A nom al i es, H orizons and H awki ng rad i at i on

Sunandan G angopadhyay
National Institute for The or et i c al Phys i c s (N I The p),
Stellenbosch Inst i t ut e for Advanc ed Stud y (S TIA S), 7600 Stellenbosch, Sou t h Af r i ca

A pri l 24, 2013

A bst r a c t
H awki ng rad i at i on i sobt ai ne d f r om the Re i s s ne r - Nor dstr ∘ om bl ac k hol e w i t h a gl obal onopole and the Gar nkle-H orowi tz-Str o m i n ger bl ac k hol e f al l i ng i n the cl ass oft he m ost gener al spher i cal l y sym m et r i c bl ac k hol es (\(p_g^6 = 1\)), usi ng only chiral anom al y near the event hor i zon and covar i ant boundar y condi t i on at the event hor i zon. The approach di ers from the anom al y can ce l l at i on appr oac h sinc e apart from the covar i ant boundar y condi t i on, the chiral anom al y near the horizon i s the only input to derive the Hawki ng ux.

K eywor ds: H awki ng rad i at i on, anom al y, Covar i ant Boundar y condi t i on

PA C S: 04. 70. D y, 03. 65. Sq, 04. 62.+ v

I nt r oduct i on:
O n quant i si ng mat t er el s i n a bac kgr ound bl ac k hol e sp ace ti m e ,H awki ng rad i at i on i sobt ai ne d, a re s ul t that c annot be obt ai ne d cl ass i c al l y. Eve r s i nc e H awki ng’ s or i gi nal pape r [1,2], there have be e n se ver al der i vat i ons [3],[4] and al oft he m t ak e the quan tum e e c tof el s i n bl ac k hol e bac kgr ounds i nt o ac c ount i n var i ous ways.

A f e w ye ar s ba ck, Robi ns on and Wi l c z e k [5] ad vanced a ne w appr oac h known as the anom al y can ce l l at i on appr oac h to derive Hawki ng rad i at i on f r om a Schwarzschi ld type bl ac k hol e, w here di em orphi sm sym - met ry pl ays a signi cant r ole. The cruci al observati on that t hey make i s that, near the horizon, bl ac k hol e dyn am i cs i s ef fect i v e ly des cribed by a tw o di m ensi onal ch i r al theory that breaks di em orphi sm sym - met ry. Hence, t his ch i r al theory i s anom al ous. Requi r i ng t hat t he com plete theory wi th con tribut i ons near the horizon, out s i de t he horizon and i ns i de t he horizon be anom al y free, a condi t i on i s obt ai ne d from w hich the Hawki ng ux i s i dent i ed. The m ethod was soon extended to the case of cha rge d bl ac khol es [6]. Fur t her appl i c at i ons of this appr oac h us i ng the cons ist e nt form of the chiral anom al y and lat er wi th the covar i ant form of the chiral anom al y may be found i n [8]-[18].

H owever, cert ai n pr obl em s st i l l p e rs i st i n t hi s der i vat i on. The uni ver sali ty of Hawki ng rad i at i on re qu i res t hat the ux gets d e t e r mi ned only from i nf or mat i on at the horizon. The poi nt to be no te d i s that, apart from the anom al ous W and i dentity at the horizon, the anom al y W and i dentity out s i de the horizon is also required. Fur t hermor e, i t i s also ne cess a ry to i nter pret an ad d i t i onal l W ess-Zum i no t e rm as a con tribut i on f r om the (cl ass i c a l l y i r r e l e vant) i ngoi ng m odes. The quest i on i s whet her t it i s pos si bl e to de r i ve the ux just from the i nf or mat i on at t he hori zon a ly at the horizon. The f act t hat t hi s i s i ndeed si nce t hey have been sh o w n i n [15] us i ng covar i ant chiral anom al i es. It has been observed f r om t he s tr uct ur e of t he anom al y and i n pos ing as ym pt ot i c al i ti es of t he el tic t hat t he anom al y van i shes i n the as ym pt ot i c l i m i t (\(r!1\) l i m i t). H ence, t he Hawki ng ux, w hich i s me as ur ed a t i n fi ni ty, i s gi ven by t he r!1 l i m i t of t he r t com pon ent of t he e nter t en sor n ear t he horizon si nce t hi s i n fo rmat i on at t he horizon i s the onl y input t o derive the real hawki ng ux. The H awki ng ux i s there fore obt ai ne d so l e l y f r om t he i nf or mat i on near t he horizon ba ssi ng a l l t he prob lem s encoun ter ed i n the anom al y can ce l l at i on appr oac h.

In t hi s pap e r, we e xt e nd t hi s m ethod f or t he m ost gener al spher i cal l y sym m et r i c bl ac k hol e sp ace ti m e (\(p_g^6 = 1\)) whi ch ma y not be as ym pt ot i c al l y at, e g. t he Re i s s ne r- Nor dstr ∘ om bl ac k hol e w i t h a gl obal...
m onopole \cite{23}. Further, we derive the Hawking radiation using both forms of the chiral anomaly, namely the consistent and the covariant. However, in case of the consistent anomaly, a little bit of more work is required since one needs to add a local counter term \cite{21,22} to the consistent current/energy momentum tensor to obtain the covariant current/energy momentum tensor which is required for imposing the covariant boundary condition at the horizon.

Examples of the Reissner-Nordstrom black hole with a global monopole and the Garinkle-Horowitz-Strominger (GHS) black hole \cite{23} are finally discussed.

New approach of deriving the Hawking radiation:

We start with the most general spherically symmetric black hole spacetime \(\left(\frac{\partial}{\partial \eta} \right)_0 \) given by

\[
\text{ds}^2 = f(r)dt^2 + h(r)^{-1}dr^2 + r^2d\Omega^2
\]

With the aid of dimensional reduction procedure one can effectively describe a theory with a metric given by the \(\eta^t \) sector of the full spacetime metric \cite{18} near the horizon \cite{5}.

Now we divide the spacetime into two regions and concentrate only in the near horizon region to discuss the gauge/gravitational anomaly separately. We shall first derive the Hawking radiation using the consistent chiral anomaly and then with the covariant chiral anomaly.

Consistent Gauge anomaly:

Near the horizon there are only outgoing (right-handed) fields and the current becomes anomalous. The consistent form of \(d = 2 \) Abelian anomaly satisfies \cite{6}

\[
r \cdot J_{(ii)} = \frac{e^2}{4} \theta A = \frac{e^2}{4} \theta \bar{A}_t
\]

where, = \(\frac{P}{q} \) and = \(\frac{P}{g} \) are two dimensional antisymmetric tensors for the upper and lower cases with \(r_+ = r_- = 1 \).

It is easy to see that the above anomaly equation \cite{2} leads to the following differential equation

\[
\theta r P_{g} J_{(ii)} = \frac{e^2}{4} \theta \bar{A}_t
\]

Solving \(\frac{3}{6} \) in the region near the horizon, we get

\[
J_{(ii)}(r) = \frac{1}{g} a_h + \frac{e^2}{4} \int_{r_+}^{r} \theta \bar{A}_t(x)
\]

\[
= \frac{1}{g} (a_h + \frac{e^2}{4} \left[\bar{A}_t(r) - A_t(r) \right])
\]

where, \(a_h \) is an integration constant. This constant \(a_h \) gets fixed by requiring that the covariant current \(J_{(ii)}(r) \) vanishes at the horizon. To impose this boundary condition, we recall that the covariant and consistent currents are related by local counter terms \cite{21}

\[
J_{(ii)}(r) = J_{(ii)}(r) + \frac{e^2}{4} \frac{\partial}{\partial \eta} A
\]

which using \(\frac{4}{6} \) leads to

\[
P g J_{(ii)}(r) = a_h + \frac{e^2}{4} A_t(r) - \frac{e^2}{4} A_t(r)
\]

Now the condition that the covariant current \(J_{(ii)}(r) \) vanishes at the horizon yields

\[
a_h = \frac{e^2}{4} A_t(r)
\]
The charge \(u_x \) can now be obtained by taking the asymptotic limit of (4) and is given by
\[
\left(P \frac{g}{\epsilon} r \right)_{H} (r = 1) = \frac{\epsilon^2}{2} A_t (\xi_H) : \tag{8}
\]
This is precisely the charge \(u_x \) obtained in (5) using the method of cancellation of consistent gauge anomaly.

Consistent Gravitational Anomaly:

The consistent form of \(d = 2 \) gravitational anomaly is given by (5,6):
\[
\mathbf{r} \mathbf{T}_{H} = F_{\mathbf{r} \mathbf{t}} \mathbf{J}^\mathbf{r}_{H} + A_r \mathbf{J}^\mathbf{r}_{H} + A_t \tag{9}
\]
where, \(A \) is the consistent form of the gravitational anomaly given by
\[
A = \frac{1}{96} \phi_{\xi} \mathbf{N}^\mathbf{r}_{\xi} : \tag{10}
\]
For the \(\mathbf{r} \) component, the above equation simplifies to
\[
\mathbf{r} \mathbf{T}_{H} = F_{\mathbf{r} \mathbf{t}} \mathbf{J}^\mathbf{r}_{H} + A_t \tag{11}
\]
where,
\[
A_t = \frac{1}{96} \phi_{\xi} \mathbf{N}^\mathbf{r}_{\xi} ; \quad A_r = 0
\]
\[
\mathbf{N}^\mathbf{r}_{t} = \frac{1}{192} (h f^{00} + f h^{00}) : \tag{12}
\]
Equation (11) finally leads to
\[
\phi_{\xi} \mathbf{P} \frac{g}{\epsilon} r \mathbf{T}^\mathbf{r}_{H} = \mathbf{P} \frac{h}{\epsilon} F_{\mathbf{r} \mathbf{t}} \mathbf{J}^\mathbf{r}_{H} + A_t
\]
\[= \mathbf{P} \frac{h}{\epsilon} F_{\mathbf{r} \mathbf{t}} \mathbf{J}^\mathbf{r}_{H} + \phi_{\xi} \mathbf{N}^\mathbf{r}_{t}
\]
\[= \frac{\epsilon^2}{2} \mathbf{A}_t (r) \mathbf{A}_t (\xi_H) \phi_{\xi} \mathbf{N}^\mathbf{r}_{t} + \phi_{\xi} \mathbf{N}^\mathbf{r}_{t} : \tag{13}
\]
Solving the above equation, we get
\[
\mathbf{P} \frac{g}{\epsilon} r \mathbf{T}^\mathbf{r}_{H} = \mathbf{d}_t + \frac{\epsilon^2}{4} \mathbf{A}_t (r) \mathbf{A}_t (\xi_H) \left[\frac{\epsilon^2}{2} \mathbf{A}_t (\xi_H) [\mathbf{A}_t (r) \mathbf{A}_t (\xi_H)] \right]
\]
\[+ N^\mathbf{r}_{t} (r) \mathbf{N}^\mathbf{r}_{t} (\xi_H) : \tag{14}
\]
where, \(d_t \) is an integration constant. This constant \(d_t \) gets fixed by requiring that the covariant energy momentum tensor \(\mathbf{T}_{H}^\mathbf{r} (r) \) vanishes at the horizon. To impose this boundary condition, we note that the covariant and consistent energy momentum tensors are related by local counter terms (see Appendix for a derivation)
\[
\mathbf{P} \frac{g}{\epsilon} r \mathbf{T}^\mathbf{r}_{H} = \mathbf{P} \frac{g}{\epsilon} r \mathbf{T}^\mathbf{r}_{H} + \frac{h}{192} (f f^{00} - 2 f^{00}) \tag{15}
\]
which leads to
\[
\mathbf{P} \frac{g}{\epsilon} r \mathbf{T}^\mathbf{r}_{H} = \mathbf{d}_t + \frac{\epsilon^2}{4} \mathbf{A}_t (r) \mathbf{A}_t (\xi_H) \left[\frac{\epsilon^2}{2} \mathbf{A}_t (\xi_H) [\mathbf{A}_t (r) \mathbf{A}_t (\xi_H)] \right]
\]
\[+ N^\mathbf{r}_{t} (r) \mathbf{N}^\mathbf{r}_{t} (\xi_H) + \frac{h}{192} (f f^{00} - 2 f^{00}) : \tag{16}
\]
Now the condition that the covariant current \(\mathbf{T}^\mathbf{r}_{H} (r) \) vanishes at the horizon yields
\[
d_t = \frac{1}{96} f^0 (\xi_H) h^0 (\xi_H) : \tag{17}
\]
The energy ϕ can now be obtained by taking the asymptotic limit of (14) and is given by

$$\left(\frac{\mathcal{P}}{g^\epsilon_{(\text{H})}}\right)(r = 1) = \frac{e^2}{4} A^2_t (r_{\text{H}}) + \frac{1}{192} f^0 (r_{\text{H}}) h^0 (r_{\text{H}}) :$$ \hspace{1cm} (18)

This is precisely the energy ϕ obtained in (5) using the method of cancellation of consistent gravitational anomaly.

Covariant Gauge anomaly:

The covariant form of the $d = 2$ gauge anomaly satisfies [3]

$$\mathcal{J}^\epsilon_{(\text{H})} = \frac{e^2}{4} F = \frac{e^2}{4} \mathcal{P} A_t :$$ \hspace{1cm} (19)

It is easy to see that the above anomaly equation (19) leads to the following differential equation

$$\partial_r \left(\frac{\mathcal{P}}{g^\epsilon_{(\text{H})}}\right) = \frac{e^2}{2} \mathcal{P} A_t :$$ \hspace{1cm} (20)

Solving (20) in the region near the horizon, we get

$$\mathcal{J}^\epsilon_{(\text{H})} (r) = \frac{1}{g} \mathcal{Q}_t + \frac{e^2}{2} \mathcal{P} A_t (r)$$

$$= \frac{1}{g} \left[\mathcal{Q}_t + \frac{e^2}{2} \left[\mathcal{A}_t (r) A_t (r) \right] \right]$$ \hspace{1cm} (21)

where, \mathcal{Q}_t is an integration constant. The constant \mathcal{Q}_t vanishes by requiring that the covariant current $\mathcal{J}^\epsilon_{(\text{H})} (r)$ vanishes at the horizon. The charge ϕ can now be obtained by taking the asymptotic limit of the above equation and is given by

$$\left(\frac{\mathcal{P}}{g^\epsilon_{(\text{H})}}\right)(r = 1) = \frac{e^2}{2} A_t (r_{\text{H}}) :$$ \hspace{1cm} (22)

The above result agrees with [3] and is precisely the charge ϕ obtained in (14, 16, 18) using the method of cancellation of covariant gauge anomaly.

Covariant Gravitational anomaly:

The covariant form of $d = 2$ gravitational anomaly is given by [3, 6]:

$$\mathcal{R} = \mathcal{T}_{(\text{H})} = \mathcal{F} \mathcal{J}_{(\text{H})} + \frac{1}{96} \mathcal{Q}_r \mathcal{R} = \mathcal{F} \mathcal{J}_{(\text{H})} :$$ \hspace{1cm} (23)

It is easy to check that for the metric (11), the two dimensional Ricci scalar \mathcal{R} is given by

$$\mathcal{R} = \frac{h}{f} \frac{f^0}{2} + \frac{f^0 h^0}{2f} + \frac{h f}{2f^2}$$ \hspace{1cm} (24)

and the anomaly is purely timelike with

$$\mathcal{A} = 0$$

$$\mathcal{K} = \frac{1}{g} \mathcal{Q}_t$$ \hspace{1cm} (25)

where,

$$\mathcal{N}_t = \frac{1}{96} \left(\mathcal{P} h^0 + \frac{f h^0}{2} + \frac{f f^0}{f} \right)$$ \hspace{1cm} (26)
We now solve the anomaly equation \([23]\) for the \(r\) component and this leads to the following differential equation for the \(r\) component of the near horizon covariant energy-momentum tensor

\[
\theta_{r} \frac{P}{\sqrt{g}} \frac{\partial \chi}{\partial r} = \frac{P}{\sqrt{g}} \frac{\partial \chi}{\partial r} + \theta_{r} N_{c}^{r}(r)
\]

\[
= (\epsilon_{i} + \frac{e^{2}}{2} [a_{i} F(r) A_{i}(x_{h})]) \theta_{r} A_{i}(r) + \theta_{r} N_{c}^{r}(r)
\]

\[
= \theta_{r} \frac{e^{2}}{2} \frac{1}{2} A_{i}^{2}(r) A_{i}(x_{h}) A_{i}(r) + N_{c}^{r}(r)
\]

(27)

where we have used \([21]\) in the second line and set \(\epsilon_{i} = 0\) in the last line of the above equation. Integration of the above equation leads to

\[
T_{(r)}^{r}(r) = \frac{1}{g} \frac{e^{2}}{4} \left[A_{i}^{2}(r) + A_{i}(x_{h}) \right] + \frac{1}{2} A_{i}(x_{h}) A_{i}(r) + N_{c}^{r}(r)
\]

(28)

where, \(b_{i}\) is an integration constant. The integration constant \(b_{i}\) can be fixed by imposing that the covariant energy-momentum tensor vanishes at the horizon. From \([23]\), this gives \(b_{i} = 0\). Hence the total \(U_{X}\) of the energy-momentum tensor is given by

\[
(\frac{P}{\sqrt{g}} T_{(r)}^{r}(r) \mid r = 1) = \frac{e^{2}}{4} A_{i}^{2}(x_{h}) N_{c}^{r}(x_{h})
\]

\[
= \frac{e^{2}}{4} A_{i}^{2}(x_{h}) + \frac{1}{192} e^{0}(x_{h}) h^{0}(x_{h}) : \quad (29)
\]

The above result agrees with \([18]\) and is precisely the Hawking \(U_{X}\) obtained in \([14,15,18]\) using the method of cancellation of covariant gravitational anomaly.

Examples:

Hawking radiation from Reissner-Nordstrom blackhole with a global monopole:

The metric of a general non-extremal Reissner-Nordstrom blackhole with a global monopole \(O(3)\) is given by \([20]\):

\[
ds^{2}_{str, g} = p(r) dt^{2} - \frac{1}{h(r)} dr^{2} - r^{2} d\Omega^{2}
\]

(30)

where,

\[
a = \frac{q}{r} dt \quad p(r) = h(r) = 1 - \frac{2m}{r} + \frac{q^{2}}{r^{2}}
\]

(31)

with \(m\) being the mass parameter of the blackhole and \(q\) is related to the symmetry breaking scale when the global monopole is formed during the early universe soon after the Big Bang \([24]\). The event horizon for the above blackhole is situated at

\[
x_{h} = (1 - 2) \frac{m}{q^{2}} (1 - 2 m q^{2} r^{2}) : \quad (32)
\]

Now it has been argued in \([12]\) that the metric \((30)\) has to be rewritten in the form \((1)\) with

\[
f(x) = (1 - 2) h(r) \quad ; \quad h(r) = 1 - 2 \frac{m}{r} + \frac{q^{2}}{r^{2}} : \quad (33)
\]

in order to get the correct Hawking temperature for the metric \((30)\) by the anomaly cancellation approach. We shall take this form of the metric \((33)\) to derive the Hawking \(U_{X}\). Note that the determinant of the above metric \((33)\) is \(1\).

Using either of the equations \([8,22]\), the charge \(U\) is given by

\[
(\frac{P}{\sqrt{g}} J_{(r)}^{r}(r \mid 1)) = (\frac{P}{\sqrt{g}} J_{(r)}^{c}(r \mid 1)) = \frac{e^{2} q}{2 x_{h}}
\]

(34)
which agrees with [18].

The energy flux can be obtained by using either of the equations (13, 29):

\[
\left(\mathcal{P}_{S} - \mathcal{P}_{W} \right)(r \neq 1) = \mathcal{P}_{S}(r \neq 1) = \frac{e^{2}q^{2}}{4r_{H}^{2}} + \frac{1}{192} \left(\frac{f^{0}(r_{H})}{(1 - \alpha)^{2}} \right) ;
\]

(35)

This is precisely the Hawking flux obtained in [18] using the anomaly cancellation as well as the effective action approach.

Garinkle-Horowitz-Strominger black hole:

The metric of the GHS black hole [23] is of the form (1) where

\[
\begin{align*}
 f(r) &= 1 + \frac{2M e^{\phi}}{r} + 1 - \frac{Q^{2}e^{3\phi}}{M r} \\
 h(r) &= 1 + \frac{2M e^{\phi}}{r} + 1 - \frac{Q^{2}e^{3\phi}}{M r}
\end{align*}
\]

(36)

with \(e^{\phi} \) being the asymptotic constant value of the dilaton \(e^{\phi} \). We consider the case when \(Q^{2} < 2e^{\phi} \) for which the above metric describes a black hole with an event horizon situated at

\[r_{H} = 2M e^{\phi} ; \]

(37)

Here, we need to consider only the chiral gravitational anomaly since the charge sector is absent. The energy flux can be obtained by using either of the equations (13, 29):

\[
\left(\mathcal{P}_{S} - \mathcal{P}_{W} \right)(r \neq 1) = \mathcal{P}_{S}(r \neq 1) = \frac{1}{192} \left(\frac{f^{0}(r_{H})}{(1 - \alpha)^{2}} \right) ;
\]

(38)

This is precisely the Hawking flux obtained in [23, 16, 17] using the anomaly cancellation and effective action approach.

Discussions:

In this paper, we studied the problem of Hawking radiation from Reissner-Nordstrom black hole with a global monopole and GHS black hole using both forms (consistent and covariant) of the near horizon chiral anomaly. An important advantage of this procedure in contrast to the anomaly cancellation technique is that the chiral anomaly near the horizon is the only ingredient (apart from the position of the covariant boundary condition near the horizon) to compute the Hawking flux.

Appendix:

In this appendix, we shall derive the form of the local counter term connecting the \(r \) component of the near horizon covariant energy-momentum tensor \(T_{r}^{r} \) with the \(r \) component of the near horizon consistent energy-momentum tensor \(T_{r}^{r} \) [13].

To do this, we note that the covariant and the consistent energy-momentum tensors are related by local counter term s [22]:

\[
T_{(\text{H})} = T_{(\text{H})}^{r} + \mathcal{P}
\]

(39)

where,

\[
r \mathcal{P} = \frac{1}{96} \left(r \mathcal{R} \right) ;
\]

(40)

Now for the static black hole background [11], the above equation simplifies to

\[
\mathcal{P}_{r} = \frac{1}{96} \mathcal{P}_{r} = \frac{r \mathcal{H}^{\infty}}{2} \mathcal{H}^{\infty} ;
\]

(41)
Solving the above equation, we have

\[p g^{r \tau} = \frac{1}{96} h f^{\omega \mu} \frac{h}{r} f_\omega^{\tau} + C \]

(42)

where, C is an integration constant. To determine this constant, we take the asymptotic limit \(r \to \infty \) of the above equation. In this limit, \(P^{r \tau} \) vanishes since the r(t) components of the near horizon covariant and consistent energy-momentum tensor \(T^{\mu \nu}_{(r)} \) and \(T^{\mu \nu}_{(i)} \) coincide with the usual anomaly-free r(t) component of the energy-momentum tensor outside the horizon \((T^{\mu \nu}_{(i)})_t \) in the \(r \to \infty \) limit. Hence, the integration constant C vanishes since the first term on the right hand side of (42) vanishes in the \(r \to \infty \) limit. This leads to

\[P^{r \tau} = \frac{h}{192} f^{\omega \mu} \frac{f_\omega^{\tau}}{q} f^{\mu \nu} 2f^{\nu \omega} \]

(43)

which yields the required result [13] connecting the r(t) components of the near horizon covariant and consistent energy-momentum tensors \(T^{\mu \nu}_{(r)} \) and \(T^{\mu \nu}_{(i)} \).

References