Avoiding the blue spectrum and the ne-tuning of initial conditions in hybrid inflation

Sebastian Clesse and Jonathan Rocher

1 Service de Physique Théorique, CP 225, Université Libre de Bruxelles, Bât du Triomphe, 1050 Brussels, Belgium
2 Center for Particle Physics and Phenomenology, Louvain University, 2 chemin du cyclotron, 1348 Louvain-la-Neuve, Belgium

(Dated: April 24, 2013)

Hybrid in inflation faces two well-known problems: the blue spectrum of the non-supersymmetric version of the model and the ne-tuning of the initial conditions of the fields leading to sufficient in inflation to account for the standard cosmological problems. They are investigated by studying the exact two-field dynamics instead of assuming slow-roll. When the field values are restricted to be less than the reduced Planck mass, a non-negligible part of the initial condition space (around 15% depending on potential parameters) leads to successful inflation. Most of it is located outside the usual inflation valley and organized in continuous patterns instead of being isolated as previously found. Their existence is explained and their properties are studied. This shows that no excessive ne-tuning is required for successful hybrid inflation. Moreover, by extending the initial condition space to Planckian-like or super-Planckian values, inflation becomes generically sufficiently long and can produce a red-tilted scalar power spectrum due to slow-roll violations. The robustness of these properties is confirmed by conducting our analysis on three other models of hybrid-type in inflation in various frameworks: “smooth” and “shifted” in SUSY and SUGRA, and “radion assisted” gauge inflation. A high percentage of successful inflation for smooth hybrid inflation (up to 80%) is observed.

PACS numbers: 98.80.Cq
Keywords: Hybrid inflation, Spectral index, Initial conditions

I. INTRODUCTION

For almost a decade, the cosmic microwave background data have supported a cosmological concordance model, in which inflation [1,2,3,4,5], an early phase of accelerated expansion, is the favored explanation for the origin of the primordial fluctuations[1]. For more than 25 years, many models of inflation have been proposed, from toy models to more realistic models based on various high energy physics frameworks [6,7,8]. The incoming observation of cosmological data has however started to discriminate among the models. In particular, the last release of the WMAP 5-year data [12] favored a red tilted scalar power spectrum.

If some single-field models are still able to reproduce the current data, the presence of multiple scalar fields in all the high energy physics frameworks proposed today (Higgs fields in Grand Unified Theories, superpartners in Supersymmetry, moduli in string theory) makes it hard to imagine that the inflaton field is not connected to any other scalars. The simplest (and yet most motivated) known example of multi-field inflation is the hybrid one, which has been introduced as an alternative way to end inflation and could be realized for sub-Planckian field values unlike chaotic models. The key idea is to couple the inflaton field to a Higgs-like field which ends inflation by acquiring a non-vanishing Vacuum Expectation Value (vEV). This model could be considered as realistic if it emplaying a Higgs-like field and an extra singlet of some minimal extension of the Standard Model of particle physics. It also represents a new model of inflation in other frameworks. Indeed, hybrid-type models of inflation have been embedded in various frameworks: in extended supersymmetric and supergravity [15,16,17,18], in Grand Unified Theories [19,20], or various extra-dimensional theories [21,22,23,24].

When confronting the original hybrid inflation to the CMB data, it is however well known [8] that the power spectrum tilt is blue which is now disfavored. This is only valid when slow-roll is assumed and when the vacuum energy density dominates the potential in the other case, the potential becomes equivalent to a chaotic model. In this paper, we illustrate these properties and study the predictions for the spectral index of the model using the exact field dynamics. We extend a new way to generate a red-tilted spectrum due to non-trivial effects of the violation of slow-roll, giving the two possible conditions on the parameters of the potential to generate a red spectrum of perturbations and discuss the field values that these conditions require.

Several fundamental questions about initial conditions for inflation are still open (see for example [25,26,27,28,29,30]). In this paper, we will not address the important problem of spatial homogeneity of the fields [29].
and we will assume that the eld values do not enter the self-reproducing in ationary regime [28]. Even when restricting to the classical approximation, the existence of a netuning on the initial values of the elds was found, for hybrid in ation [29,33,35]. A more opposite conclusion has been obtained [24] for the s ooth hybrid in ation model. We will comment on this model at section 4.1. The space of initial conditions is described by regions in the plane (i ;), where i and i denote the initial values of the in ation and the waterfall eld respectively. By netuning of the initial conditions, one m eans that the regions leading to success (60 e-folds or more) in ation have been found to be composed [24,51] of an extremely thin band around i = 0 and a few apparently random points in the rest of the plane. Uncertainties remain on whether these points are of null m ean [31] or not [29]. This thin band is also considered as netuned because i has to be close to 0 that any quantum fluctuations would shift its value outside the region of success [29]. This would be an important problem for hybrid-type in ation because it means that these models would not easily be the natural outcome of some pre-in ationary era (see however [33]).

Several papers have proposed some solutions to the netuning problem. It has been proposed to replicate m any times identically the in ation sector [31], even though no m otivations have been proposed for this replication. A similar idea had been employed to construct the N- in ation model [24], but the replication in this context is not m ore natural [35]. It has been also proposed [31,39] to embed hybrid in ation into a brane de scription. The induced modi cations to the Friedmann-Lemaitre equations provide additional friction in the evolution of scalar elds. Thus slow rolling is favored and m ore of the initial condition space gives rise to successful in ation. This friction can also be explicitly played by dissipative e cts [39], when couplings between the in ation and the waterfall eld with a bath of other elds are assumed. Finally, it has been proposed [38] to solve this problem by accepting a short (N = 10) phase of hybrid in ation and implementing a second one responsible for the generation of the primordial fluctuations, thus solv ing the horizon problem.

However, to our knowledge, little has been proposed to explain the properties of the (un-)successful space of initial conditions: discreteness, sub-dom inance, size and limit its. In this paper, we rst show that superplanckian initial conditions always give rise to a su ciently long phase of hybrid in ation and can produce a red-tilted power spectrum without the need of any netuning. We provide a detailed analysis of the properties of the initial condition space, explain why parts of this space were thought to be discrete, and what are the eld trajectories leading to these apparently isolated points. In particular, we show that they can be viewed as the "anamorphosis" (that is a deformation in age) of the thin successful band. We also give the area of successful initial conditions in the plane (i ; i). Even when restricting the elds to sub-planckian values, we nd around 15% of successful initial conditions and we discuss the e ect of varying the di erent parameters of the potential. When going to super-planckian values, we con rm that this ratio tends to 100%.

To prove the robustness of these results, we explore the space of initial conditions for three other hybrid-type models: the supersymmetric and supergravity /sm ooth" [33,48,44] and \shifted" [42,45] models, as well as the \radion assisted" gauge in ation [24]. The rst two m odel are direct extensions of the F-term hybrid in ation [17] and are motivated by the fact that their in ationary valley is shifted away from = 0, so that any harmful topological e ects from ed during the symmetry breaking induced by would be diluted away. The last m odel is based on a hybrid-type potential even though constructed in 5D. Its main motivation resides in the fact that, by construction, the form of the potential is controlled (and thus protected) by gauge sym m etries.

Before going any further, let us discuss the physical motivations of enlarging the space of initial conditions to super-planckian values. Even though this possibility has been moderately studied in [29], most previous works [23,31] restricted their analysis to initial values of the elds under the Plank m ass. For non-supersymmetric four-dimension al theories, it was proposed in [4] that quantum gravity corrections are controlled as long as the energy density and the e ective masses are sub-planckian. In this case, the eld theories can be an appropriate framework to describe elds of planckian-like amplitude. M ore recently, several models such as natural in ation [44], or gauge in ation [45,46,43] also allow elds to be super-planckian. For example, in gauge in ation, the in ation eld is part of a gauge eld and thus the form of the potential is protected by gauge sym m etries, leaving non-renormalizable corrections highly constrained.

Let us turn to supersymmetric framework. Since uncontrolled non-renormalizable corrections to the superpotential and the Kahler potential appear, superplanckian elds are inevitably problematic for m odel constructed in the context of supersymmetric (SU SY) or supergravity (SUGRA). Global SU SY is only valid as long as all elds have an am Plank m ass uch smaller than M pl. When closer to the reduced Plank m ass (but still below), SUGRA corrections are in portant and supergravity is the correct framework to describe the m odel. Above M pl, the nonrenormalizable corrections become e dominant: the nonrenormalizability of SUGRA prevents us from using it and a UV-com plete theory is then necessary [48]. Finding and describing in ation elds with Planckian displacements in string theories is, however, possible in certain

2 Throughout this paper, we will denote the Plank m ass by m pl
G = 1.2 \times 10^{-3} \text{ GeV and the reduced Plank m ass by } M pl
(8 G) ^{1.2}.
The critical point of instability below which the potential develops non-vanishing m in a is

\[r = M - \frac{c}{m}; \]

(2)

The system then evolves toward its true minimum at \(V = 0, h = 0, \) and \(h = M \), where throughout the paper, \(h \) denotes the vacuum expectation value (vev) of a field.

In this section, we will restrict ourselves to the effective one-field approach to re-analyze the predictions of the spectral index for the generated power spectrum. This will involve solving numerically the exact field equations of motion rather than assuming slow-roll. Then, we will move on to the full two-field dynamics and study the initial conditions that lead to a clust a long in ation.

A. Effective one-field potential

To study the in ationary phase along the valley \(V = 0, h = h^2 < 1 \) and slow-roll conditions are satisfied when, for all \(n \in \{1,2\} \). For the effective hybrid potential, an analytical expression of the first and second Hubble ow parameter is easily derived in the slow-roll approximation,

\[\frac{1}{2} \frac{\dot{V}}{V} = \frac{1}{4} \left(\frac{m_{pl}}{M^2} \right)^2 \frac{1}{[1 + (\nu)^{2}]^{3}}; \]

(8)

It is clear from these expressions that the slow-roll conditions are satisfied for large field values. As illustrated in Fig. 1, Eq. (8) suggests that two phases of inflation can take place. A first phase at low values of the field, and a second phase at small values. These phases are separated by a maximum of \(1(\nu) \), reached at \(\nu = \nu_{\text{max}} \),
and at which \(z() \) changes its sign. In the slow-roll approximation \(\ma = \). However, around \(\ma \), and for sufficiently small values of \(\mu \), slow-roll conditions can be violated, as it is illustrated by the dashed line in Fig. 4. Thus a resolution of the exact equations of motion for the eld is required to study the in uence of the transition period on the dynam ics of in ation.

1. Exact eld dynamics

The dynam ics of the one-effective hybrid in ation, without assuming slow-roll, is described by Eqs. [5] and [6] they have been integrated numerically. The parameter \(\eta \), has been computed exactly and is represented as a function of the in ation eld in Fig. 1 and compared to the analytical slow-roll expressions of Eq. [8].

![Fig. 1: First Hubble-ow parameter \(\eta \), function of the in ation eld, during its evolution started in the large eld phase, in the slow-roll approximation (red dashed and dotted lines) and from the exact dynam ics (blue solid and dot-dashed lines) The curves correspond to \(\ma \) (two top curves), \(\ma \) (two bottom curves, quasi-superimposed). For each value of \(\mu \), we observe two phases of evolution at large eld and at small eld (compared to \(\ma \)).](image)

The exact integration con rms the existence of the two regimes before and after the maximum of \(\eta \), at which the slow-roll conditions can be violated and in ation can even be interrupted (when \(\eta \) depending on the value of the parameter \(\mu \)). But there are two in portant novelities. Firstly, \(\ma \) is displaced toward smaller values in the exact treatment compared to its slow-roll value. Secondly, in the slow-roll approximation, after the peak, \(\eta() \) decreases and vanishes for vanishing eld. One may think that in ation always takes place for \(\eta < \ma \). However, exact numerical results show that this conclusion is erroneous: \(\eta \) does not necessarily become negligible when the eld vanishes (see the plain blue curve). As a consequence, in ation does not necessarily produce the last 60 e-folds in the small eld regime \(\eta < \ma \).

From Fig. 1, it is clear that the presence or not of small eld phase of in ation depend on the parameter \(\mu \) (di erence between the dashed and plain curves). In order to measure the e ciency/existence of this second phase of in ation, we have plotted in Fig. 2 the number of e-folds created between \(\ma \) and \(\eta = 0 \) as a function of \(\mu \). This shows that there exists a critical value

\[\mu \text{crit } \approx 0.52 \mu_{pl} \]

under which the number of e-folds generated after \(\ma \) is reached is marginal. In this case, the period of in ation where the observable modes become super-Hubble will always take place in the large eld phase \(\eta > \ma \) provided \(\eta > \ma \). In this case, the potential of hybrid in ation leads to a chaotic-like in ation, independently of the way in ation ends. This has important consequences for the generated spectral index.

2. Scalar spectral index

At rst order in slow-roll parameters, the spectral index of the scalar power spectrum \(P_\text{S} \) can be expressed as [2,5]

\[n_s = 1 \left(\frac{dP}{dk} \right)_{k=k_p} = 2 \left(\frac{d\ln P}{d\ln k} \right)_{k=k_p} = 2 : \]

A star \(\ast \) means that the quantity is evaluated at Hubble crossing \(\ast H = k_p k \) being a pivot scale in the range of observable modes.
One can see that almost any value of the spectral index can be accommodated within hybrid in action.

![Graph](image)

Figure 3: Spectral index n_s of the power spectrum as a function of 60, the value of the e 60 e-folds before the end of in action. This has been computed for the active hybrid potential $V = m_{pl}(\text{full line}), = 0.7 m_{pl}(\text{dotted line})$ and $= 0.4 m_{pl}(\text{dashed line})$, in the slow-roll approximation. One can see that almost any value of the spectral index can be accommodated within hybrid in action.

Recent experimental results from WMAP 5-years [12] have a best t at $n_s \text{'} = 0.96$ and disfavor a value of the scalar spectral index greater than unity at almost 95% confidence level (CL). From this observation, hybrid models have recently been considered as disfavored. Indeed, in the slow-rolling e active one- e active model, as shown at the previous section, the first 60 e-folds of inflation are realized in the small e phase characterized by a negative ϵ and a negligibly small η which induces necessarily a blue spectrum.

However, there exist two mechanisms to produce a red spectrum within the standard hybrid in action model along the valley $\epsilon = 0$. There are two ways of forcing the small e phase in action phase not to take place, either by instability or by violation of the slow-roll condition.

In both cases, the consequence is that the spectral index generated is below 1 as represented in Fig.3. Note that almost any values of the spectral index can be actually accommodated by the model, including the best t for WMAP5 data.

a. When the critical point of instability is in the large e phase. The simplest way to obtain a red spectrum within the standard hybrid in action model along the valley $\epsilon = 0$. There are two ways of forcing the small e phase in action phase not to take place, either by instability or by violation of the slow-roll condition.

In both cases, the consequence is that the spectral index generated is below 1 as represented in Fig.3. Note that almost any values of the spectral index can be actually accommodated by the model, including the best t for WMAP5 data.

When the second phase never takes place. Assuming that the initial value is in the large e phase $i < \max$, if i_{crit}, then the small e phase of inflation can never take place. This is a new way to generate a red spectrum independently of the critical value c. Indeed, an excessive velocity of the e around \max induces a violation of the (slow-roll) in action condition (see plain line of Fig.3). Thus 60 necessarily lies in the large e regime and the spectrum is red, independently of the critical value c. Notice however that even for i_{crit}, one could still start an inflationary period with i_{\max} leading to a blue-tilt power spectrum. Violation of slow-roll only prevents this period to occur after any large e phase. In this case also, this requires a large initial value of the inflation, and a realization of hybrid in action in a regime away from the usual limit.

This conclusion might reduce the appeal of the model.

B. **Exact two- e dynamics and initial conditions**

We now turn to the two- e potential given in Eq.11 to study the e dynamics without restricting to the $\epsilon = 0$ valley. In previous works, Tetradis [32], Lazarides & Vachas [20] and more recently Mendes & Liddle [33] studied the space of initial conditions of the e leading to successful/ unsuccessful in action for hybrid in action. They found that the successful regions for sub-planckian initial values are made of a very narrow band along the $\epsilon = 0$ axis (motivating the one- e approach), together with some scattered points in the unsuccessful region, which seem randomly distributed. In this section, we explore a larger space of initial conditions and extend previous studies to super-planckian initial values. We show that these different classes of successful trajectories in e space can be de ned, one of them explaining the origin and the properties of the previously found isolated points. Finally, we quantify the amount of re-tuning of the model by computing the ratio of successful/unsuccessful area and study the effect of varying the parameters of the potential on our results.
1. Exact two-field dynamics

For two homogeneous scalar fields and , the Friedmann-Lemaître equations take the form

\[H^2 = \frac{8}{3m^2_{\text{pl}}} \left(\frac{1}{2} a^2 \right) + \frac{1}{2} + V (a) ; \]

\[\frac{a}{a} = \frac{8}{3m^2_{\text{pl}}} \left(\frac{1}{2} a^2 \right) + \frac{1}{2} + V (a) ; \]

while the equations of Klein-Gordon for these scalar fields read

\[+ 3H \rightarrow \frac{\partial V (a)}{\partial a} = 0 ; \]

\[+ 3H \rightarrow \frac{\partial V (a)}{\partial a} = 0 ; \] (14)

For the numerical integration, instead of using the scale factor and its time derivative as integration variables, it is more convenient to use the number of e-folds realized from the beginning of inflation. \[N (t) = \ln \left[a(t)/a_1 \right] \] and its first derivative - the Hubble parameter.

2. Classical dynamics and stochastic effects

Considering large values for the fields can induce stochastic (quantum) effects to the field dynamics, described in this paper as purely classical [57,58]. Since we also consider super-Planckian field values, it is important to check that for such values, the dynamics is still dominated by the classical limit. The stochastic effects in the full two-field potential have not yet been studied but the stochastic effects should be very limited. Indeed, the dynamics is found to be fast-rolling at the beginning, during which the classical limit will clearly dominate and then slow-roll in the inflationary valley. When slow-roll is realized, it is possible to evaluate at what field values the stochastic effects become relevant by comparing the classical field fluctuations and the quantum field fluctuations, during a Hubble time. In the valley = 0, we obtain

\[\frac{H^2}{2} - \frac{m^2_{\text{pl}}V}{V} + \frac{1}{2} \left(\frac{1}{m^2_{\text{pl}}} - \frac{3}{4} m^2 + \frac{1}{4} m \right) : \] (15)

Since the values of \[m \] used in this paper are well below the Planck scale, the stochastic effects are expected to be negligible even for field values of a few Planck scale [58].

3. Exploration of the space of initial conditions

Let us now study the space of initial values [i.e. the \((i, j)\) plane] of the fields that lead to successful \(N_{\text{e}}\) ation. For simplicity, we have assumed initial velocities to be vanishing \(-i = j = 0\) as their effect can always be mimicked by starting in a different point with vanishing velocities. Then for each initial conditions, we have integrated the equations of motion and computed the field values and the number of e-folds as a function of time. Choosing to end simulations when inflation is violated would not allow us to study trajectories where in inflation is transiently interrupted as it may happen (see Sec. [11-13]). Therefore, we chose to end the numerical integration when the trajectory is sure to be trapped by one of the two global minima, because at that point, no more e-folds will be produced. This is realized when the sum of the kinetic and potential energy of the fields is equal to the height of the potential barrier between the vacua, i.e. when

\[M^4 = \frac{1}{2} \left(\frac{1}{2} a^2 \right) + \frac{1}{2} + V (a) : \] (16)

We have defined \(\text{success in inflation}\) as a period that lasts at least for 60 e-folds.

Let us mention that our aim here is not to provide the best fit to the cosmic data but to explore the space of initial conditions that lead to successful inflation within the hybrid class of models. However, notice that the COBE normalization can always be achieved by a re-scaling of the potential without affecting the inflation dynamics.

In Fig. 4 the grid of initial values is presented for the original hybrid model of Eq. (1). For values of parameters comparable to those used in [29] and [31], we have put in evidence three types of trajectories in the e-fold space to obtain successful inflation. An example of each has been represented in Fig. 3 and identified by a letter A, B, or C whereas an example of a failed trajectory is identified by a D. The details of these trajectories are represented in Fig. 5 where the values of the e-folds for three trajectories are plotted as a function of the number of e-folds.

A more detailed description of the more interesting type-C trajectory is represented separately in Fig. 6. Each trajectory is described and explained below.

a. Trajectory A: along the valley. This region of success in inflation corresponds to a narrow band along the

\[N_{\text{horizon}} = \frac{3}{4} \ln \left(10^4 \right) \text{G(eV)} + \frac{1}{2} \ln \left(v_{\text{end}}^{1/4} - v_{\text{end}}^{1/4} \right) ; \]

Here we will assume that in inflation takes place at high energy, close to the GUT scale.

Note that the sum of e-folds required to solve the horizon problem actually depends on the energy at which in inflation is realized or the reheating temperature [11-14].

\[N_{\text{horizon}} = \ln \left(10^{4 \text{GeV}} \right) v_{\text{end}}^{1/4} - v_{\text{end}}^{1/4} ; \]

Here we will assume that in inflation takes place at high energy, close to the GUT scale.
Figure 4: Grid of initial conditions leading to successful (white regions) and unsuccessful inflation (colored region), for the original hybrid in which $\theta = 0, m = 10^{-6} \text{m}_{\text{pl}}$ and $M = 0.03 \text{m}_{\text{pl}}$. The color code denotes the number of e-folds realized. Three typical successful trajectories (in the valley (A), radial (B), and from an isolated point (C)) are added as well as an unsuccessful trajectory (point D). Also plotted are the iso-curves of β, in the slow-roll approximation, for $\beta = 0.022, 0.02, 0.0167$ and 0.015 (from left to right).

Figure 5: Evolution of the e-folds (dashed lines) and (plain lines) with the number of e-folds realized, for the trajectories A, B, and D (from top to bottom) as represented in Figure 4. The more interesting type-C trajectory is represented in Figure 6 below.
is a linear function. From a given set of initial conditions \((i; \dot{i})\), the total number of e-folds generated depends almost only on the value \(\dot{h}_{\text{in}}\) at which the oscillations become dampened and the slow-roll starts in the valley. The reason is that a type-A trajectory rolls faster before \(\dot{h}_{\text{in}}\) and thus doesn’t generate any e-folds before the valley. As a consequence, the limit between successful and unsuccessful regions necessarily follows the unique trajectory for which \(\dot{h}_{\text{in}}\) becomes large enough to generate exactly 60 e-folds by slow-roll in the valley. As a result, using the slow-roll approximation, the slope of the limit is simply given by the gradient of the potential

\[
\frac{\partial v(i; \dot{i})}{\partial v(i; \dot{i})} = 0
\]

where the approximate expression is valid when mass parameters are small \(\text{max}(m \mu = 0)\). Given one point of the transition line, for example \((1; 1)\), we can check that the slope of the limit is \(\text{0.5}\) for the parameters of Fig.4.

D. Trajectory B: radial. Enlarging the space of initial conditions to super-planckian values shows another region where successful inflation is automatic. It is observed for super-planckian initial values of the auxiliary eikons beyond a few Planck masses, in a way reminiscent of the chaotic scenario. In this case, the trajectory is called radial, and the 60 e-folds are realized mostly before reaching the valley or the global minima.

From the\(\text{-}z\text{axis to larger values of }i\), the number of e-folds realized increases slowly (see Fig.4). Therefore, this limit between the two regions is smooth, unlike the limit with A-type trajectories described at the previous paragraph. Increasing \(i\), the critical value of \(i\) leading to enough in inflation decreases slowly, because in inflation the trajectory longer. To describe this limit in more precisely, we have plotted the iso-curves of \(i\) in Fig.3) in the two-eikons slow-roll approximation. We can see that this limit follows one of these iso-curves, namely \(i^\text{c} = 0.0167\). This observation can be understood using a kinematic analogy as long as \(\text{2} \text{ is negligible. This critical value of }i\text{ can be computed analytically by studying the easiest trajectory of this kind at }i = 0\).

In this case, the effective potential is dominated by \(\text{4}\), and the critical \(i\) is obtained by requiring a phase of inflation of exactly \(N_{\text{osc}} = 60\) e-folds. We nd

\[
\kappa = \frac{m^2_p i}{N_{\text{osc}}} = \frac{437m_p i}{N_{\text{osc}}}
\]

At this value, the corresponding \(\text{1st Hubble-}\text{-on parameter reads}

\[
i^\text{c} = \frac{1}{N_{\text{osc}}} = 0.0167;
\]

FIG. 6: M ore detailed description of the\(\text{-}eik\text{values during a type-C trajectory as de ned in Fig.4.}\) This is a zoom of the trajectory close to the bottom of the potential. One can notice that the system quickly rolls down while few e-folds are produced before \(\text{"accidently"}\) climbing up the valley. Then it starts a second e cient phase of inflation like a type-A trajectory.

c. Trajectory C and D: isolated successful points and unsuccessful points. Previous works \([23, 31]\) pointed out the presence of unexplained successful isolated points in the central unsuccessful region. In this paragraph, we justify their existence, study their properties and quantify the area they occupy.

Let us first describe the D-type trajectories that are unsuccessful. As shown in Fig.6, in these cases, the system quickly rolls down the potential to one of the global minima of the potential during which only a few e-folds are created. What is then the di erence between the D- and the C-type trajectory plotted in Fig.4? The eikons roll towards the bottom of the potential with a small kinetic energy and, after some oscillations close to the bottom of the potential, the momentum is by chance oriented toward the in ationary valley. Thus the system goes up the valley until it loses its kinetic energy and then starts slow-rolling back down the same valley producing in ation with a large number of e-folds. Note that there are more of these points in a band under the limit of type-A trajectories. This is because, at higher \(i\), there are more chances to nd a trajectory where the momentum at the bottom of the potential is oriented toward the in ationary valley.

High resolution grids and zoom on peculiar regions of Fig.4 show that these apparently random isolated points from actually a complex structure. Some of it, for small initial conditions, is visible in Fig.7. The points are organized in long thin lines, or crossants. The points that seem isolated actually belong to structures that a better resolution would show continuous. Some of our biggest structures can be identi ed also in \([23]\) but are not recovered in \([31]\) where only isolated points were found. This may be explained by the need of a higher resolution to resolve the structures. A detailed analysis of trajectories shows that for each continuous successful region corresponds a unique number of crossings the \(i = 0\) axis by the trajectory before climbing up and going back down the in ationary valley along the \(i = 0\) direction.

For each of these type-C trajectories, we can identify...
the point (that we will call the image) on the in-
tionary valley at which the velocities of the elds
vanish. The structure in grey can be seen as the
amorphosis of the patterns of successful in action. In this
alysis the trajectories of the light on the optic device in order
to create a meaningful image are replaced by the trajectories
of the system in eld space to create a meaningful image (in
the valley) from the apparently senseless grey patterns. This
is obtained for $M = 0.03 \, m_{pl}, \, m = 10^{-6} \, m_{pl}, \quad \phi = 1$.

\[\text{Fig. 7: Structure of the successful \textit{\{amorphosis points\} (in grey) together with their images (in black) defined by the point of the trajectory at which the velocities of the elds
vanish. The structure in grey can be seen as the \textit{amorphosis} of the patterns of successful in action in black. In this analysis the trajectories of the light on the optic device in order to create a meaningful image are replaced by the trajectories of the system in eld space to create a meaningful image (in the valley) from the apparently senseless grey patterns. This is obtained for $M = 0.03 \, m_{pl}, \, m = 10^{-6} \, m_{pl}, \quad \phi = 1$.} \]

4. Dependencies on the parameters

The grid of initial conditions, and therefore the
propoion of successful points in a given range of initial
values naturally depend on the values of the parametrs
of the potential. Three physical quantities are of interest
to study these evolutions: the width of the in action
valley, proportional to M^{-1}, its length controlled by
the critical value $c = M^{-1} = \phi$, the depth of the global
minimum of the potential given by V_0 / M^4, and the
gradient of the potential $\phi = (\phi + 0)$.

a. Evolution of the limit of A-type trajectories

As long as the mass squared m^2 is subdominant compar-
ed to 0^2, its variation does not affect the properties of
the initial condition plane. Increasing the mass above this
limit increases the velocity in the direction and
tends to spoil the slow-roll evolution in the in action
valley. As already described in the section IIIA.1,
this violation of the slow-roll conditions in the valley
poses for in action to occur in the large eld phase. In the space
of initial conditions, the narrow successfull band then
disappear together with the type-C trajectories. Finally the
unsuccessful region takes an elliptic form as represented in
Fig. 8, with a smooth transition between successful
and unsuccessful regions. The m odle becomes possible to
the sum of two chaotic in action m odles and we
recover the feature of these m odles: it is ans l unavoid-
able to have super-planckian initial values of the elds
to realize a sufficiently long in action.

b. Evolution of the amount of C-type trajectories

A similar explanation can be given to justify the absence of
isolated points for small values of 0 (see Fig. [8]). Even
though the width of the valley is larger, the potential is
then dominated by the -4 term and the -2 component of
the velocity become small. Thus the changes for the
system to climb up the valley are suppressed. For larger
values of the parameters M and θ, these isolated points also disappear, because the two minima of the potential are deeper, and there is a larger chance for the system to get trapped in them without climbing up the inflationary valley. These results are summarized in Tab. I below.

c. Quantification of successful initial conditions We end this section by quantifying what proportion of the initial condition space gives rise to inflation for hybrid inflation, for various values of the parameters, including the proportion of points in the anamorphosis. Our results are represented in Tab. I, where the quantification is not made restricting the amplitude of the fields below the reduced Planck scale. From this table, we can see that unless θ is very small, or M is close to Planckian values, the hybrid model possesses about 15% of initial conditions that leads to successful inflation. For this percentage to be translated into a probability of realizing in action, one would need a measure in the probability space. If this measure was to be at, the successful initial conditions should not be considered as fine-tuned but simply subdominant when the fields are restricted to sub-Planckian values.

From Fig. 4, it is obvious that if we don’t require that the fields are smaller than the reduced Planck mass, the proportion of successful initial conditions will tend toward 100%. Therefore, we have also realized the same quantification with the requirement $M = 10^6 m_{pl}$ and found that the percentage of successful initial conditions increase to 72% for the parameter values of Fig. 4.

III. INITIAL CONDITIONS FOR EXTENDED MODELS OF HYBRID INFLATION

In this section, we will study the properties of initial conditions leading to successful inflation for three hybrid-type models of inflation and study how generic the properties observed for the original model are. The models are the "smooth", and "shifted" hybrid inflation both in global SUSY and SUGRA, and radion in action.

A. Motivations for smooth and shifted hybrid inflation

Following the original inflation model, a supersymmetric formulation, the F-term hybrid inflation, has been proposed by [17]. In this case, the inflaton field is replaced by a superfield S, and the Higgs field is replaced by a pair of Higgs superfields; non-trivially charged under a symmetry group G whereas S is assumed to be a gauge singlet of G. The only superpotential, invariant under G and under an R-symmetry and containing only renormalizable terms, is [13]

$$W^F = S(\, M^2) :$$ (21)

5 These are assumed to belong to two complex conjugate representations.

6 This R-symmetry is a $U(1)$ symmetry under which and field have opposite charges and S and W have identical charges.
TABLE I: Percentage of successful points in grids of initial conditions, for different values of parameters, when restricting to $i_{2} = i_{1}$. The third column represents the area of the whole successful initial condition parameter space over the total surface. The fourth column represents the surface of the successful space only located in isolated points, over the total surface. This allows to visualize the importance of these isolated points. For several of these sets of values for the potential parameters, the grid of initial conditions is represented in the body of the paper. W when it is the case, the number of the frame is given in column 5.

<table>
<thead>
<tr>
<th>Model</th>
<th>Values of parameters</th>
<th>Successful points (%)</th>
<th>Anamorphosis points (%)</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid1</td>
<td>$M = 0.03m_{pl}, m = 10^{-6}m_{pl}, -0 = 1$</td>
<td>17.4</td>
<td>14.8</td>
<td>4</td>
</tr>
<tr>
<td>Hybrid2</td>
<td>$M = 0.05m_{pl}, m = 10^{-6}m_{pl}, -1, 0 = -1$</td>
<td>11.3</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Hybrid3</td>
<td>$M = 0.03m_{pl}, m = 10^{-5}m_{pl}, -1, 0 = -1$</td>
<td>17.4</td>
<td>14.8</td>
<td></td>
</tr>
<tr>
<td>Hybrid4</td>
<td>$M = 0.03m_{pl}, m = 10^{-6}m_{pl}, -0, -1 = 1$</td>
<td>15.5</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>Hybrid5</td>
<td>$M = 0.03m_{pl}, m = 10^{-6}m_{pl}, -1, 0 = -0$</td>
<td>2.8</td>
<td>< 0.1</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid6</td>
<td>$M = m = 10^{-3}m_{pl}, i_{1}, 0 = 10^{-2}$</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

It gives rise to a scalar potential similar to Eq. (1), the coupling constants and θ being replaced by γ. This potential possesses the same features with the inflationary valley along $i = 1$; this valley being destabilized when one of the superfields ϕ becomes tachyonic. The ϕ fields develop a non-vanishing vev which leads to the breaking of G. Topological defects can be produced during this breaking, depending on G. They can be cosmic strings [40] which would be in agreement with the most recent COBE data [62,63,64] provided that their scale on the COBE is subdominant [65]. But they could also be monopoles or domain walls and then be in contradiction with observations [65].

To be able to implement hybrid inflation at any symmetry breaking, it has been proposed two extensions of the H-term model: the smooth [39] and the shifted [42] hybrid in inflation. They are both based on the idea of shifting the inflationary valley away from $i = 0$. As a consequence the symmetry G is broken during or before inflation, and thus any topological defect formed during this breaking is diluted away by inflation. This is achieved by introducing non-renormalizable terms in the potential [39,42] and imposing an additional discrete symmetry for the superpotential [39].

As detailed in the introduction, if these models are considered realistic, that is if the scalar potential is assumed to be originated from SUSY or SUGRA, it is not safe to consider super-planckian fields. It can also be safe to study these models beyond super-planckian fields if they originate from other frameworks where non-renormalizable corrections are controlled or prevented.

B. Smooth Inflation

1. The potential in SUSY

Smooth inflation has been introduced by Lazarides and Panagiotakopoulos [39]. It assumes that the superpotential is invariant under a Z_{2} symmetry under which ϕ_{2} is forbidden. This forbids the i_{2} term in the F-term superpotential of Eq. (21) but allows for one non-renormalizable term $7[39]

$$ W^{m} = S \left[M^{2} + \left(\frac{M}{m} \right)^{2} \right] $$

In the context of global supersymmetry, the scalar potential reads [39]

$$ V^{m} (S; ;) = 2 \left[M^{2} + \left(\frac{M}{m} \right)^{2} \right] $$

$$ + 4 \left(\frac{M}{m} \right)^{2} \left(\frac{j^{2}}{M} + \frac{j^{2}}{M} \right) $$

where we denote by the same letter the superfields and their scalar companions. Two real scalar superfields and can be defined as the relevant components of the S field such that the ϕ fields are canonically normalized ϕ.

$$ B = 2 \text{Re}(S); \quad 2 \text{Re}(\phi) = 2 \text{Re}(\phi); \quad (24) $$

and the potential becomes [39]

$$ V^{m} (i_{2}) = 2 \left[M^{2} + \frac{4 i_{2}^{2}}{16 M_{pl}} \right] + \frac{2^{2} M^{2}}{16 M_{pl}} $$

This potential contains a at direction $= 0$, but it is a local maximum. The global minima are obtained for non-vanishing values of i_{2}: they define two distinct inflationary valleys along

$$ S = 6^{2} + 6^{4} + 4 \frac{M^{2} M^{2}}{9} $$

Note that these in inflationary valleys progressively shift away from $= 0$ as i_{2} evolves towards 0.

7 Note that our choice of setting the renormalization scale to the reduced Planck mass is arbitrary. In general, we can write $W^{m} = S \left[M^{2} + (\phi)^{2} = i_{2}^{2} \right]$, corresponding to the scale of new physics.
2. Space of initial conditions

In a previous study by Lazarkies et al. [32], an exploration of the space of initial conditions leading to superluminal action was performed, with a low resolution. This exploration led to a conclusion opposite to the one found for the non-supersymmetric hybrid action model: most of the space was found to be successful. Therefore, smooth hybrid in action seem a good laboratory to test the validity of the results we found at the previous section. We perform the exploration of the space of initial conditions, for a higher resolution, and for a larger range of initial eld values and parameter values. Imposing $i=1$, M_{pl}, we computed the proportion of successful initial conditions and the proportion of isolated successful points away from the in stationary valleys.

Our study, also extended to super-planckian values of the elds, always reveals a structure similar to that of the original model. We observe (see for e.g. Fig. 10) a narrow band of fine-tuned successful initial conditions along $i=0$, a triangular unsuccessful region, and successful areas for large initial values of one or both of the elds. An anomaly is also present, leading to isolated successful patterns in the unsuccessful region. For the values of the parameter quoted in Ref. [32], that is with a mass scale of order $10^{5} M_{pl}$, they occupy most of the space of initial condition as shown on Fig. 10. We need almost 80% of initial conditions below the reduced Planck mass to be successful.

We have also studied how this grid evolves with the parameters of the potential. We note that the amount of successful initial conditions is independent of the coupling constant (it only scales the potential or the CMB spectrum), but only depends on the mass scale M. This analysis shows a strong dependency with the value of M, the amount of successful initial conditions ranging from 15% to almost 80% when M ranges from 10^{2} and 10^{5}. For M below the GUT scale, 10^{16} GeV, the quantization of successful initial conditions is larger than 50%, providing a good mechanism to produce in action without fine-tuning of initial conditions. As a conclusion, we confirm the qualitative results of [32], and we note that they depend on the values of potential parameters. We also note that most of the successful initial conditions are isolated, that is located outside of the in stationary valleys: they form an anomalous phase in the hybrid action model. These results are summarized in the Tab. [32] at the end of this section.

3. Supergravity corrections

The smooth hybrid in action is based on a superpotential that contains a non-renormalizable term, with a cutoff scale chosen at the reduced Planck mass. In addition, in our study we consider eld values that are non-negligible compared to M_{pl}, some of them above. Therefore, to extend the domain of validity of the model, supergravity corrections (introducing corrections proportional to negative powers of M_{pl}) should be taken into account. We remind the reader that outside of the domain of validity of the model (whether in SUSY or in SUGRA), the model is still studied but considered as an effective model derived from some framework in which super-planckian eld values can safely be considered (see introduction).

Assuming supergravity with a minimal Kähler potential,

$$K = K_m = j j^2 + j j^2 + j j^2;$$ (27)

the scalar potential reads,
This potential is in agreement with [41], though all terms have here been kept since in our study, els are not necessarily small compared to the Planck mass. We observe again the inflationary and waterfall els like in Eq. (24), and we obtain the full potential in SUGRA,

\[
V_{\text{SUGRA}}^* (g; \phi) = 2 \exp \left(\frac{K_{\min}}{M_{pl}^2} \right) \sum_{m=0}^{\infty} \left(\frac{M_{pl}^2}{2M_{pl}^2 + 4 \mu^2} \right)^m \left(\frac{M^2}{16M_{pl}^2} \right)^{1/2} \left(\frac{M_{pl}^2}{16M_{pl}^2 + 4M^2 + 64\mu^2} \right)^{1/2}
\]

C. Shifted Inflation

1. The potential

The shifted inflation model, proposed by Jeannerot et al. [42], is similar to the smooth inflation model, but the additional Z_2 symmetry of smooth inflation is not imposed anymore. Thus the superpotential reads

\[
W^{\text{sh}} = S M^2 + \frac{(\phi/2)^2}{M_{pl}^2} .
\]

This gives rise to the following F-term contributions to the scalar potential, in the context of global supersymmetry

\[
V^{\text{sh}} (S; \phi) = 2 \sum_{m=0}^{\infty} \left(\frac{M_{pl}^2}{2M_{pl}^2 + 4 \mu^2} \right)^m \left(\frac{M^2}{16M_{pl}^2} \right)^{1/2} \left(\frac{M_{pl}^2}{16M_{pl}^2 + 4M^2 + 64\mu^2} \right)^{1/2}
\]

where we have used the same letter to denote the super-els and their scalar component. We can denote the relevant els and as the component of that generate the breaking of the group G. We can define the inflationary and waterfall els like in Eq. (24) so as to vanish the D-term contributions to the potential and to have canonical kinetic terms. The effective scalar potential then becomes [42],

\[
V^{\text{sh}} (\phi) = 2 \sum_{m=0}^{\infty} \left(\frac{M_{pl}^2}{2M_{pl}^2 + 4 \mu^2} \right)^m \left(\frac{M^2}{16M_{pl}^2} \right)^{1/2} \left(\frac{M_{pl}^2}{16M_{pl}^2 + 4M^2 + 64\mu^2} \right)^{1/2}
\]

In the limit of negligible μ, one recovers the same potential as for the original hybrid model with $b = 0$, that is with a valley of local minima at $\phi = 0$. As increases, two symmetric valleys appear, parallel to the central one as represented in Fig. 13.

These new inflationary valleys get closer to the central one as μ gets larger. The central valley corresponds to
FIG. 11: Cut of the logarithm of the shifted potential \(V^\text{sh}(\psi, \phi) \), at \(\psi = 2m_{pl} \), for \(M = 0 \text{m}_{pl} \), \(= 1 \), and

\(= 10^{-3} \text{m}_{pl} \) (plain line), \(= 10^{-2} \text{m}_{pl} \) (dotted line),

\(= 10^{-1} \text{m}_{pl} \) (dashed line). Notice the appearance of multiple in stationary valleys, whose number and positions depend on the parameter. They also depend on the value of \(\phi \).

FIG. 12: Grid of initial conditions leading or not to in action, for the shifted potential with \(M = 0 \text{m}_{pl} \), \(= 1 \), and \(= 10^{-3} \text{m}_{pl} \). Some trajectories in eik space have been represented to identify where local minima and maxima are.

2. Space of initial conditions

Grids of initial conditions leading or not to in action have been computed; one of them is represented in Fig. 14 for one set of parameters. It corresponds to one cut of the potential in Fig. 11 (dotted line).

For a small coupling (say of order \(10^{-3} \)), if we restrict ourselves to values of the waterfall eik smaller than \(5 \text{m}_{pl} \), we obtain a space of initial conditions similar to the original hybrid case (see Fig. 3), with a triangular shaped region of unsuccessful in action surrounded by successful regions at higher values of the eiks.

At larger values of \(\phi \), around the new stationary valley (the "shifted" one) at a positive, a second triangular shaped unsuccessful region is observed in addition. For example, for \(= 10^{-3} \text{m}_{pl} \), this shifted valley is located at \(\phi = 9 \text{m}_{pl} \) (at \(\phi = 2 \text{m}_{pl} \)). Unlike the central one, the shifted valley is too steep to generate in action when the eiks start inside it. Thus no line of successful initial conditions along the valley is observed. Success in action is only realized when starting sufficiently far from the valley, when the potential becomes closer as well, with interferences between them, as shown in Fig. 12.

If we increase \(\phi \), the shifted valley gets closer to the origin. As a consequence, the two unsuccessful regions become closer as well, with interferences between them, as shown in Fig. 12.

3. Supergavity corrections

Let's discuss, as for the m0th hybrid model, the effects of eik embedding the model in supergravity to study the robustness of our conclusions under non-renormalizable corrections. As discussed in the introduction, we remind the reader that neither supersymmetry nor supergravity is a valid framework for describing super-planckian eiks and in this regime, the models studied are considered as effective models. However, supergravity corrections allow...
to extend the domain of validity up to Planckian like values.

The supergravity corrections to the shifted potential

\[V_{\text{SUGRA}}(S; \ell) = 2 \exp \left(\frac{K_{\min}}{M_{\text{pl}}} \right)^\frac{8}{2} \]

are computed assuming again a minimal Kähler potential and we obtain,

\[M^2 \left(\frac{\phi^2}{2} \right)^2 + \frac{1}{M^2_{\text{pl}}} \left(\frac{\phi^2}{2} \right) + \frac{1}{M^2} \left(\frac{\phi^2}{2} \right) + \cdots \]

By defining the in aton and the waterfall eil to be the canonically normalized real part of the eils \(S \), and like in the SUSY case, we obtain the effective 2- eil potential,

\[V_{\text{SUGRA}} = 2 \exp \left(\frac{K_{\min}}{2M_{\text{pl}}} \right)^\frac{8}{2} \]

\[+ \frac{1}{M_{\text{pl}}} \left(\frac{\phi^2}{2} \right) + \frac{1}{M^2_{\text{pl}}} \left(\frac{\phi^2}{2} \right) + \cdots \]

These corrections are exact at large initial values of the eils the dynamics of in aton. At super-planckian initial values, the exponential term dominates and the potential become too steep for in aton to be automatically realized like in the SUSY case. However, the anamorphosis (or type-C) trajectories still exist and are still the main origin of successful initial conditions taking into account these corrections. We have computed for several sets of the parameter the percentage of successful initial conditions taking into account these corrections. We don't need significant modifications compared to the SUSY case except at large mass scale, where the steepness of the potential prevents from in aton to be successful in the valleys. These results are summarized in Tab. III.

D. Radion Assisted Gauge In ation

1. Motivations

As mentioned in the introduction, the "radion in ation" model [24] belongs to the class of gauge in ation

models [42, 43]. The main motivation of these models is to generate a sufficiently at in aton potential protected by gauge symmetries because the in aton eil is part of a gauge eil. As a consequence, it is safe to consider super-planckian values for the in aton eil. Because its potential is similar to the (smoth hybrid one, this model is also interesting to determine how generic the properties of initial conditions observed for other models are, for different types of models, originating from different high energy frameworks.

2. The potential

In the simplest version of these models, an effective 5-dimentional universe is assumed, one of the dimensions being compactified with a radius\(^6 \) \(R \). In the gauge in ation model, a gauge symmetry is assumed together with a gauge eil (\(A_5 \)). The in aton eil is proportional to the phase of a 1-loop gauge-in ation wrapped around the compact dimension = \(dx^1 A_5 \). The full in aton eil is constructed with the symmetry breaking scale \(f \) of the gauge symmetry \(f \). Its potential is at tree level but at one-loop, the form of an axion-like potential

\[V(\phi) = \frac{1}{R} \cos(\phi f) \]

The potential is protected from non-renorm alizable operators, suppressed by powers of 1=\(R \), while non-perturbative quantum gravity corrections can be suppressed [43, 44]. Another motivation concerns the initial homogeneity of the in aton eil, necessary for in ation to start. Finally, since the in aton is a phase, one can

\(^6\) The effective 4-dimentional (reduced) Planck mass is related to the 5-dimentional Planck mass \(M_5 \) by \(M_{\text{pl}}^2 = 2RM_5^2 \).
show that the probability to have a sufficiently homogeneous distribution of the eik is quite large.

The radion assisted gauge in action diverges from standard gauge in action by assuming a varying radius of the extra-dimension R, around a central value R_0. The radion eik is defined by \((2 R)^2 \) and is subject to a potential for which R_0 is assumed to be the minimum (for the late time stability of the extra-dimension). The simplest way to implement this stabilization is to use a Higgs-type potential for ϕ. By expanding, at 1st order, the potential of Eq. (35), and by adding the Higgs-type sector, the full scalar potential reads \(\left(\frac{R_f}{m} \right) \)

\[
V(\phi) = \frac{1}{4} \phi^4 + \frac{1}{2} \phi^2 \chi^2;
\]

where $\phi = (2 R_0)^2$. This potential is similar to the hybrid potential discussed in the last section. It is at $\phi = 0$ which corresponds to a global minimum. For a given ϕ, the minimum of the potential are located in the valleys

\[
h \phi^2 = \frac{2}{1 + \frac{2}{(f_R^2)^2}};
\]

More than 60 e-folds of inflation can take place in these throats.

3. Space of initial conditions

Regarding the allowed parameter space that can be studied, recall that the inverse of the radius of an extra-dimension and quantum gravity effects are expected to dominate when the eik gets larger than the ve dimensional Planck mass. Thus super-planckian values of $\phi = 0$ should not be taken into account if one doesn't consider the potential of Eq. (35) as an effective model. For the 1st set of values of the parameters $\phi = 10^5 m_{pl}, f = m_{pl}, f = 10^5$, the grid of initial conditions is very similar to the hybrid case, with a triangular unsuccessful region, and a generic successful in action at larger values of the eikls (see Fig. 13 below).

Many successful trajectories also appear in the unsuccessful area (type-C trajectories), for suitably small values of ϕ. We observe a slightly higher successful area, compared to the hybrid case: for $i < M_{pl}, \phi$ one out of 25% of the points are successful. Grids for different values of the parameter ϕ show a behavior similar to the hybrid model. However, varying ϕ has a major impact on the number of type-C trajectories as shown in Tab. 1 below.

In particular we don't find a significant amount of successful initial conditions for for the choice of parameters of the original hybrid model recalled. Two percentages are given: the total number of successful initial eik values (column 3) and the number of initial conditions that are scattered in the initial condition space, outside of the stationary valley (column 4). For these cases, the realization of inflation is called in this paper \"anomalous\": the system fast-rolls down the potential, oscillates around the bottom of the potential, climbs up one of the valleys and slow-rolls down along it as if it started in the valley. Then relevant, the number of the grid representing the space of initial eik values is given in column 5.

From the different grids of initial values for the various models studied in this paper, it is obvious that if we don't require that the eikls are smaller than the reduced Planck mass, the proportion of successful initial conditions will tend toward 100% except when considering models in SUGRA. Therefore, we have also con-
Thi s quanti cation has been computed only to give an auxiliary eld that ends in ation by instability, when the non-supersymmetric version of the model and the re-tuning of the initial conditions of the elds – are re-analyzed.

First, we found that the original hybrid model can generate a red spectrum by two means. A well-known, one way to have in ation takes place in the large eld phase is to have the waterfall ending in ation in that phase. This requires a constraint on the critical value of the in aton triggering the waterfall. We found a new criteria on the mass scale so that a violation of the slow-roll conditions ensures the non-existence of the small eld phase of in ation. In both cases, the spectral index generated is less than unity (see Fig 3). However, we show that this requires in both cases a large initial value of the in aton (> 10^13), and therefore a realization of hybrid in ation in a regime away from the limit. This conclusion might reduce the appeal of this model.

When considering the full two-el f potential, it was found [25, 37, 31] that the original models suffer from a re-tuning of the initial values of the elds to generate a sufficiently long in ationary phase. The space of successful in ation was thought to be composed of a extremely narrow band along the in ationary valley and some isolated scattered points which seem ed randomly distributed and near to many

IV. CONCLUSIONS

Hybrid in ation is a class of models of in ation motivated by high energy physics. In these models, the in aton eld is assumed to be coupled to a Higgs-type auxiliary eld that ends in ation by instability, when developing a non-vanishing expectation value. Two of its main well-known problems - the blue spectrum of the non-supersymmetric version of the model and the re-tuning of the initial conditions of the elds – are re-analyzed.

The quantification with the requirement \(i; i < 5 m_{pl} \). The results are given in Tab. III below.

This quantification has been computed only to give an information about how fast the proportion of successful initial conditions increases when the space of allowed initial values is enlarged.

TABLE II: Percentage of successful points in grids of initial conditions, for different models and values of parameters, when restricting to \(i; i \) \(M_{pl} \). The third column represents the area of the whole successful initial condition parameter space over the total surface. The fourth column represents the surface of the successful space only located in isolated points, over the total surface. Some of these sets are represented in the body of the paper, the relevant figure being reported in last column.

<table>
<thead>
<tr>
<th>Model</th>
<th>Values of parameters</th>
<th>Successful points (%)</th>
<th>Isolated points (%)</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>(M = 0.03m_{pl}; m = 10^6,) (\phi = 0) (= 1)</td>
<td>17</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>Hybrid</td>
<td>(M = 0.06m_{pl}; m = 10^6,) (\phi = 0) (= 1)</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Hybrid</td>
<td>(M = 0.09m_{pl}; m = 10^6,) (\phi = 0) (= 1)</td>
<td>17</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>Hybrid</td>
<td>(M = 0.03m_{pl}; m = 10^6,) (\phi = 0) (= 1)</td>
<td>16</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>Hybrid</td>
<td>(M = 0.03m_{pl}; m = 10^6,) (\phi = 0) (= 0.1)</td>
<td>3</td>
<td>< 1</td>
<td>10</td>
</tr>
<tr>
<td>Hybrid</td>
<td>(M = m = 10^3 m_{pl},) (l = 0) (= 10^{-2})</td>
<td>0</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>Smoother</td>
<td>(M = 10^4 m_{pl},) (l = 1)</td>
<td>16</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Smoother</td>
<td>(M = 10^3 m_{pl},) (l = 1)</td>
<td>53</td>
<td>49</td>
<td>13</td>
</tr>
<tr>
<td>Smoother</td>
<td>(M = 2.37 \times 10^5 m_{pl},) (l = 10^3)</td>
<td>78</td>
<td>60</td>
<td>14</td>
</tr>
<tr>
<td>Smoother SUGRA</td>
<td>(M = 10^4 m_{pl},) (l = 1)</td>
<td>29</td>
<td>17</td>
<td>15</td>
</tr>
<tr>
<td>Smoother SUGRA</td>
<td>(M = 10^3 m_{pl},) (l = 1)</td>
<td>70</td>
<td>70</td>
<td>16</td>
</tr>
<tr>
<td>Shifted</td>
<td>(M = 0.03 m_{pl},) (l = 1) (= 0) (= 1)</td>
<td>6</td>
<td>< 1</td>
<td>17</td>
</tr>
<tr>
<td>Shifted</td>
<td>(M = 10^2 m_{pl},) (l = 1) (= 0) (= 1)</td>
<td>15</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Shifted</td>
<td>(M = 10^2 m_{pl},) (l = 1) (= 1) (= 1)</td>
<td>14</td>
<td>13</td>
<td>19</td>
</tr>
<tr>
<td>Shifted SUGRA</td>
<td>(M = 0.03 m_{pl},) (l = 1) (= 0) (= 1)</td>
<td>< 1</td>
<td>< 1</td>
<td>20</td>
</tr>
<tr>
<td>Shifted SUGRA</td>
<td>(M = 10^2 m_{pl},) (l = 1) (= 0) (= 1)</td>
<td>13</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Shifted SUGRA</td>
<td>(M = 10^2 m_{pl},) (l = 1) (= 1) (= 1)</td>
<td>13</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>Radion</td>
<td>(\phi = 10^2 m_{pl},) (l = 10^3,) (f = 1) (= 1)</td>
<td>< 0.1</td>
<td>< 0.1</td>
<td>23</td>
</tr>
<tr>
<td>Radion</td>
<td>(\phi = 10^2 m_{pl},) (l = 10^4,) (f = 1) (= 1)</td>
<td>9.4</td>
<td>9.4</td>
<td>24</td>
</tr>
<tr>
<td>Radion</td>
<td>(\phi = 10^2 m_{pl},) (l = 10^5,) (f = 1) (= 1)</td>
<td>25.6</td>
<td>24.8</td>
<td>25</td>
</tr>
</tbody>
</table>

TABLE III: Percentage of successful points in grids of initial conditions of length \(5 m_{pl} \), for each model and some standard values of the parameters.

<table>
<thead>
<tr>
<th>Model</th>
<th>Values of parameters</th>
<th>Successful (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>(M = 0.03 m_{pl}; m = 10^6,) (\phi = 0) (= 1)</td>
<td>72</td>
</tr>
<tr>
<td>Smoother</td>
<td>(M = 2.37 \times 10^5 m_{pl},) (l = 10^3)</td>
<td>92</td>
</tr>
<tr>
<td>Shifted</td>
<td>(M = 10^2 m_{pl},) (l = 1) (= 10^2) (= 1)</td>
<td>73</td>
</tr>
<tr>
<td>Radion</td>
<td>(\phi = 10^2 m_{pl},) (l = 10^3,) (f = 1) (= 1)</td>
<td>76</td>
</tr>
</tbody>
</table>
considered that these models suffered from some naturalness problem.

We have numerically integrated the exact equations of motion of both models and studied in details the space of initial conditions. The study has been conducted for four different models of hybrid-type in ation in various frameworks: the original non-supersymmetric model (section 15), its extensions ‘smooth’ and ‘shifted’ hybrid in ation in global supersymmetry and supergravity and the ‘radion assisted’ gauge in ation (section 11). As expected, we found that for sufficiently large initial values of the fields (planckian-like or super-planckian), enough e-folds of in ation are generated (see for e.g. Fig. 1). This behavior is similar to the one of chaotic in ation [51].

We also studied the shape of the unsuccessful region and its dependence on the potential parameter: this property holds for any values of the parameter and all the models we considered, except when embedded in supergravity. Consequently, the best way to solve the netuning problem of initial conditions for hybrid models is to formulate them in a framework for which it is safe to consider planckian-like or super-planckian initial values for the fields. This can be safer problematics, depending on the framework used to build the model as detailed in the introduction.

Even if the considered model is formulated in a framework where the fields cannot safely be super-planckian, the unsuccessful region of initial conditions contains successful sub-regions. They correspond to special trajectories for which the velocity in field space becomes oriented along the in ationary valley after some oscillations at the bottom of the potential. Therefore the system climbs up the valley before slow-rolling back down, generating enough in ation. We nd that these points form a complex structure, as represented in Fig. 4. They can be seen as the anamorphosis of the standard in ationary valley, and explain most of the successful initial conditions when restricting to sub-planckian fields. The relative area that these points occupy is typically of order of 15% for the original hybrid model. This value can go up to 25% for in ation and even above 70% for smooth in ation, even though these results depend on the values of the parameters of the potential (see Tab. 1). Moreover, even when supergravity corrections are included, these trajectories still exist, their proportion stays similar and they represent even more of the successful initial conditions. We would like to note that these percentages allow us to claim that the netuning on hybrid in ation in is less severe than found in the past. However, to translate this into an amount of netuning for the model, it is necessary to compute a measure of the probability space. This is left for an extension of this work [53].

Several other questions remain open and are extensions of this work. We plan on investigating more deeply the statistical properties of the anamorphosis regions of the plane of initial conditions as well as the effects of initial velocities on this plane [52]. The study of the supersymmetric versions of hybrid in ation, the F-term [17] and D-term [13,16] models are also left for a future study. These models could have a different dynamics from the models studied here since radiative corrections generate potentially inportant corrections to the tree level potential [53].

Finally, our results illustrated that the successful realizations of hybrid in ation are not necessarily by fast-roll toward the in ationary valley as usually assumed but also radially (type-B trajectories) and in that sense chaotic-like. Some aspects of the phenomenology of these purely two-field trajectories (power spectrum, generation of non-gaussianities, stochastic eects, reheating, in part on topological defect formation) are still unknown and should be studied.

Acknowledgments

It is a pleasure to thank J.Martin, C.Ringeveal, and M.Tytgat for many interesting discussions and a careful reading of the manuscript. J.Garcia-Bellido and L. Matarrese are also acknowledged for useful comments. S.C. is supported by the Belgian Fund for research (F.R.I.A.). J.R. is funded in part by IISN and Belgian Science Policy IAP VI/11.

[9] D. Lyth and Antonio Riotto. Particle physics and
[41] R. Jeannerot, S. Khall, George Lazarides, and Q. Sha. In ation in nonmonopole in supersymmetric SU (4) x SU (2) x SU (2) JHEP, 10:012, 2000.
[57] Jerem e M artin and Marco M usso. Solving stochastic-

