Electromagnetic form factor via Bethe-Salpeter amplitude in Minkowski space

J. Carbonell, V. A. Karmanov, and M. M. angin-Bignet

Laboratoire de Physique Subatomique et Cosmologie, 53 avenue des Arts, 38026 Grenoble, France
Lebedev Physical Institute, Leningrad Prospect 53, 119991 Moscow, Russia

Abstract. For a relativistic system of two scalar particles, we need the Bethe-Salpeter amplitude in Minkowski space and use it to compute the electromagnetic form factor. The comparison with Euclidean space calculation shows that the Wick rotation in the form factor integral induces errors which increase with the momentum transfer Q^2. At JLab domain ($Q^2 = 10 GeV^2 - c^2$), they are about 30%. Static approximation results in an additional and more significant error. On the contrary, the form factor calculated in light-front dynamics is almost indistinguishable from the Minkowski space one.

1 Introduction

The Bethe-Salpeter (BS) equation [1] provides a relativistic framework for a relativistic treatment of few-body systems. It has been extensively studied in the literature (see [2] for a review) and used to obtain relativistic descriptions of two-body bound and scattering states.

BS equation is naturally formulated in the Minkowski representation. In Minkowski space, for two spinless particles, it reads:

$$M(k;p) = \sum_{\lambda \mu} \frac{\lambda^2}{Z} \int \frac{d^4k^0}{(2\pi)^4} \frac{i}{k^0} K_{M}(k,k^0;p) \frac{\lambda(k,k^0;p)}{\lambda(k^0;p)}$$

(1)

The interaction kernel K_M is given by an irreducible Feynman diagram. Any sum of them is an approximation of the interaction Lagrangian of the theory under consideration. Most of works were done in the ladder approximation, that is restricting the interaction kernel to its lowest order exchanges. Several researches (in particular [3]) indicate that the higher order kernels, usually not incorporated in the BS equation, give a significant contribution to the two-body binding energy. Studies of these contributions, step by step, in the BS framework would be of indubitable interest.

Until very recently, the BS equation had been solved only in the Euclidean space, i.e., after performing a Wick rotation [4]. In order to remove the singularities due to the free propagators, the validity of Wick rotation has been proven in [3] for the ladder kernel. For higher order kernels (e.g., for the cross box) the possibility of Wick rotation is less clear, since one deals with the "partially Euclidean" BS amplitude, in which the relative energy $k_0 = k_4$ is imaginary whereas the total energy p_0 remains real. This "partially Euclidean" transformation is a subtle point to be checked more carefully. We will see below that it is valid also for the cross-ladder kernel. Then the Euclidean BS equation in the rest frame provides explicitly the same binding energy as the Minkowski one.

If we are interested not only in the binding energy but also in the electromagnetic (EM) form factors, the Euclidean BS amplitude in the rest frame is not enough. On one hand, when computing the integral for the form factor, the rotated contour crosses singularities of the integrand. So, the result is not reduced to the naive replacement $k_0 = k_4$ which transforms the Minkowski BS amplitude into the Euclidean one. On the other hand, form factors for non-zero momentum transfer involve the BS amplitude for non-zero total momentum. This amplitude can be obtained from the rest frame by a boost, but the parameters of this boost for real p and imaginary k_0 are complex. This requires the knowledge of the BS amplitude in the full complex plane. The continuation of the Euclidean amplitude from real axis to the complex plane is numerically very unstable and can hardly be done in practice. Instead of it, the BS amplitude in the complex plane can be found by solving the equation for complex arguments. However, the equation in the complex plane is no longer Euclidean nor Minkowski skeline and it is actually more complicated than the equation on the real axis. This difficulty is avoided in the so called static approximation [5], which makes use of the Euclidean BS amplitude only but brings an additional error increasing with the momentum transfer.

These problems disappear if one expresses the form factor through the Minkowski BS amplitude. For the lad-
and calculate the integral, we nd

\[m(kp) = \int_{\mathbb{R}^4} \frac{Z_1 Z_1}{(z + kp)^2} \, d^4z \, d^4p \]

(2)

The weight function \(g(z) \) is a form factor function, which is commonly used in scattering theory. For example, if \(z \) is set to 1, and the integral is calculated, we nd

\[m(kp) = \int_{\mathbb{R}^4} \frac{1}{(z + kp)^2} \, d^4z \, d^4p \]

(2)

This integral represents the form factor function \(g(z) \). The form factor function is a measure of the interaction between the system and the incident particles. The integral is used to calculate the form factor function, which is then used in the calculation of the scattering amplitude.

The form factor function \(g(z) \) is defined as

\[g(z) = \int_{\mathbb{R}^4} \frac{1}{(z + kp)^2} \, d^4z \, d^4p \]

(2)

where \(z \) is the momentum of the incident particle, \(k \) is the momentum of the scattered particle, and \(p \) is the momentum of the exchanged particle. The integral is taken over all possible momenta of the exchanged particle.

In the case of the ladder kernel, the BS equation in Minkowski space was solved in [6]. For separable interactions, an approach in Minkowski space was developed and applied to the nucleon-nucleon system in [7]. In [8], the effect of the cross-ladder graphs in the BS framework was estimated with the kernel represented through a dispersion relation.

Recently, a general method to calculate the BS amplitude has been developed [9]. This method is valid for any kernel, given Feynman graphs. In the case of spinless particles, it was tested for the ladder and cross-ladder kernels [10].

Having found the form factor function, we can calculate EM form factor without any approximation. This allows us to check the validity of Wi"ck rotation in the form factor integral, the accuracy of the static approximation and, in addition, to make a comparison with light-front dynamics (LFD) calculations. This is the aim of the present study. A description of these results, without any derivation, can be found in [11].

This article is organized as follows. In sect. 2 we briefly describe the method [3] for solving the BS equation in Minkowski space and give new validity tests. In sect. 3 the Minkowski space calculation of form factor is presented. In sect. 4 the analogous Euclidean space calculation is carried out, including its static approximation. In sect. 5 the form factor in the LFD framework is calculated. The comparison of numerical calculations performed in the different approximations considered in this work is given in sect. 6. Finally, some concluding remarks are presented in sect. 7.

2 The Method

A consistent description of the Minkowski space BS amplitudes is found in terms of the Nakanishi integral representation [2, 12]:

\[m(kp) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

The weight function \(g(z) \) itself is not singular, whereas the singularities of the BS amplitudes are fully reproduced by this integral. For example, if we set \(z = 1 \) and calculate the integral, we nd

\[m(kp) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

where the product of two free propagators in [11], \(m \) in the form [2] is substituted into the BS equation [12] and after some analytical transformations [9], one obtains

\[m(kp) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

This integral represents the form factor function \(g(z) \). The form factor function is a measure of the interaction between the system and the incident particles. The integral is taken over all possible momenta of the exchanged particle.

The weight function \(g(z) \) is defined as

\[g(z) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

where \(z \) is the momentum of the incident particle, \(k \) is the momentum of the scattered particle, and \(p \) is the momentum of the exchanged particle. The integral is taken over all possible momenta of the exchanged particle.

In the case of the ladder kernel, the BS equation in Minkowski space was solved in [6]. For separable interactions, an approach in Minkowski space was developed and applied to the nucleon-nucleon system in [7]. In [8], the effect of the cross-ladder graphs in the BS framework was estimated with the kernel represented through a dispersion relation.

Recently, a general method to calculate the BS amplitude has been developed [9]. This method is valid for any kernel, given Feynman graphs. In the case of spinless particles, it was tested for the ladder and cross-ladder kernels [10].

Having found the form factor function, we can calculate EM form factor without any approximation. This allows us to check the validity of Wi"ck rotation in the form factor integral, the accuracy of the static approximation and, in addition, to make a comparison with light-front dynamics (LFD) calculations. This is the aim of the present study. A description of these results, without any derivation, can be found in [11].

This article is organized as follows. In sect. 2 we briefly describe the method [3] for solving the BS equation in Minkowski space and give new validity tests. In sect. 3 the Minkowski space calculation of form factor is presented. In sect. 4 the analogous Euclidean space calculation is carried out, including its static approximation. In sect. 5 the form factor in the LFD framework is calculated. The comparison of numerical calculations performed in the different approximations considered in this work is given in sect. 6. Finally, some concluding remarks are presented in sect. 7.

2 The Method

A consistent description of the Minkowski space BS amplitudes is found in terms of the Nakanishi integral representation [2, 12]:

\[m(kp) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

The weight function \(g(z) \) itself is not singular, whereas the singularities of the BS amplitudes are fully reproduced by this integral. For example, if we set \(z = 1 \) and calculate the integral, we nd

\[m(kp) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

where the product of two free propagators in [11], \(m \) in the form [2] is substituted into the BS equation [12] and after some analytical transformations [9], one obtains

\[m(kp) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

This integral represents the form factor function \(g(z) \). The form factor function is a measure of the interaction between the system and the incident particles. The integral is taken over all possible momenta of the exchanged particle.

The weight function \(g(z) \) is defined as

\[g(z) = \int_0^\infty dz \left[\frac{Z_1 Z_1}{z} \right] \]

(2)

where \(z \) is the momentum of the incident particle, \(k \) is the momentum of the scattered particle, and \(p \) is the momentum of the exchanged particle. The integral is taken over all possible momenta of the exchanged particle.
Table 1. Coupling constant for given values of the binding energy B calculated by the eq. (3) and by the Euclidean BS equation Φ_E for the ladder + cross-ladder (L+CL) kernel. The exchanged mass: $\ammad = 0.5$.

<table>
<thead>
<tr>
<th>B</th>
<th>0.01</th>
<th>0.05</th>
<th>0.10</th>
<th>0.20</th>
<th>0.50</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>eq. (3)</td>
<td>1.206</td>
<td>1.607</td>
<td>1.930</td>
<td>2.416</td>
<td>3.446</td>
<td>4.549</td>
</tr>
<tr>
<td>Euclid, eq. (4)</td>
<td>1.205</td>
<td>1.608</td>
<td>1.930</td>
<td>2.417</td>
<td>3.448</td>
<td>4.551</td>
</tr>
</tbody>
</table>

Fig. 1. Top: The Euclidean BS amplitude (for ladder kernel) obtained by Φ_E with $k_0 = -ik_4$, for different values of k_0 or (indistinguishable) the one calculated by direct resolution of BS equation in Euclidean space Φ_E. The exchanged mass is $\ammad = 0.5$. Bottom: The corresponding amplitude in Minkowski space, obtained in Φ_M. We use the units $m = 1$.

Fig. 2. Feynman cross ladder graph.

The latter incorporates all the higher order cross box contributions in the kernel, but not the self energy. Even at low binding energies, the ladder and cross-ladder results differ by at least 20%, this difference reaching more than a factor 2 around $B = m = 1$. On the other hand, the results obtained by Feynman-Schwinger representation depart strongly from the BS(L+CL) as soon as B is bigger than 0.05m. The cross-ladder kernel thus gives a non negligible contribution to the total mass of the system in the right direction, but a larger contribution seems to be included, due to the higher order terms. Notice however that the underlying field theory with cubic boson-boson interaction is unbounded from below [14]. This instability (for the interaction g^2) appears when in the numerator of the \ammad loops in the field self energy is included [15].

3 EM form factor via Minkowski BS amplitude

The electromagnetic vertex is shown in Fig. 3. We suppose that one of the particles is charged. By applying the Feynman rules to this graph, we get:

$$(p + p^0)^2 F_M(Q^2) = i \frac{Z \, d^4k}{(2 \pi)^3 (k^2 - m^2 + i \ammad)} (p + p^0)^2 2k$$
Fig. 4. Feynman diagram for the EM form factor.

\[\frac{1}{2} p \cdot k p + \frac{1}{2} p^0 \cdot k p^0 \begin{vmatrix} p & k & \bar{p} & \bar{k} \end{vmatrix} \]

where \((k;p) \) is the vertex function, related to the BS amplitude by:

\[\mathcal{M}(k;p) = \frac{(k;p)}{(z + k)^2 m^2 + i} \]

The electron magnetic vertex is expressed in terms of the BS amplitude by the formula:

\[(p + p^0) \mathcal{F}_M(Q^2) = 1 + \frac{d^4 k}{2} \frac{1}{(p + p^0)^2} \]

\[(p + p^0)^2 = 2k \]

\[m^2 + \frac{i}{2} p \cdot k - p \cdot k^2 \]

\[f_{\text{num}} = (6 - 5)m^2 + \frac{1}{4} (1 - u) + u \]

\[f_{\text{den}} = m^2 + \frac{1}{4} (1 - u) + u \frac{M^2}{2} (1 - z^2) \]

where \(c \) does not depend on \(k_1 \). Though the calculation of this integral by Wick rotation is standard, we explain it here in more detail, to emphasize the difference with the calculation performed using Euclidean BS amplitude, where the Wick rotation cannot be done (see sect.4 below). The integrand in (6) does not contain linear terms in \(k_0 \), but only a constant and a quadratic term. It has four poles at the values \(k_{10} = \frac{c}{2} + k_1 \). Their positions do not prevent from the counter-clockwise rotation of the integration contour. Therefore, substituting here \(k_{10} = 3k_1 \), we get, for the constant term in \(k_{10} \), the following relations:

\[Z \frac{dk_{10}^2 k_{10}^2}{(k_{10}^2 c + 1)^2} = Z \frac{21}{40 c^2} \]

Calculating similarly the integral for the quadratic term

\[Z \frac{d^4 k_{10}}{(k_{10}^2 c + 1)^2} = \frac{21}{40 c^2} \]

we obtain the following formula, which is exact for a given \(g(z) \):

\[(p + p^0)^2 \mathcal{F}_M(Q^2) = 1 + \frac{1}{2} \int_0^1 dz g(z) \]

\[f_{\text{num}} = (6 - 5)m^2 + \frac{1}{4} (1 - u) + u \]

\[f_{\text{den}} = m^2 + \frac{1}{4} (1 - u) + u \frac{M^2}{2} (1 - z^2) \]

where \(Q^2 = (p + p^0)^2 > 0 \). To simplify the formula, we use the notation:

\[= \frac{1}{2} (1 + z) + \frac{1}{2} (1 + z)^2 \]

We have also introduced in (13) the normalization factor \(N_M \), which is found from the condition \(\mathcal{F}_M(0) = 1 \).

4 EM form factor via Euclidean BS amplitude

The form factor (13) was calculated using a well justified Wick rotation in the variable \(k_{10} \), denoted by (9). As explained in sect.4, the Euclidean BS amplitude in the rest frame \(E \) (\(k_1, k_1 \)) is obtained from the Minkowski plane (see sect.4) by Wick rotation in the variable \(k_0 \). To express the form factor through \(E \) (\(k_1, k_1 \)), one should make the Wick rotation, in the variable \(k_0 \), in integral (10) (for the moment,
we ignore the fact that the BS amplitude in (5) is not in the rest frame; we will come back to this point later. We will show that, in contrast to integrals (11) and (12), the Wick rotation in (3) cannot be done without crossing singularities. Therefore the form factor cannot be expressed through the Euclidean BS amplitude exactly.

It is enough to illustrate this statement in the simplest case, with \((k; p) = 1\) and \(p^0 = p = (M; 0)\), i.e. \(Q^2 = 0\) and \(\mathbf{k} = 0\). Integral (3) then turns into:

\[
I = \int \frac{d^4k}{(2\pi)^4} \frac{2i\mathbf{k}0}{(k^2 - M^2)(k^2 - M^2 + 1)}.
\]

The rest propagator has poles at \(k = \frac{p}{m^2 + k^2 + i}\) and this does not create any problem, whereas the second factor has poles at:

\[
k_0 = M \frac{p}{m^2 + k^2 + i}.
\]

If \(k^2 < M^2 - m^2\), both poles are in the r.h.s. half plane and the pole at \(k_0 = M \frac{p}{m^2 + k^2 + i}\) prevents the \(W\) Wick rotation. The exact result for the form factor should incorporate the residue in this pole and therefore it is not reduced to the integral obtained from (6) by the naive replacement \(k_0 = \mathbf{i}k_4\). If the residue is omitted (or, in realistic cases, if the contributions of other possible singularities of \((k; p)\) crossed by the rotated contour are omitted) the result is approximate. In practice, taking into account the contributions of these unavoidable singularities is possible and, hence, the form factor calculated through the Euclidean BS amplitude is always approximate.

Shifting the variable \(k_0\) for example, \(k_0 + \frac{i}{\mathbf{p}}\), to transform the argument \(\frac{i}{\mathbf{p}}\), \(k_0\) of the BS amplitude in (6) into \(k_0\) does not help. The situation remains the same for non-trivial \((k; p)\) and for non-zero \(Q^2\).

In addition, there is another reason which does not allow to express the form factor via Euclidean BS amplitude. The latter is determined by eq. (5) in the rest frame \(p = 0\) and is related to the Minkowski one by eq. (3). However, the form factor is expressed through the BS amplitude with non-zero total momentum \(\mathbf{p}\) with which due to scattering are different in initial and final states. Hence, after Wick rotation, we need to know that:

\[
\mathbf{k}^0_f(k; k; \mathbf{p}) = \mathbf{E}^{(k; k; \mathbf{p})}; (14)
\]

which differs from the Euclidean BS amplitude \(\mathbf{E}^{(k; k; \mathbf{p})}\) in eq. (3), by non-zero value of \(p^0\). They are identical only at \(p = 0\). The boosted amplitude \(\mathbf{E}^{(k; k; \mathbf{p})}\) can be expressed through \(\mathbf{E}^{(k; k; \mathbf{p})}\), but only for complex values of its arguments \(k_4\).

Indeed, the Minkowski amplitude \(\mathbf{M}^{(k; k; \mathbf{p})}\) in r.h.s. of (14), for real \(k_4\) and for non-zero \(p^0\), can be found from the rest frame amplitude by a boost. Namely, we can take the BS amplitude \(\mathbf{M}^{(k; k; \mathbf{p})} = 0\) in the rest frame and substitute

\[
k_0 = \frac{1}{M}\left(p_0 k_0 - \mathbf{k}\right); \quad k_4 = k_0^0 + k^2 + p^0.
\]

That is:

\[
\mathbf{M}^{(k; k; \mathbf{p})} = \mathbf{M}^{(k; k; \mathbf{p})}; (15)
\]

To get the Euclidean BS amplitude, we replace here \(k_0 = k_4, k_0^0 = k_4^4, \) substitute the result in (14) and use the definition (6). Then the relation (14) has the form:

\[
\mathbf{E}^{(k; k; \mathbf{p})} = \mathbf{E}^{(k; k; \mathbf{p})};
\]

where \(\mathbf{E}^{(k; k; \mathbf{p})}\) is the Euclidean BS amplitude in the rest frame, depending however on the complex arguments.

This requires the knowledge of the Euclidean BS amplitude \(\mathbf{E}^{(k; k; \mathbf{p})}\) in the complex plane. In practice, one can solve the Euclidean BS equation for non-zero \(p^0\) for real arguments and obtain \(\mathbf{E}^{(k; k; \mathbf{p})}\) directly. These solutions for quark systems were found numerically in (16). In sect. 4.1, we will study the approximate approach.

In view of these two facts, the EM form factor can be expressed through the Euclidean BS amplitude only approximately. Below we will study the accuracy of the following two approximations.

(i) Naive Euclidean form factor. In this case, the form factor is found by the naive substitution \(k_4 = \mathbf{i}k_4\) in the Minkowski expression (3). This corresponds to an approximate \(W\) Wick rotation which disregards singularities. However, the BS amplitude in the complex plane \(\mathbf{E}^{(k; k; \mathbf{p})}\) can be found exactly, by substituting in eq. (3) the complex values (15) of boosted arguments.

(ii) Naive Euclidean form factor in the static approximation. In this case, the form factor is still found by the substitution \(k_4 = \mathbf{i}k_4\) in (3). In addition, the boosted amplitude \(\mathbf{E}^{(k; k; \mathbf{p})}\) is approximately replaced by the amplitude in the rest frame \(\mathbf{E}^{(k; k; \mathbf{p})} = 0\) \(\mathbf{E}^{(k; k; \mathbf{p})}\). Due to that, the form factor is expressed through the Euclidean BS amplitude with real arguments.

4.1 Naive Euclidean form factor

In order to obtain the naive Euclidean form factor, we start with the Minkowski space formula (3). We use the Breit frame defined as:

\[
p_0 = p; \quad p_0 = p = M^2 - p^2; \quad Q^2 = 4p^2;
\]

and shift the integration variable: \(k_0 = k_0 + \frac{i}{\mathbf{p}}\). The spatial components of eq. (3) in the Breit frame are trivially satisfied \((0 = 0)\). Taking the time component, we get:

\[
2p_0 F_M(Q^2) = \int \frac{d^4k}{(2\pi)^4} p_0 \frac{1}{2} k_0^2 + k^2 - m^2
\]

\[
(p_0 + 2k_0) M \quad k_0 - \frac{1}{2} \frac{p_0^2}{2} k_0^2 M \quad k_0 - \frac{1}{2} \frac{p_0^2}{2} k_0^2 M
\]

(16)
We simply replace: \(k_0 = ik_4 \) with real \(k_4 \), that is, we neglect the contributions of singularities crossed by the rotated contour, and we obtain:

\[
F_E^{\text{naive}}(Q^2) = \frac{Z}{2p_0(2\pi)^4} \frac{dk_4d^3k}{(p_0 + 2ik_4)}\frac{m^2 + k^2}{2} (p_0 + 2ik_4)^2
\]
(17)

where

\[
\text{boost}_{E}(k_4;k;p) \text{ is defined in (13)}.
\]

Substituting in r.h.s. of (14) the BS amplitude from eq. (2), one gets:

\[
\text{boost}_{E}(k_4;k;p) = \frac{1}{4} Z_1 Z_1 Z_1 g(z)\frac{1}{4} dz d
\]
(18)

where

\[
\text{boost}(k_4;k;p) = \text{boost}^E(k_4;k;p) = \frac{1}{2} p \cdot k \cdot p_0^0 \]

A f t e r substituting (13) in (17), the form factor

\[
F_E^{\text{naive}}(Q^2) = \frac{1}{2p_0} \frac{d^4Z}{1} \frac{dz}{1} g(z)^3 d
\]

\[
\text{f}(k_4;k;p) = \frac{k^2 + m^2 + (k_4 + 4ip_0)^2}{2ik_4 + p_0}
\]
(19)

w h i t h

\[
D = A \cdot k \cdot l + z - \frac{1}{4} (l + 2z)p^2 \quad \text{ik}_4p_0z \quad i
\]

\[
A = + m^2 \frac{1}{4} M^2 + k_4^2 + k^2
\]
(20)

and \(p_0 = \frac{M^2 + p^2}{2} \cdot D_0 \cdot A_0 \) are obtained from \(D; A \) by the replacement \(l = 1, z = 0 \). The normalization factor \(N_E^{\text{naive}} \) is again found from the condition \(F_E^{\text{naive}}(0) = 1 \).

L i k e M i n k o w s k i B S amplitude, we can nd the light-front wave function

\[
(k_4; p) = (\frac{D}{\sqrt{p^2}})^{Z+1} Z_1 (1 + p) \quad : (23)
\]

w h e r e \(k \) is a four-vector with \(k^2 = 0 \), determining the orientation of the light-front plane. The perp com ponents of vectors, which appear below, are determined relative to the di rection . R elation (23) is independent of any model. Substituting (2) into (23), we nd the two-body light-front wave function:

\[
(k_4; p) = \frac{1}{4} \frac{Z_1 (1 + x)g(z; 1 + 2x)}{x(1 + x)(1 + x)M^2}
\]
(24)

\[
\text{(we used that } Q^2 = 4p^2 \text{). Since } m^2 \frac{1}{4} M^2 \text{ is positive, } D \text{ is always positive too if}
\]

\[
Q^2 < 4(4m^2 \cdot M^2)
\]
(21)

If \(Q^2 > 4(4m^2 \cdot M^2) \), \(D \) crosses zero for some particular values of \(p \) and \(k \). This singularity is, of course, integrable (the form factor is always finite), but it is a source of numerical instability.
The form factor is expressed through this wave function as (see e.g. [7]):

\[F_{LFD}(Q^2) = \frac{1}{(2\pi)^3} \int d^3k \frac{k_\perp x}{xQ^2} \hat{a}^2 k_\parallel dx \int_0^1 dx \]

where \(Q^2 = Q^2 \). Substituting in (25) the wave function \((k_\perp x) \) determined by eq. (23) and using the formula

\[\frac{1}{a^2 b^3} = \int_0^1 \frac{6u(1-u)du}{au + b(1-u)} \]

we can easily integrate over \(k_\perp \) and write the form factor as:

\[F_{LFD}(Q^2) = \frac{1}{2} \int_0^1 dx \int_0^1 du \left[(1-u)^2 + u(1-u)Q^2 \right] \]

\[\times (1-x)u(1-u) \hat{a}^2 dx \int_0^1 dx \int_0^1 dx \int_0^1 dx \int_0^1 dx \int_0^1 dx \]

\[\times (1-x)u(1-u)Q^2 + m^2 \times (1-x)M^2 \]

(26)

6 Numerical results

All the calculations given below have been done with the BS amplitude found for the ladder + cross ladder kernel. The constituent mass \(m = 1 \), the exchange mass \(m = 0.5 \) and the coupling constant has been adjusted to provide the binding energy \(B = 1 \).

![Fig. 5. Solid curve: form factor via Minkowski BS amplitude. Dotted curve: form factor, after Wick rotation, with boosted Euclidean BS amplitude. Dashed curve: form factor in static approximation.](image)

![Fig. 6. Form factor via Minkowski BS amplitude (solid curve) and in static approximation (dashed).](image)

7 Conclusion

We have applied the solution of the BS equation in Minkowski space, found by the method developed in [9,10], to calculate the EM form factor and to evaluate the inaccuracy of different approximations available in the literature. This method gives the BS amplitudes both in Minkowski and Euclidean spaces as well as in the full complex plane.
We presented two additional validity tests of this method and demonstrated that it gives the same Euclidean BS amplitude as the one found by directly solving equation (4). For the ladder and ladder + cross ladder kernel, it gives the same binding energy.

We calculated the electromagnetic form factor exactly, via Minkowski space BS amplitude. To express it through the Euclidean solution, one should carry out the Wick rotation, which, however, requires to incorporate the contributions of the singularities, crossed by the rotating integration contour. In the naive Euclidean form factor, they are omitted. In addition, after Wick rotation, the Euclidean BS amplitude in a moving reference frame (i.e., boosted BS amplitude) is expressed through the rest frame one, depending on complex arguments. By our method, we would the BS amplitude in complex plane and analyze the error resulting from naive Wick rotation. The error increases with momentum transfer and at \(Q^2 \approx 10 m^2 \) ("JLab domain") it is about 30%. In the static approximation, the error becomes larger, so that at \(Q^2 \approx 10 m^2 \) the Minkowski- and static-approximation form factors diverge by one order of magnitude. The three form factors (the exact one from Minkowski space BS amplitude, the Euclidean boosted one and in static approximation are found to be close to each other (within a few percent) only at relatively small momentum transfer \(Q^2 \lesssim m^2 \).

The form factors calculated using the Minkowski space BS amplitude and the light-front wave function coincide with each other with very high accuracy. They are almost indistinguishable.

Note that, in contrast to the Minkowski space BS amplitude, the light-front wave function is not singular and can be found directly, from the corresponding 3D equation (17), without using any BS form factor and eq. (24). This advantage, together with a more accurate result for the form factor (see graph), is one of the reasons which makes the application of the light-front approach to the EM form factor rather attractive.

The system of spinless particles considered in this work, provides a simple model giving a lower limit of different approximations to the form factor. One can expect that incorporating spin, these errors would increase.

Acknowledgement

One of the authors (VAK) is grateful for the warm hospitality of the theoretical physics group of the Laboratoire de Physique Subatomique et Cosmologie, Grenoble, France, where part of the present work was performed.

References
