrices. In addition, the analysis of such operators will provide a new tool to accommodate the CKM parameters.

Higher dimensional operators are proportional to powers of $M_{\text{GUT}} = \lambda$, where the cutoff can be identified with the Planck or the string scale, or with the mass of vector-like matter multiplets. For definiteness, in the following we study this last possibility, by considering the superpotential

$$ W = y_A^A + y_B^B M $$

where A and B are Higgs multiplets whose components may acquire VEVs a and b, respectively,\[17\]. M is a vector-like pair of matter multiplets and we assume a,b,M. In this case, M can be integrated out and one is left with an effective operator

$$ W_{\text{eff}} = \frac{y_A y_B}{M} (A)(B); $$

where the subscripts specify how A and B are contracted. The VEVs a and b can be either of the order of M_{GUT}, if they participate to the SO(10) symmetry breaking to the SM, or of the order of the electroweak scale, if they break the SM gauge group.

Theavour structure generated by the operator in Eq. \[23\] is determined by the A_4 assignments of A, B, and M. All the possibilities are analyzed in Appendix \[B.2\] and displayed in Table \[VII\]. Besides the structures already possible with renormalizable Yukawa couplings, several newavour structures can be realized (compare with Table \[V\]). This provides new options for model-building with A_4 symmetry. Here we will focus on the realization of TBM lepton mixing, but alternative scenarios can be studied on the same footing.

By surveying all the possible operators listed in Table \[VII\], one can identify theavour structures compatible with the TBM mixing scheme. The cross structure of the neutrino Dirac and Majorana mass matrices, shown in Eqs. \[14\] and \[16\], can be built with the following components:

- $\text{diag}(1;1;1)$ from the operator A;
- $\begin{cases} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{cases}$ from the operator B with VEV alignment $(0;a;0)$ and no antisymmetric term ($y_A = 0$);
- $\begin{cases} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{cases}$ from the operator C (or \bar{C}) with VEV alignment $(0;a;0)$ and $(0;b;0)$;
- $\begin{cases} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{cases}$ from the operator C with VEV alignment $(a;0;0)$ and $(b;0;0)$;
diag(1;0;1) from the operator D with VEV alignment (0;α;0) and (0;β;0) and either $y_{16}^α = 0$ or $y_{16}^β = 0/$.
\begin{align*}
0 & \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ from the operator } D \text{ with VEV alignment (α;0;α) and (β;0;β) and either } y_{16}^α = 0 \text{ or } y_{16}^β = 0.
\end{align*}

The magic structure of the charged fermion mass matrices, shown in Eq. (1), can be built with the following components:

\begin{align*}
\text{diag}(1;1;1) & \text{ from the operator } A; \\
0 & \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\
\text{from the operator } B \text{ with VEV alignment (α;α;α); } \\
0 & \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ from the operator } C \text{ with VEV alignment (α;α;α) and (β;β;β); } \\
0 & \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \text{ from the operator } C^0 \text{ with VEV alignment (α;α;α) and (β;β;β); } \\
V E V \text{ alignment (α;α;α) and (β;β;β).}
\end{align*}

The contribution of the operator in Eq. (24) to the mass matrices of the different sectors is determined by the SO(10) assignment of Λ, ϵ, and ϵ. Higher dimensional operators have been often used to build realistic SO(10) models without large representations, which may be disfavoured theoretically. We thus perform a systematic analysis of the dim-5 operators involving only SO(10) multiplets of size less than or equal to 120. There are only six such operators, that are analyzed in Appendix B.2 and displayed in Table V. There are several qualitative new relations between the various sectors possible, with respect to the case of renormalizable Yukawa couplings (compare with Table V):

the operator $16_6 16_6 16_6 (16_6 16_6 16_6)$ contributes only to the down (up) sector, hence the subscripts distinguish matter (M) from Higgs (H) multiplets;

the operator $16_6 16_6 16_6$ can generate M a zero mass for left-handed and right-handed neutrinos, with no need of any 126 multiplet;

the operator $16_6 16_6 16_6$ contributes to M without a mixing μ;

the operator $16_6 120_6 16_6 (16_6 16_6 120_6)$ provides two independent contributions to M_u and M_d, proportional to M^H_{120} and M^H_{120}, respectively.

We are now in the position to build a minimal model which realizes TBM lepton mixing using the dim-5 operators. Notice that in the absence of 126_6 multiplets, the type I seesaw is the dominant source of
light neutrino masses. In fact, the type II contribution to m generated by the operator $16_{\ell} \cdot 16_{\ell} \cdot 16_{\ell} \cdot 16_{\ell}$ is of the order 10^3 eV. The contribution to m is negligible.

In section III we showed that, in the case of type I seesaw, one cannot reproduce TBM lepton mixing by using renormalizable Yukawa couplings. The technical reason is the absence of an operator that provides an $O(1)$ contribution needed for the seesaw structure of M_u, without modifying the cross structure of M. This difficulty can be overcome by using dimension-5 operators. The mechanism to generate the required contribution to M_u is most easily described in SU(5) language: the VEV of the up-type doublet in a 45 Higgs multiplet couples (antisymmetrically) to two 10 matter multiplets generating M_u, while it does not contribute to M. In order to make this contribution to M_u, one needs the insertion of the VEV of the 24 Higgs multiplet, which couples to 10 and 10 matter multiplets. Since the SM singlet in 24 is in the hypercharge direction, the Clebsch-Gordan coefficients for the Q and U^c components are different (by a relative factor 4), thus making M_u not antisymmetric. This mechanism is embedded in SO(10) by the operator $(16_{\ell} \cdot 10_{h} \cdot 10_{h} \cdot 16_{\ell})$, with 4510 and 2425 acquiring a VEV. By inspecting Table VII, this is in fact the only possible contribution to M_u that does not act on M, at least with multiplets of dimension 120. Notice that such a contribution to M_u is symmetric when the VEV of 4510 is in the B-L direction (to see this, replace Eq. (19) in the row V of Table VII).

For completeness, let us mention another SU(5) mechanism that allows to generate only M_u and not M: one may employ the VEV of a 75 Higgs multiplet, which couples to 10 and 10 (but not to 5 and $\bar{5}$) matter multiplets. The minimal SO(10) embedding is provided by the operator $(16_{\ell} \cdot 10_{h} \cdot 10_{h} \cdot 16_{\ell})$, with 4510 and 2425 acquiring a VEV. However, the 75 component that acquires the VEV couples with the other Clebsch-Gordan coefficients to the Q and U^c components. As a consequence the contribution to M_u of this operator is antisymmetric. A symmetric contribution requires an extra antisymmetric coupling, which can be introduced by replacing 1010 with 12010.

Our strategy to build an explicit model is to start from the renormalizable model discussed at the end of section III, which is de ned by the superpotential in Eq. (19), and replace some of the couplings with the appropriate higher dimension operators. The effective content of the model is given in Table III, where we introduced a Z$_3$ symmetry. The Yukawa superpotential invariant under SO(10) $A_4 \cdot Z_3$ is given by

$$W_Y = Y_u + Q_d + h_3 \frac{v}{2A} M_2 - 2 + h_2 \frac{v}{2A} f_1 + f'_1 - M_1 - 1 \cdot f_1 :$$

In order to forbid all other couplings, up to terms quadratic in the Higgs, the Z$_3$ charges in Table III must be carefully chosen. One viable choice is given by N = 8, with $m = 1, r = 2$ and $n = 5$. By taking N large enough, it is possible to forbid unwanted couplings up to higher order in the Higgs. Integrating out the heavy messenger fields ϕ_i for $i = 1, 2$, the effective superpotential takes the form

$$W_{eff} = Y_u + Q_d + h_3 \frac{v}{2A} M_2 - 3 + h_2 \frac{v}{2A} f_1 + f'_1 - M_1 - 1 :$$

For brevity, in Eqs. (25) and (26) we indicated with h_3 (f_1) two independent couplings h_3 and h_3 (f_3 and f_3), which correspond to the two possible contractions of A_4 indices in the product $3 \cdot 3 \cdot 3$ (see case B in Table V). The first operator in W_{eff} contributes to the D mass matrices of the four sectors, and the second and third only to the charged fermion mass matrices (we assume $e^c = h^c = 0$) and the fourth only to the D mass and Majorana neutrino mass matrices. The avions take the same VEVs as in Eq. (20).

The charged fermion mass matrices acquire the magic structure

$$M_c = A_1 \ell_3 + \frac{B_{\ell} + C_{\ell}}{2} \ell_1 \ell_1 B_{\ell} + C_{\ell} B_{\ell} \ell_1 \ell_1 C_{\ell} B_{\ell} :$$

(27)
where the coefficients have the following expression:

\[
\begin{align*}
A_u &= \frac{y_1}{v_5} v_5; \\
B_u + C_u &= \frac{h_{3s} h}{2} + \frac{5v_d^4}{M_2} v_{45}^0; \\
B_u - C_u &= \frac{g_3}{v_{45} + \frac{h_{3s} h}{2} + 2v_d^2 \frac{3v_d^4}{M_2} v_{45}^0; \\
A_d &= \frac{y_1}{v_5} v_5; \\
B_d + C_d &= \frac{h_{3s} h}{2} + \frac{4v_d^4}{M_2} \frac{3v_d^4}{M_2} (v_3^0 + v_{45}^0); \\
B_d - C_d &= \frac{g_3}{v_{45} + \frac{h_{3s} h}{2} + 2v_d^2 \frac{3v_d^4}{M_2} (v_3^0 + v_{45}^0); \\
A_s &= \frac{y_1}{v_5} v_5; \\
B_s + C_s &= \frac{h_{2s} h}{2} + \frac{4v_d^4}{M_2} \frac{3v_d^4}{M_2} (v_3^0 + v_{45}^0); \\
B_s - C_s &= \frac{g_3}{v_{45} + \frac{h_{2s} h}{2} + 2v_d^2 \frac{3v_d^4}{M_2} (v_3^0 + v_{45}^0); \\
&= \frac{5v_d^4}{M_2} v_{45}^0; \\
&= \frac{5v_d^4}{M_2} v_{45}^0; \\
&= \frac{5v_d^4}{M_2} v_{45}^0; \\
&= \frac{5v_d^4}{M_2} v_{45}^0; \\
&= \frac{5v_d^4}{M_2} v_{45}^0;
\end{align*}
\]

These 9 quantities are independent, except for $A_s = A_d$, therefore the 9 masses of quarks and charged leptons can be accommodated with this one constraint, that was already discussed in section III. The hierarchy between the three families requires $A_T, B_T + C_T$ and $B_T C_T$ to be of the same order. In addition, since the Yukawa of the top is close to one, in the up quark sector the parameters should be close to the electroweak scale. This implies that the avon VEVs and are not much smaller than and the VEV of the adjoint Higgs multiplet, h_{UT}, is not much smaller than M_2. We will discuss in more detail the effects of vector-like matter fields with mass close to M_{UT} in section IV.

The neutrino mass matrices take the form

\[
M = \begin{pmatrix}
0 & 2f_1 \frac{v_1}{R_1} v_5 & 2f_{3s} \frac{v_1}{R_1} v_5 & 1 \\
0 & y_1 v_5 + 2f_1 \frac{v_1}{R_1} v_5 & 0 & C A \frac{C A}{M_1} \\
2f_{3s} \frac{v_1}{R_1} v_5 & 0 & y_1 v_5 + 2f_1 \frac{v_1}{R_1} v_5 & 0 \\
0 & f_1 & 0 & 1
\end{pmatrix}
\]

\[
M_R = \begin{pmatrix}
0 & f_1 & 0 & C a (v_1)^2 \frac{C A}{M_1} \\
0 & f_3' \frac{v_1}{R_1} v_5 & 0 & f_1 \\
f_1 & 0 & 1 & 1
\end{pmatrix}
\]

\[
M_L = \begin{pmatrix}
0 & f_1 & 0 & C a (v_1)^2 \frac{C A}{M_1} \\
0 & f_3' \frac{v_1}{R_1} v_5 & 0 & f_1 \\
f_1 & 0 & 1 & 1
\end{pmatrix}
\]
Light neutrino masses of the correct order of magnitude require $M_1 \neq \nu$, M_{GUT}. In this case the second term in Eq. (5) can be sufficiently large to accommodate oscillation data. The TBM lepton mixing is exactly realized, as desired.

We conclude this section by showing that the dim-5 operators offer also the opportunity to generate non-zero quark mixing while preserving TBM lepton mixing. The idea is to introduce small deviations from the magic matrix structure in the up quark sector. If these deviations were introduced in the down quark sector, that would affect also the charged lepton mass matrix and, therefore, the TBM values of the lepton mixing angles. We do not explore this possibility in this paper.

Interestingly, the Cabibbo angle is naturally induced if the A_4 triplet VEV aligned in the direction $(0;1;0)$, which is needed in the neutrino sector, also contributes to M_u. This can be easily achieved by considering the same mechanism as in Table II, but with $\tilde{\nu}$ and ν, transforming as 45 under SO(10). In this case the fourth operator in Eq. (26) generates the neutrino sector as before (up to irrelevant Clebsch-Gordan factors, see Table V), but also contributes to the up quark sector with

$$
M_u = \begin{pmatrix}
0 & f_1 & 0 & f_{3s}' & 1 \\
0 & f_1 & 0 & C \frac{16\nu_s \nu_s}{M_1} \\
0 & f_1 & 0 & M_1 \\
0 & f_1 & 0 & 1
\end{pmatrix}
$$

We absorb the diagonal entries of M_u in the definition of A_4 in Eq. (28). The off-diagonal entries, instead, do not respect the magic structure. In the basis where M_d is diagonal, the up quark mass matrix is given by

$$
U^T \left(M_u^{agic} + M_u \right) U = \begin{pmatrix}
0 & m_{u_1} + 2 & 1 \\
1 & m_{u_2} & 2f \\
2 & m_3 & 1
\end{pmatrix}
$$

where m_{u_1} are defined in Eq. (2) and $(16=3)(f_1' = \lambda(\nu_1 \equiv M_1)\nu_0)$. Notice that all entries of M_u receive corrections of the same order. Taking $m_{u_2} = \frac{m_1}{2}$, which is natural since $\nu_1 \equiv M_1$, one can accommodate the 1 2 quark mixing angle, $j_\frac{1}{12} j = m_{u_2} j$, $j = m_1$. A similar idea to accommodate the Cabibbo angle was used in [40]. The values of the other two quark mixing angles are given by $\frac{m_1}{2} \frac{m_1}{12}$, which unfortunately are too small to explain the experimental values.

It is possible to introduce other corrections to M_u in such a way that all CKM parameters can be accommodated without affecting the structure of the other mass matrices. For this purpose one needs a 120 Higgs multiplet up with VEV only in the SU(5) component 45. Notice that in the model of Table I, one can make the identification λ_{up}, since the VEVs λ_{up} and λ_{up} are not necessary for the model to work. Then, the operators λ_{up} or A_{up} should couple to the avon $\tilde{\nu}$ in order to modify the magic structure of M_u. The advantage of such corrections can be sufficiently rich to accommodate all the CKM parameters, e.g. employing the operator D in Table II. However, we did not find any simple way to explain the hierarchy among the values of the quark mixing angles, therefore we refrain from presenting further details.

V. A MECHANISM TO EXPLAIN THE INTER-FAMILY MASS HIERARCHY

In the previous sections, we analyzed the structure of fermion mixing. We did not address yet the origin of the strong hierarchy between the masses of the three families of quarks and charged leptons. In general, such hierarchy is not explained by the SO(10) A_4 symmetry by itself. In fact, the mass matrix structure M_F in Eq. (4) only on the nature of three arbitrary mass eigenvalues, which are therefore free parameters like in the Standard Model. Moreover, as we discussed in the Introduction, since in SO(10) both fermion chiralities...
The purpose of this section is to present an elegant mechanism to generate the hierarchy between the three families in SO(10) \(A_4 \) models. Such mechanism emerges from the analysis of dim-5 operators performed in section 4V and it turns out to be closely related to 'universal seesaw' models \(33,54,55,56 \). We will show that it is compatible with the generation of \(TBM \) lepton mixing discussed in the previous sections.

The masses of the three families of charged fermions are given in Eq. (2). They are linear combinations, with coefficients of unit modulus, of the mass matrix elements \(A \), \(B \), \(C \). When the equality \(A = 1 \), \(B = \frac{1}{3} C \), \(m_3 = 3 \) holds, the mass eigenvalues are \((0; 0; m_3)\). When \(A = (m_{12} + m_{13}) = 3 \), \(B = (\frac{1}{3} m_{12} + \frac{1}{3} m_{13}) = 3 \), \(C = (m_{12} + \frac{1}{3} m_{13}) = 3 \), the mass eigenvalues are \((0; m_{12}; m_{13})\). Since the above relations were approximately realized, one might expect the inter-family hierarchy. At first sight such relations seem completely ad hoc because, in the \(A_4 \) models built so far, the parameters \(A \), \(B \), \(C \) are generated by independent \(A_4 \) invariant operators. To overcome this problem, let us begin by writing the mass matrix structure in Eq. (1) as a sum over three rank-1 components:

\[
M = \begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix}
\]

The threeavour structures in Eq. (32) cannot be generated in \(A_4 \) models with renormalizable Yukawa couplings. However, we have shown in section 4V that several newavour structures are possible when the light matter fields mix with heavy matter multiplets. This mixing may actually lead to the three requisite structures in Eq. (32). Specifically, the 'democratic' structure is obtained from the dim-5 operator in Eq. (24) by taking \((\psi)\) singlets under \(A_4 \) and \(\lambda \) and transforming as \(A_4 \) triplets with VEV's \((a_1a_2a_3)\) and \((b_1b_2b_3)\), corresponding to the case C in Table VI. The second (third)avour structure in Eq. (32) is obtained similarly, but with the pair of matter multiplets \(0 \), \(0 \) and \(0 \), \(0 \), corresponding to the case C in Table VI.

There is a simple group theoretical interpretation of Eq. (32). The \(A_4 \) representations decompose under the residual \(SU_3 \) symmetry (preserved by the vacuum alignment \((111))\)) as \(1, 1, 1 \), \(1, 1 \), \(1 \), \(1 \), \(1 \), and \(1 \). The mass eigenstates are precisely those three orthogonal combinations of \(1 \), \(1 \), \(1 \), which transform in a given representation of \(Z_3 \) and, therefore, they separately mix with \(0 \), \(0 \), and \(0 \), respectively. The three terms in Eq. (32) correspond to the \(Z_3 \) invariants \(1, 1, 1, 1, 1 \), \(1, 1 \), \(1, 1 \), and \(1, 1 \). For definiteness, we take the two Higgs VEV's \(a, b \). Since the first and second generation Yukawa couplings are much smaller than one, they are well described by the dim-5 operators obtained decoupling \((\psi)\) and \((\psi)\) at the masses scales \(M_1, M_2 \) \(M_1, M_2 \). On the contrary, the third generation Yukawa couplings (in particular the top) are large, therefore we are led to consider a vector-like pair of matter multiplets \(0 \), \(0 \) with mass \(M_3 \) of the same order as \(M_1, M_2 \). In this case it is not appropriate to integrate out these states and treat their effect in terms of higher dimensional operators. We shall instead consider explicitly the mixing of \(0 \) with \(0 \) and show how this generates the third term in Eq. (32). The 'inverse' hierarchy \(M_1 < M_2 < M_3 \) may be justified e.g. by a Froggatt-Nielsen U(1) symmetry with different charges for \(0 \) and \(0 \).

The above discussion applies to any model with the specified \(A_4 \) assignment of fields. In the case of SO(10) models, one should carefully choose the SO(10) operators and symmetric breaking pattern, in order to generate the structure of \(H_{13} \) as in Eq. (32) and preserve, at the same time, the cross structure of \(M \). Let us consider, to begin with, the matter multiplets \(0 \) \(16; \psi \) and \(0 \) \(16; \psi \), together with the
Higgs multiplets $i_{10;3}$ and $A_i_{45;3}$ (the discussion below can be easily generalized to different SO (10) A_i assignments of the fields). The superpotential reads

$$W = M_3 \epsilon_{ij}^0 + y(11 + i_1 2_2 + i_2^2 3_3) \epsilon_{ij}^0 + g(1A_1 + i_2^2 2A_2 + i_3A_3) \epsilon_{ij}^0$$ (33)

The direct contribution to the light fermion mass matrices from the couplings i_{ij} is assumed to be subdominant. It can be forbidden e.g. by a parity symmetry Z_2 under which i_{ij} and i_{ij} are odd.

We assume that A_i acquire VEVs $(V/V/V_i)$, such that $H_i i_{ij} = V k_{ij}$, where k_{ij} runs over the 16 components of i_{ij} and k are Clebsch-Gordan coefficients which depend on the SO (10) direction associated with V. Then, the following linear combination of the 16 multiplet components becomes heavy:

$$h = c \epsilon_{ij}^0 \frac{S}{3} (3) \epsilon_{ij}$$ (34)

where

$$\begin{align*}
M_3 & = \frac{M_3}{M_3 + 3gV k} ; & s & = \frac{P + 3gV k}{M_3 + 3gV k} ; \\
\end{align*}$$ (35)

Notice that $j_1 + j_2 = 1$. The light fermions i_{ij}, $i = 1; 2; 3$, are given by the three linear combinations orthogonal to h. The unitary 4×4 mixing matrix is defined by

$$\begin{array}{c|c|c|c}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}$$ (36)

Since the choice of basis for i_{ij} is arbitrary, the matrices P and Q are determined up to a 3×3 unitary rotation from the right. We choose the basis where i_{ij} in the limit $s \rightarrow 0$. In this case one finds

$$P = I_3 + \frac{P}{3} \begin{pmatrix} 1 & !^2 & 1 \\ !^2 & 1 & 1 \end{pmatrix} ; & Q = \frac{s}{3} \begin{pmatrix} 1 & !^2 & 1 \\ !^2 & 1 & 1 \end{pmatrix}$$ (37)

In the following we take c real and positive, without loss of generality.

The three light states acquire a mass when the Higgs doublet h_{ij} in i_{ij} acquire VEVs at the electroweak scale. Let us begin from the down quark sector. The second term in Eq. (33) contains the couplings $y(Q_1 H_1^0 + Q_2 H_2^0 + Q_3 H_3^0) vf_0$, as well as $yQ_1 (d_1^0 H_1^0 + d_2^0 H_2^0 + d_3^0 H_3^0)$. Assume the VEV alignment (v_3, v_3, v_3) and using Eq. (36) for $i_{ij} = Q_1 (d_1^0)$ and $i_{ij} = Q_2 (d_2^0)$, we obtain the following mass term for the three light generations:

$$W \epsilon_{ij} \frac{y_0}{3} \begin{pmatrix} 6 & S_0 & S_0 & S_0 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & i^2 & 1 & 0 \\ ! & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ ! & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ ! & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ ! & 1 & 1 & 1 \end{pmatrix}$$ (38)

The charged lepton mass term has the same form with the obvious replacements $Q \rightarrow L$ and $d \rightarrow e$. The two flavour structures in Eq. (38) are exactly those required to reproduce the second and third generation masses as in Eq. (32). The relative hierarchy between the two terms is determined by the direction of the SO (10)-breaking VEV of A. In general $H_i = v_3 T_{3B} + v_3 T_{3B} T_{3B}$, where T_{3B} (T_{3B}) is the generator of the right-handed isospin (the B_{L} symmetry). When $v_3 = 0$, the VEV of A points in the right-handed isospin direction and one has $s_0 = s_0 = 0$ as well as $s_0 = s_0$. In this limit only the third family mass is massive and a unification is realized.
Let us now consider the up-quark and Dirac neutrino sectors. If also H^u_1 acquire non-zero VEVs (v_u, v_D, v_0), then $M_u^0 (M_d^0)$ takes the same form as in Eq. (38), with the replacement $v_0 \rightarrow v_u$ and $d^c \rightarrow (Q ! L, c^d ! Z)$. However, such contribution to M would spoil the TBM lepton mixing. The way to generate only M_u and not M_d is the same described in section IV: the up-type Higgs doublets which are kept light and acquire a VEV should not be those in (10;3), but rather those in the SU(5) 45-component of (120;3). In this case the above derivation can be still applied replacing the coupling y^{00} by h^{00}.

When $v_0 \neq 0$, only the top quark acquires a mass.

Next, let us discuss the masses of the second family of charged fermions. One contribution may come from a non-zero v^3_{15}, v_3^c. In this case $s^u = s = 3$ ($v^3_{15} \neq 0$), so that the hierarchy between the two terms in Eq. (39) follows from a hierarchy between the SU(4)$_L$ and the SU(2)$_R$ symmetry breaking scales. (A recent Pati-Salam model to obtain a flavour hierarchy from a gauge hierarchy without any family symmetry was recently proposed in Ref. [57].) Notice also that the s and F masses are generated with the appropriate Georgi-Jarlskog factor, due to their relative $B-L$ number. However, if v^3_{15} contributes also to the up quark sector, one nds $m_{c-m}^u ... m_{g-m}$, in strong disagreement with data. The steepest hierarchy in the up quarks cannot be accommodated in this minimal setup.

In fact, there is yet another reason to take the VEV of α in the right-handed isospin direction. We are working in the hypothesis that the cross structure of F in Eq. (1) is generated in the L basis. In order to preserve the TBM mixing in the lepton sector, such structure should not be changed by the rotation to the L basis. This is guaranteed by taking $v^3_{15} = 0$, because in this case $s = 0$ and therefore the lepton doublets L_1 do not mix with L_2.

We set $v^3_{15} = 0$ in the following. In this case, the second family masses may be introduced, as already mentioned, by the mixing with a pair $(16;\bar{16})$ and $(\bar{16};16)$ with mass $M_2 \neq M_3$. One may repeat the analysis done in Eqs. (33)-(38) with some obvious replacements, in particular swapping v^3_{15} everywhere. A sum ing that H_u resides in \dots and H_d in \cdots, consistently with the generation of the third family mass, one can accommodate $m_{e-m}^1 \neq m_{g-m}$ by tuning the independent Yukawa couplings. Some m new would be needed to make m_{g-m}, as discussed later.

Analogously, one can generate the semi-decoupled term in Eq. (32) for the first family masses, by the mixing with a pair $(16;\bar{16})$ and $(\bar{16};16)$ with mass $M_1 \neq M_2$. The derivation is again very similar to Eqs. (33)-(38), replacing everywhere $v_{15} \Rightarrow v^3_{15}$. Let us remind, however, that since the first family mass are tiny, they may be generated even by non-dec auxiliary contributions, from operators close to the Planck scale, which would not affect significantly the values of the mixing angles.

Notice that no CKM mixing between the light quark families is generated by the mechanism described above, as long as the A_4 VEV alignment $(1;1;1)$ is preserved in all the operators contributing to M_u and M_d. In this case a Z_3 subgroup is unbroken and, as mentioned above, each of the heavy matter multiplets Q_3 interacts only with the orthogonal combination of the i-fields that transform as i under Z_3. As a consequence, each light family of quarks does not mix with the others. In order to generate the CKM paramaters, one should resort to extra contributions to the quartic mass matrices which break Z_3.

Let us then enter in an explicit model of the mechanism to generate the inter-family mass hierarchy together with TBM lepton mixing and non-zero Cabbibo mixing. In order to correctly describe the mass of the third and second family of quarks and charged leptons, we found that the minimal set of multiplicities is the one given in Table IV. The Yukawa superpotential has the form

$$W_Y = y_3 1 + h_3 3 2 0 M_1 - n + \bar{m}_A \ ,$$

$$+ y_2 1 + h_2 2 0 M_2 n - \bar{m}_B A :$$

(39)
A Z_N symmetry was introduced to forbid all other couplings, up to terms quadratic in the avons; the minimal choice is $N = 4$ with charge $m = 1$. The adjoint Higgs multiplet A has the VEV v_5^0 in the right-handed isospin direction and the triplet avon has the VEV $h_1 = (1; 1; 1).$ In order to reproduce correctly all the mass ratios, we introduced two 120 multiplets 1 and 2 with the VEVs

$$\text{H5}^1 = v_{51}^1; \quad \text{H5}^2 = v_{52}^1; \quad 45^2 = \frac{v_{45}^1}{v_{45}^2}.$$

(40)

Following the derivation of Eqs. (38-48), it is straightforward to compute the mass eigenvalues needed by Eq. (42):

$$m_t = \frac{\frac{1}{3}y_t v_{31}^1 s_3}{M_3} v_{51}^1 s_1; \quad m_c = \frac{\frac{1}{3}y_c v_{31}^1 s_3}{M_3} v_{51}^1 s_3; \quad m_b = \frac{\frac{1}{3}y_b v_{31}^1 s_3}{M_3} v_{51}^1 s_3; \quad m_u = \frac{\frac{1}{3}y_u v_{31}^1 s_3}{M_3} v_{51}^1 s_3; \quad m_d = \frac{\frac{1}{3}y_d v_{31}^1 s_3}{M_3} v_{51}^1 s_3; \quad m_s = \frac{\frac{1}{3}y_s v_{31}^1 s_3}{M_3} v_{51}^1 s_3.$$

(41)

where the parameters s_3, s_3 control the mixing between H5^1 and H5^2 and are given by

$$s_3 = \frac{\frac{1}{3}y_3 v_{31}^1}{M_3} v_{51}^1 s_3; \quad s_3 = \frac{\frac{1}{3}y_3 v_{31}^1}{M_3} v_{51}^1 s_3.$$

(42)

The heaviness of the top requires to take $M_3 \gg v_5^0,$ so that $s_3 \approx 1.$ The hierarchy between second and third generation masses is then explained by taking $M_2 \gg v_5^0,$ so that $s_2 \approx 1.$ A approximate unification is realized when the first term in m_b and m_q dominates over the second. The ratio $m_{3} = m_{b}$ $1 \geq 3$ is realized when the second term in m_2 and m_q dominates over the first. More precisely, the six masses in Eq. (41) are constrained by one non-trivial relation, $(3m_3 = m_1 = (m_\text{c}=m_\text{d})(3m_\text{b} = m_\text{q}),$ which connects the two phenomenological facts $m_{b} = m_{b}$ and $m_{c} = m_{c}.$ At this level the first family masses are vanishing.

As for the neutrino sector, we need to generate the cross structure of $m_\text{nu},$ as required by TBM mixing. One may think that is sufficient to introduce the last operator in Eq. (26), however the size of neutrino masses is too small in this case, as can be seen by inspecting Eq. (41) (in the present scenario the term $y_3 v_{31}^1 M_3$ is absent). To solve this problem, the neutrino Dirac mass matrix M_ν and the right-handed neutrino Majorana mass matrix M_ν should be generated by two independent operators. We found that the minimal set of multiplets to achieve this purpose is the one given in Table III, with two 16 Higgs multiplets taking VEVs only in the directions $1^m = v_5^1$ and $5^0 = v_5^0.$ We introduced an auxiliary symmetry Z_N such that all fields charged under Z_N are neutral under Z_N and vice versa. Then, the superpotential in Eq. (39) is extended to include the term s_3

$$W_y = \frac{f_{IM}}{m} + \frac{f_0}{m} - \frac{f_{IM}}{m} - \frac{f_0}{m} - \frac{m_{IM}}{m} + \frac{m_{0}}{m}$$

TABLE III: Chiral superfields needed to realize the inter-family mass hierarchy in the quark and charged lepton sectors. Here $N = 1$ and $m < N$.

<table>
<thead>
<tr>
<th>\text{SO (10)}</th>
<th>\text{matter elks}</th>
<th>\text{Higgs elks}</th>
<th>\text{avon}</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_d</td>
<td>16, 16, 16</td>
<td>120, 120, 120</td>
<td>m_1</td>
</tr>
<tr>
<td>Z_N</td>
<td>$1^0, 1^0, 1^0$</td>
<td>$1, 1, 1$</td>
<td>1</td>
</tr>
</tbody>
</table>

$\text{m}_N = \text{m}_N = \text{m}_N$
TABLE IV: Chiral super fields needed to generate the cross structure of the neutrino mass matrix and the Cabibbo mixing angle. Here $N^0 = 1$ and $1 < r < N^0$.

\[
\begin{array}{cccc|ccc|ccc}
\text{SO (10)} & \text{matter fields} & \text{Higgs fields} & \text{avons} \\
& d & d & N & M & d & m & d & m \\
\hline
A_4 & 16 & 1 & 1 & 45 & 45 & 16 & 16 & 1 & 1 \\
Z_{N^0} & 3 & 3 & 3 & 3 & 3 & 1 & 1 & 1 & 1 \\
\end{array}
\]

VI. CONCLUSIONS

In this paper we performed a systematic analysis of the fermion mass matrices in models of Grand Unification based on the gauge symmetry SO (10) with the discrete family symmetry A_4. In these models all light fermions and right-handed neutrinos may be unified in a single multiplet $(16;3)$ of the group SO (10) A_4. We demonstrated that, even though this scenario is very constrained, it is possible to understand the disparity between the quark and lepton mixing angles as well as the strong hierarchy between the three families of charged fermion masses.

In models with renormalizable Yukawa couplings, we found that the exact TBM mixing can be obtained only if the type I seesaw contribution to m_W is neglected. The specific exact of such contribution is
to shift the 1_2 lepton mixing angle from the trimaximal value. The non-zero values of the CKM mixing angles cannot be accommodated without introducing further departures from TBM lepton mixing.

A much richer flavour structure appears once the effect of higher dimensional operators is taken into account. We considered dim-5 operators generated by the mixing of light families with heavy vector-like matter multiplets; the corresponding structures of the mass matrices are listed in Appendix A for all A_4 representations and all the SO(10) representations of size 120. This classification proves to be a useful tool for model-building.

We found that the dim-5 operators help to evade several difficulties in the construction of a satisfactory SO(10) A_4 model ofavour. One crucial ingredient is provided by those operators which contribute differently to the Dirac mass matrices M_L and M_R. First, it is possible to obtain exact TBM lepton mixing from a type I seesaw. Second, there are contributions which generate non-zero CKM mixing angles without disturbing the TBM pattern in the lepton sector.

Moreover, we have shown that the mixing of the three light families with vector-like matter multiplets provides a natural explanation of the inter-familly mass hierarchy of quarks and charged leptons. In fact, rank-1 contributions to the mass matrices are generated by the mixing with heavy dim-16 multiplets, that transform in a dim-1 representation of A_4. The flavour structures of such contributions are exactly those necessary to achieve TBM mixing. A hierarchy in the masses of the heavy families and/or in the VEV's breaking SO(10) recasts into a hierarchy of the masses of the light families.

Acknowledgements

We thank Jose F.W. Valle for useful comments and encouragement. M F thanks the Aspen Center for Physics (2007 Workshop on "Neutrino physics: looking forward"), where this project was conceived by discussing with Ernest Ma and Jose F.W. Valle, and the Instituto de F\'isica Corpuscular of Valencia, for the kind hospitality. The work of FB and SM was supported by MEC grant FPA 2005-01269 and FPA 2008-01935-E, by EC RTN network M RTN-CT-2004-503369, and by Generalitat Valenciana ACOMP06/154. M F was supported in part by the Marie Curie Intra-European Fellowship MEIF-CT-2007-039968, the CNRS/USA exchange grant 3503, and the RTN European Program M RTN-CT-2004-503369.

APPENDIX A: THE GROUP A_4 AND ITS BREAKING PATTERN

The pair of lepton mass matrix structures deduced in Eq. (1) leads to exact TBM mixing in the lepton sector. In this Appendix we prove that such realization of TBM mixing is the only one that can be obtained by the spontaneous breaking of an A_4avour symmetry. We follow an approach already applied to the group A_4 in Ref. [31] and to the group T^0 in Ref. [53] (see also [60]).

The discrete group A_4 is spanned by the even permutations of four objects. It can be described by two generators S and T such that

$$S^2 = T^3 = (ST)^3 = 1;$$ \hfill (A1)

The 12 elements of A_4 belong to four conjugacy classes

$$C_1 : I;$$
$$C_2 : T;ST;TS;STS;$$
$$C_3 : T^2;ST^2;TST;$$
$$C_4 : S;ST^2;TST^2;$$ \hfill (A2)
Each element g of $C_2 \otimes (C_3)$ satisfies $g^3 = 1$ ($g^2 = 1$) and, therefore, generates a subgroup Z_3 (Z_2) of A_4. There are three $\dim -1$ and one $\dim -3$ irreducible representations. We adopt the basis where the generators of the $\dim -3$ representation are given by

\[
S = \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix} \quad T = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} .
\]

We assume that both lepton doublets and singlets transform as A_4 triplets, as dictated by $SO(10)$. The lepton mixing matrix $U_{\text{lep}} = U_Y U$ depends on how A_4 is spontaneously broken in the charged lepton and in the neutrino sector. If A_4 were unbroken in one sector, the mass matrix would be proportional to the identity. If A_4 were broken completely in one sector, the mass matrix would be generic and the values of the m mixing angles arbitrary. Therefore, the only non-trivial case occurs when A_4 is broken to a subgroup in the charged lepton sector and to another subgroup in the neutrino sector. There are three possibilities:

- the VEV of an A_4 triplet with alignment (1;1;1) breaks A_4 to Z_3;
- the VEV of an A_4 triplet with alignment (0;1;0) breaks A_4 to Z_2;
- the VEV of a singlet in the 6 or 10 representation breaks A_4 to $Z_2 \otimes Z_2$.

The relevant choice to obtain TBM mixing is to preserve Z_3 in one sector and Z_2 in the other, as we now show (one may check that in a similar way that all other choices do not lead to TBM mixing).

If g is the generator of a subgroup of A_4, the mass term M^c is invariant with respect to g if and only if $g^TM^c = M^c$. For definiteness, and without loss of generality, let us consider the Z_3 and Z_2 subgroups generated by T and S, respectively. There are two possibilities:

1. $TM_6 T^T = M_6$)

\[
M_6 = \begin{pmatrix}
B & C & A \\
C & A & B \\
A & B & C
\end{pmatrix} ; \quad S \quad S^T = m \quad m = \begin{pmatrix}
0 & 0 & a \\
0 & 0 & b \\
a & b & 0
\end{pmatrix}.
\]

2. $SM_6 S^T = M_6$)

\[
M_6 = \begin{pmatrix}
B & C & A \\
0 & D & 0 \\
A & 0 & C
\end{pmatrix} ; \quad T \quad T^T = m \quad m = \begin{pmatrix}
0 & 0 & a \\
a & 0 & b \\
b & b & 0
\end{pmatrix}.
\]

In the case (i), we recognize the charged lepton mass matrix M_ℓ of Eq. (11). Notice that m is more general than in Eq. (11), because the Z_3 invariance allows different entries on the diagonal, in particular $a \neq d$. This is because one may couple to the neutrinos also a Higgs transforming as 1^0 or 1^2, and still maintain m invariant under $Z_3 \otimes Z_3$. Therefore, this A_4 breaking pattern is not sufficient to predict TBM mixing. If one does not introduce such 1^0 and 1^2 Higgs in the model, one nds $a = c = d$ and the neutrino mass matrix of Eq. (1) is recovered in the special limit $a = c$. Then exact TBM lepton mixing is obtained.

For what concerns the case (ii), one can obtain TBM mixing in the neutrino sector alone, by taking M_ℓ diagonal. This scenario is realized by coupling to the charged leptons three Higgs singlets $1^0;1^2;1^0$ and no triplet (the A_4 subgroup $Z_3 \otimes Z_3$ is preserved in this case). However, even though m is diagonalized by U_{TB}, one has $m_1 = m_3$, in strong disagreement with oscillation experiments. Therefore, the case (ii) is not viable.
A4 Symmetry

1. Renormalizable Yukawa Couplings

Consider the Yukawa couplings $Y_{ij}^{i,j}$, where the matter multiplets transform as $(16; 3)$ under SO(10). A_4 and H is a Higgs multiplet. For all possible SO(10) A_4 assignments, let us analyze the structure of the quark and lepton mass matrices that are generated when a given component acquires a VEV v.

The A_4 assignment of determines the flavour structure of the mass matrices, as shown in Table V. When 3 (case B in the Table), there are two A_4 invariants, namely symmetric and the other antisymmetric in the flavour indices. The SO(10) assignment of determines the relative contribution to the mass matrices of the different sectors, as shown in Table V. The Yukawa coupling matrices Y_{10} and Y_{126} (Y_{120}) are symmetric and antisymmetric in the flavour indices.

For a given SO(10) A_4 assignment of $\text{SO}(10)$, the contribution to the mass matrices is obtained combining the corresponding rows in Tables V and VI. Such contribution is non-zero only if both rows contain terms (antisymmetric in the flavour indices).

<table>
<thead>
<tr>
<th>Case</th>
<th>A_4 Operator</th>
<th>Mass Matrix Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$3_3 \otimes 1_1$</td>
<td>$y \text{diag}(1; 1; 1) v$</td>
</tr>
<tr>
<td>A2</td>
<td>$3_3 \otimes 1_1$</td>
<td>$y^2 \text{diag}(1; 1; 1^2) v^2$</td>
</tr>
<tr>
<td>A3</td>
<td>$3_3 \otimes 1_1$</td>
<td>$y^3 \text{diag}(1; 1^2; 1^3) v^3$</td>
</tr>
<tr>
<td>B</td>
<td>$3_3 \otimes 3_3$</td>
<td>$y^3 \begin{pmatrix} 0 & v_3 & v_1 \ v_3 & 0 & v_1 \ v_1 & v_3 & 0 \end{pmatrix} + y^2 \begin{pmatrix} 0 & v_3 & v_1 \ 0 & 0 & v_1 \ v_1 & v_3 & 0 \end{pmatrix}$</td>
</tr>
</tbody>
</table>

Table V: The possible A_4 flavour structures arising from renormalizable Yukawa couplings. The subscript M (H) identifies the matter (Higgs) multiplets.

<table>
<thead>
<tr>
<th>Case</th>
<th>$SO(10)$ Operator</th>
<th>Mass Matrices</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>$16_r \otimes 16_r \otimes 10_r$</td>
<td>$M_u = M_d = M = Y_{10}v_5$</td>
</tr>
<tr>
<td>II</td>
<td>$16_r \otimes 16_r \otimes 120_r$</td>
<td>$M_u = Y_{120}v_5$</td>
</tr>
<tr>
<td>III</td>
<td>$16_r \otimes 16_r \otimes 120_r$</td>
<td>$M_u = 3Y_{120}v_5$</td>
</tr>
</tbody>
</table>

Table V: The contributions to the mass matrices from $SO(10)$ invariant renormalizable Yukawa couplings. Different VEVs of the same $SO(10)$ Higgs multiplet carry a subscript indicating the $SU(5)$ component they belong to.

Appendix B: Structures of Mass Matrices with $SO(10)$ A_4 Symmetry

1. Renormalizable Yukawa Couplings
2. Non-renormalizable operators

Consider the generic dimension-5 operator $c_{ij} i j A \cdot B = M$, where A and B are two (possibly equal) Higgs multiplets and M is a cut-off scale. When the appropriate components of A and B acquire VEVs a and b, respectively, one generates contributions to the quark and lepton mass matrices. Such operators may arise from the exchange of a pair of vector-like matter multiplets (j) of mass M, with the superpotential given in Eq. (23). If one is interested in physics at scales much smaller than M (that is, for $a,b < M$), the pair (j) can be integrated out and one is left with the effective superpotential

$$W_{\text{eff}} = \frac{y_A y_B}{M} (A) (B)$$

The dimension-5 operators may also arise from the exchange of heavy Higgs multiplets. We do not consider this possibility, since in this case the operators involve the Yukawa coupling Y^{ij}_A, therefore they do not generate new mass matrix structures, besides those already discussed in Appendix B1.

The A_4 assignments of λ_β and (j) determine the flavour structure of the mass matrices. There are 9 possible cases listed in Table VII. The 5 cases B^0, B^0, C, C^0, D provide new flavour structures with respect to the Yukawa couplings in Table IV. Let us illustrate some new possibilities:

In the case C (and C') each entry of the mass matrix is proportional to a different pair of VEVs, therefore matrices with only one non-zero entry (row, column) can be generated choosing the appropriate VEV alignment.

In the case D, by taking the alignment $(0;a;0)$ and $(0;b;0)$ only the entries (11) and (33) are generated, with relative coefficients $(y_A^a \ y_B^b) (y_A^a \ y_B^b)$.

In the case D', by taking the alignment $(a;a;a)$ and $(b;0;0)$, only the entries 12, 13, 22, 33 are generated if $y_A^a = 0$, the 4 entries are equal.

The $SO(10)$ assignments of λ_β and (j) determine the relative contribution to the mass matrices of the different sectors. In Table VII we classify all dimension-5 operators involving representations with size 120. It is useful to recall that an $SO(10)$ adjoint Higgs multiplet 45_5 can acquire VEVs in two independent directions. In the Table we indicate with $b_1 (b_2)$ the VEV in the SU(5) singlet (adjoint) direction. Equivalently, one can write the VEV of 45_5 as a combination of a VEV b_1 in the right-handed isospin direction and a VEV b_2 in the $B-L$ direction, by using

$$b_1 = \frac{1}{5} (b_3 + 3b_5); \quad b_2 = \frac{1}{5} (b_3 + 2b_5);$$

The Clebsch-Gordan coefficients in Table VII can be derived e.g. with the help of Refs. [41, 63, 64].

For a given $SO(10)$ A_4 assignment of λ, β, λ', the contribution to the mass matrix is obtained by combining the corresponding rows of Tables VII and VIII.

Operators with dimension larger than 5 can also correct significantly fermion masses, in particular when the cut-off M is not much larger than M_{GUT}. An $SO(10)$ A_4 model which crucially relies on a dimension-6 operator was built in [19]. In this model the operator V III of Table VIII is used, with 120 replaced by a product $45_5 \ 10_5$.

\[\text{(B1)} \]
<table>
<thead>
<tr>
<th>Case</th>
<th>A_4 operator</th>
<th>Mass matrix structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$(3\epsilon , 1_{\epsilon})$</td>
<td>$y_A y_B , \text{diag}(1,1;\frac{a}{M})$</td>
</tr>
<tr>
<td>A'</td>
<td>$(3\epsilon , 1_{\epsilon}')(3 \epsilon , 1_{\epsilon})$</td>
<td>$y_A' y_B' , \text{diag}(1,1;\frac{a}{M})$</td>
</tr>
<tr>
<td>A''</td>
<td>$(3\epsilon , 1_{\epsilon})$</td>
<td>$y_A'y_B' , \text{diag}(1,1;\frac{a}{M})$</td>
</tr>
<tr>
<td>B</td>
<td>$(3\epsilon , 3_{\epsilon})$</td>
<td>$y_A y_B$ $\begin{pmatrix} 0 & a_3 & a_2 \ a_3 & 0 & a_1 \ a_2 & a_1 & 0 \end{pmatrix} + y_A y_B$ $\begin{pmatrix} 0 & a_3 & a_2 \ a_3 & 0 & a_1 \ a_2 & a_1 & 0 \end{pmatrix}$ $\frac{b}{M}$</td>
</tr>
<tr>
<td>B'</td>
<td>$(3\epsilon , 3_{\epsilon})(3 \epsilon , 1_{\epsilon})$</td>
<td>$y_A'y_B'$ $\begin{pmatrix} 0 & a_3 & a_2 \ a_3 & 0 & a_1 \ a_2 & a_1 & 0 \end{pmatrix} + y_A'y_B'$ $\begin{pmatrix} 0 & a_3 & a_2 \ a_3 & 0 & a_1 \ a_2 & a_1 & 0 \end{pmatrix}$ $\frac{b}{M}$</td>
</tr>
<tr>
<td>B''</td>
<td>$(3\epsilon , 3_{\epsilon})$</td>
<td>$y_A'y_B'$ $\begin{pmatrix} 0 & a_3 & a_2 \ a_3 & 0 & a_1 \ a_2 & a_1 & 0 \end{pmatrix} + y_A'y_B'$ $\begin{pmatrix} 0 & a_3 & a_2 \ a_3 & 0 & a_1 \ a_2 & a_1 & 0 \end{pmatrix}$ $\frac{b}{M}$</td>
</tr>
<tr>
<td>C</td>
<td>$(3\epsilon , 3_{\epsilon})$</td>
<td>$y_A y_B$ $\begin{pmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \ a_2 b_1 & a_2 b_2 & a_2 b_3 \ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{pmatrix}$ $\frac{1}{M}$</td>
</tr>
<tr>
<td>C'</td>
<td>$(3\epsilon , 3_{\epsilon})(3 \epsilon , 3_{\epsilon})$</td>
<td>$y_A'y_B'$ $\begin{pmatrix} a_1 b_1 & a_1 b_2 & a_1 b_3 \ a_2 b_1 & a_2 b_2 & a_2 b_3 \ a_3 b_1 & a_3 b_2 & a_3 b_3 \end{pmatrix}$ $\frac{1}{M}$</td>
</tr>
<tr>
<td>D</td>
<td>$(3\epsilon , 3_{\epsilon})$</td>
<td>$y_A y_B$ $\begin{pmatrix} a_1 b_1 + a_1 b_2 & a_1 b_3 & a_1 b_2 + a_1 b_3 \ a_2 b_1 & a_2 b_2 + a_1 b_2 & a_2 b_3 + a_1 b_3 \ a_3 b_1 & a_3 b_2 + a_1 b_2 & a_3 b_3 + a_1 b_3 \end{pmatrix}$ $\frac{1}{M}$</td>
</tr>
</tbody>
</table>

Table V: The A_4 flavour structures arising from dim-5 operators, denoted as in Eq. (61). In the cases A, A', A'', C and D one may identify both the two Higgs multiplets, A, A', and the pair of messengers, A, A'. If these identifications are made, one has to take $y_A \, y_B$ (with possible superscripts understood).

TABLE V III: The contributions to the mass matrices from $SO(10)$-invariant $d_5 - 5$ operators, defined as in Eq. (11.3). Here we introduced $K_{\chi\alpha}\chi_{\alpha\beta}\neq M$ and $K_{\alpha}(K + K^T) = 2$. This list exhausts all possibilities with χ, β, α, and α' and in representations with size 120. Different VEVs of the same $SO(10)$ Higgs multiplet carry a subscript indicating the $SU(5)$ component they belong to.

[20] I. de M. de M.
[38] Y. Lin (2008), 0804.2867.