Determining the heavy seesaw neutrino mass matrix from low-energy parameters

Xiao-Gang He, Sandy S. C. Law, and Raymond R. Volkas

1Department of Physics, Center for Theoretical Sciences and LeCosPA Center, National Taiwan University, Taipei 10617, Taiwan, Republic of China
2School of Physics, The University of Melbourne, Victoria 3010, Australia

(Dated: October 7, 2008)

We explore how the seesaw sector in neutrino mass models may be constrained through symmetry to be completely determined in terms of low-energy mass, mixing angle and CP-violating phase observables. The key ingredients are intra-family symmetry to determine the neutrino Dirac mass matrix in terms of the charged-lepton or quark mass matrices, together with inter-family or flavor symmetries to determine diagonalization matrices. Implications for leptogenesis and collider detection of heavy neutral leptons are discussed. We show that leptogenesis can succeed in small regions of parameter space for the case where the neutrino Dirac mass matrix equals the up-quark mass matrix. The model where the neutrino Dirac mass matrix equals the charged-lepton mass matrix can yield a heavy neutral lepton as light as about 1 TeV, but detecting such a particle will be difficult.

PACS numbers: 14.60.Pq, 11.30.Hv

I. INTRODUCTION

Neutrino oscillation experiments involving neutrinos and antineutrinos coming from astrophysical and terrestrial sources have found compelling evidence that neutrinos have mass. To accommodate this observation, the minimal Standard Model (SM) must be extended. Some sensible ways to do this include: (a) Type I seesaw with three heavy right-handed (RH) Majorana neutrinos, (b) the use of an electroweak Higgs triplet to directly provide the left-handed (LH) neutrinos with all Majorana masses (Type II seesaw), (c) introducing a fermion triplet (Type III seesaw), (d) the generation of three Dirac neutrinos through an exact parallel of the SM method of giving mass to charged fermions, and (e) the radiative generation of neutrino masses as per the Zee or Babu models. But in the absence of more experimental data, it is impossible to tell which, if any, of these is actually correct.

The focus of this paper is on method (a), the seesaw framework with three heavy RH Majorana neutrinos (denoted N throughout). It is an attractive possibility because it simply posits the existence of these N’s to parallel the multiplet structure of the other fermions while providing a simple explanation for why the light neutrinos are so much less massive than the charged leptons. Since the setup uses the most general renormalizable Lagrangian consistent with the SM gauge symmetry, both the Yukawa couplings of the LH leptons to the RH neutrinos and bare Majorana masses are permitted for the RH neutrinos. Consequently, the additional assumption that the RH Majorana mass scale is much higher than that of the charged fermions leads to a tiny mass for ordinary neutrinos through the famous seesaw relation $m \approx \frac{m_f^2}{M_R}$, where m_f is the Majorana mass for a light neutrino and M_R is a large RH Majorana mass ($M_R \gg m_f$), being most naturally of the order of a charged fermion mass. The three light neutrino mass eigenstates are accompanied by three heavy neutral lepton mass eigenstates.

Depending on the parameter space for the RH neutrino bare masses and Yukawa couplings, additional benefits may occur: thermal leptogenesis \cite{3} if there are appropriate CP-violating decays and if the lightest of the heavy
N's has mass greater than about 10^9 GeV \cite{1}; leptogenesis through CP-violating oscillations of the N's as in the Ahkm edov-Rubakov-Smirnov mechanism \cite{2}, or N's as a warm dark matter candidate \cite{3}. Since the mass eigenstate heavy neutral leptons are to a good approximation sterile with respect to gauge interactions, they are difficult to detect experimentally. This is especially true if they are also extremely massive, as in the themal leptogenesis alternative. On the other hand, if they are not as massive and are in the TeV scale, then they can be looked for in colliders through their Yukawa interactions, and through their suppressed but nonzero weak interactions (induced through the mass mixing with regular active neutrinos).

To experimentally test the seesaw scenario, it would be helpful if one knew the parameters governing the N-sector including their interactions with other SM particles. In the minimal seesaw model, these parameters are arbitrary, so one has to go beyond the minimal model to achieve this goal. The purpose of this paper is to illustrate how symmetries may be used to determine the RH Majorana mass matrix as a function of low-energy mass, mixing angle and CP-violating phase observables by constructing several representative models. We then examine these models to see if all leptogenesis can succeed or if experimentally accessible heavy N's are predicted.

In the next Section we discuss the general model building symmetry requirements for relating the N-sector parameters to low-energy observables. Section II then reviews the basic properties of the identified symmetries, followed by Sec. IV, which details specific models. Section V presents a phenomenological study of those models, and we conclude in Sec. VI.

II. SEESAW STRUCTURE AND RELATION TO THE LOW-ENERGY SECTOR

The effective light Majorana neutrino mass matrix m, deduced through

$$ m = \frac{1}{2} M_R^{-1} (m_D^T) + O (m_D^T) + M_R^{-2}; $$

is given by

$$ m = \frac{1}{2} (M_R^{-T}) M_R^{-1} + h.c.; $$

where m_D is the neutrino Dirac mass matrix, deduced through

$$ m_D = \frac{1}{2} (M_R^{-1}) M_R^{-1} + h.c.; $$

whilst the RH Majorana mass matrix M_R is deduced through

$$ m = V \quad \text{(2.5)} $$

be the mass eigenstates for the light Majorana neutrinos, where V is the unitary diagonalization matrix for m. The diagonalized m is therefore \cite{2}

$$ \text{diag}(m_1, m_2, m_3) = V m V^T; $$

Eq. (2.2) then implies that

$$ \text{diag}(m_D, m_D, m_D) = V m_D V^T; $$

1 Note that due to the constraints in the parameter space, this scenario cannot really be called a seesaw model, but the form of the Lagrangian is the same.

2 Diagonalized matrices will always be denoted by a caret in this paper.
The matrix \mathbf{m} has been experimentally determined up to an absolute light neutrino mass scale, which we shall conveniently parametrize through the lightest m eigenvalue. For the normal hierarchy (NH) with $m_1 < m_2 < m_3$, we have (for $m_{123} > 2 \, R^+ \left(1 \, \text{GeV} \right)$):

$$m_2 = m_1^2 + m_{\text{sol}}^2; \quad m_3 = m_1^2 + m_{\text{sol}}^2 + m_{\text{atm}}^2; \quad (2.8)$$

where $m_{\text{sol}} \approx 7.7 \times 10^5 \text{eV}^2$ and $m_{\text{atm}} \approx 2.4 \times 10^3 \text{eV}^2$ are the solar- and atmospheric-squared-mass difference respectively $[9,10,11]$. For the inverted hierarchy (IH) with $m_3 < m_1 < m_2$, we obtain:

$$m_1 = m_2^2 + m_{\text{sol}}^2 + m_{\text{atm}}^2; \quad m_2 = m_2^2 + m_{\text{atm}}^2; \quad (2.9)$$

In order to connect the high- and low-energy sectors, one must have M_R completely determined by known quantities. Hence, our goal is to have M_R constructed from some combination of \mathbf{m}, the charged-lepton mass matrices, m_f with $f = e; \mu; \tau$, and the lepton and quark mixing matrices (U_{PMNS} and U_{CKM}) respectively. As a consequence, the first necessary condition, according to Eq. (2.7), is:

$$\text{The neutrino Dirac mass matrix, } m^D_{\ell}, \text{ must be predicted by the theory.} \quad (2.10)$$

The simplest possibility is that

$$m^D_{\ell} = m_{\ell} \quad \text{for one of } \ell = e; \mu; \tau$$

There are custodial SU(2) unification and quark-lepton symmetry matrices that can enforce each of these conditions at tree-level, as we shall review in the next section. For the moment, let us just accept that they are all possible. Equation (2.7) now becomes

$$\mathbf{m} \cdot V \cdot M_{\ell}^{-1} m_1^T V^T$$

Introducing the diagonalized fermion mass matrix

$$\mathbf{m}_{\ell} = V_{\ell L} \cdot m_{\ell} \cdot V_{\ell R}^T$$

where the $V_{\ell L}$ and $V_{\ell R}$ are the left- and right-diagonalization matrices for m_{ℓ} respectively, Eq. (2.13) can be rewritten as

$$\mathbf{m} \cdot V \cdot V_{\ell L}^T \cdot \mathbf{m}_{\ell} \cdot V_{\ell R}^T \cdot M_{\ell}^{-1} \cdot V_{\ell R} \cdot V_{\ell L} \cdot V^T \cdot \mathbf{m} \cdot V \cdot \mathbf{m}_{\ell} \cdot V_{\ell R}^T \cdot M_{\ell}^{-1} \cdot V_{\ell R} \cdot V_{\ell L} \cdot V^T$$

which in turn reveals the second necessary condition:

One has to know the diagonalization matrix product: $V_{\ell L} \cdot V^T$ and the right-diagonalization matrix $V_{\ell R}$:

$$V_{\ell L} \cdot V^T \cdot V_{\ell R} = (V_{\ell L} \cdot V^T) \cdot V_{\ell R} = V_{\ell L} \cdot V_{\ell R} \cdot V^T$$

Because the known weak interactions are left-handed, the right-diagonalization matrix cannot be measured. Therefore, to satisfy condition (2.15), $V_{\ell R}$ needs to be determined by the theory, and this usually means a flavor symmetry is required. In the next section we shall review how flavor symmetries can give rise to fully determined diagonalization matrices, where their entries are just numbers, usually related to the Clebsch-Gordan coefficients of the flavor symmetry group.

The product $V_{\ell L} \cdot V^T$ is similar in form to both the PMNS and CKM matrices, which are, respectively,

$$U_{\text{PMNS}} = V_{\ell L} \cdot V^T; \quad U_{\text{CKM}} = V_{\ell L} \cdot V_{\ell R}^T \cdot U_{\text{PMNS}} \cdot V_{\ell R}^T$$

$$U_{\text{CKM}} = V_{\ell L} \cdot V_{\ell R}^T \cdot U_{\text{PMNS}} \cdot V_{\ell R}^T$$

3 Of course, the discovery of right-handed weak interactions would change this situation.

4 See [12] for an earlier work on flavor symmetry and the seesaw mechanism.
The simplest ansätze are that $V_{eL}V_{eL}^T$ equals either U_{PMNS} or U_{CKM}. The next simplest class would see $V_{eL}V_{eL}^T$ equal to a product of either the PMNS or CKM matrix and a known matrix predicted by theavor symmetry selected. Let us consider some special cases. The simplest possibility suggested by the above equations would be that

$$f = e \quad \text{and} \quad V_{eR} = 1:\quad (2.17)$$

These relations may be achieved by imposing a ($\tau \leftrightarrow e$) and avor symmetry respectively. The RH Majorana mass matrix is then completely determined through

$$M_R \equiv U_{PMNS} U_{PMNS}^T \equiv U_{CKM}^{-1} U_{PMNS} U_{PMNS}^{-1}: \quad (2.18)$$

Two other possibilities, arising from the enforcement of ($\tau \leftrightarrow d, u$) and the appropriate avor symmetries, are that

$$f = d; \quad \text{with} \quad V_{dR} = 1; \quad V_{dL} = V_{eL}; \quad (2.19)$$

and

$$f = u; \quad \text{with} \quad V_{uR} = 1; \quad V_{uL} = V_{eL}; \quad (2.20)$$

leading to

$$M_R \equiv U_{CKM}^{-1} U_{CKM} \equiv U_{eL}^T U_{CKM} U_{eL}^T \equiv U_{CKM}^{-1} U_{PMNS} U_{PMNS}^{-1}; \quad (2.21)$$

Because of the automatic presence of V in the formula for M_R, it is relatively straightforward to find symmetries leading to Eqs. (2.13) and (2.21) where the leptonic PMNS mixing matrix is a key feature. But it may also be of interest to consider symmetry structures that can lead to the PMNS matrix being replaced by the CKM matrix (or a product of the two). One way to try this would be to arrange symmetries such that m would be necessarily diagonal, giving $V = 1$. Then, the condition $f = d$, together with $V_{uL} = V_{dR} = 1$, will lead to $U_{CKM} = V_{eL}$, and hence the relation

$$M_R \equiv U_{CKM}^{-1} U_{CKM} \equiv U_{eL}^T U_{CKM} U_{eL}^T \equiv U_{CKM}^{-1} U_{PMNS} U_{PMNS}^{-1}; \quad (2.22)$$

would be obtained. A similar relation with d and u interchanging roles could equally well be contemplated. The delicate part would be obtaining a diagonal m without forcing a diagonal m^T. If the latter were diagonal, then the relations $m^D = m_d$ or $m^D = m_u$ would also imply that $V_{dL} = 1$ or respectively $V_{uL} = 1$, and hence leading to $U_{CKM} = 1$ at tree-level.

Finally, there is of course the relatively mundane case where all of the diagonalization matrices in the formula for M_R are equal to the identity, so that one simply gets

$$M_R = \text{diag} \left(\frac{m_{eL}^2}{m_1}, \frac{m_{dL}^2}{m_2}, \frac{m_{uL}^2}{m_3} \right): \quad (2.23)$$

Interestingly, this is not possible for the $f = e$ choice, because the PMNS matrix is known to be very dissimilar to the identity. However, avor symmetries allowing, Eq. (2.22) can in principle be achieved for $f = d$ or u. In these situations, one would then get $U_{PMNS} = V_{eL}$ and $U_{CKM} = V_{uL}$ (if $f = d$) and V_{eL} (if $f = u$).

Although the analysis above was framed in terms of the leading seesaw expression $m \equiv m^0 M_R^{-1} m^D$, it generalizes to cases where additional terms s on the right-hand-side are kept, because the higher-order terms contain a priori the same unknowns as does the leading term.

In summary, the general properties of enforcing a ($\tau \leftrightarrow e, d, u$) symmetry in parallel with some avor symmetries motivate relations of the form

$$M_R = M_R (\Phi_e \Phi_d \Phi_u U_{PMNS} U_{CKM}) \quad (2.24)$$

of which Eqs. (2.13), (2.21), (2.22) and (2.23) are important examples.
III. THE USE OF SYMMETRIES

The aim of this section is to briefly illustrate how mass relations of the type $m^D = m_{e,d} + u$ may be enforced, as well as the role of a flavor symmetry in determining the diagonalization matrices of interest. We will present some concrete examples that utilize these ideas to good effect in the next section.

It is well known that in a minimal SO(10) framework one obtains the mass relations $m^D = m_e = m_d = m_u$, because all fermions are in the same multiplet and the electroweak Higgs lies in a real fundamental of SO(10). These relations are too powerful from a phenomenological perspective: while the neutrino Dirac mass matrix is related to that of another fermion as desired, the other mass relations $m_e = m_d = m_u$ are not wanted. However, this observation motivates the search for gauge groups that contain the SM as a subgroup and have enough power to establish the mass relation we seek without violating any known experimental constraints. Indeed, subgroups of SO(10) are good starting points for such a search. Outside of SO(10), the use of discrete rather than continuous symmetries to relate different multiplets constitutes another sensible strategy.

Let us consider the following groups, motivated by being subgroups of SO(10), but not necessarily to be thought of as arising from an underlying SO(10) theory: the standard SU(5) unification group [14], its flipped extension SU(5) $\times U(1)_{B-L}$ and the Left-Right group SU(3)$_c$ \times SU(2)$_L$ \times SU(2)$_R$ \times U(1)$_L$. Standard SU(5) has the LH charged leptons and LH down antiquarks in the 5 representation, while their mass partners are in the 10. In the minimal model of a single Yukawa term couples those two multiplets to a Higgs in the 5, leading to the relation $m_e = m_d$. The up-quark and neutrino Dirac masses are governed by independent Yukawa couplings, so they are unrelated to each other and unrelated to m_e and m_d. In flipped SU(5), the down antiquarks and the up antiquarks ip role, as also do the charged antileptons and antineutrinos. The minimal model thus supplies $m^D = m_u$ with unrelated m_d and m_e entries. For our purposes, standard SU(5) is not useful, but flipped SU(5) is interesting\(^5\). The third subgroup, the Left-Right group, has the power to enforce mass degeneracy between weak isospin partners: $m_d = m_u$ and $m_e = m^D$ [17]. Such a degeneracy follows from requiring a bi-doublet Higgs to be real, which at the SO(10) level follows from having the Higgs 10-plet being real. This basically causes SU(2)$_L$ to become custodial SU(2). So we conclude that flipped SU(5) which can give $m^D = m_u$ and the Left-Right group which can give $m^D = m_e$ are relevant SO(10) subgroups for our purposes.

The other obvious mass relation $m^D = m_d$ will be obtained in the next section not from SO(10) or any of its subgroups, but rather by using the idea of discrete quark-lepton symmetry [18]. The idea here is to extend the gauge group by including an SU(3)$_C$ color group for leptons, with standard leptons identified as one of the colors after spontaneous symmetry breaking. The gauge structure now permits a discrete interchange symmetry between quarks and (generalized) leptons to be imposed, from which $m^D = m_d$ follows.

Though we shall not pursue this line of thought further in this paper, we should also remark that the relation between m^D and $m_{e,d,or u}$ need not be a direct equality. At the SO(10) level one can consider embedding the electroweak Higgs doublet not in the 10 but in a higher-dimensional representation. In that case a matrix of Cabibbo-Kobayashi-Maskawa coefficients relates m^D with the other fermion mass matrix, as a generalization of the well-known Georgi-Jarlskog modifcation of the m to m_d relation in SU(5) unification.

Once the appropriate fermion mass-constraining group is selected, the remaining challenges are twofold. First, as well-illustrated by minimal SO(10), is the removal of byproducts such as unwanted mass relations or interactions. The second is the need to have predictable diagonalization matrices. Quite frequently, it is possible to meet both of these challenges by introducing a flavor symmetry and a non-minimal Higgs sector. In cases where this is not sufficient, unbroken global non-flavor symmetries may be imposed to eliminate all undesirable terms.

The key concept is that of a "formal diagonalizable matrix" [20]. This is a matrix containing relations amongst its elements and perhaps also texture zeros so as to make the diagonalization matrices fully determined while leaving the eigenvalues arbitrary. Special flavor symmetries exist to enforce form-diagonalizability, and they have in recent

\(^5\) The Pati-Salam-like [14] subgroup SU(4) \times SU(2)$_L$ \times U(1)$_B$. Can also be used to enforce $m^D = m_u$.\] 5 The Pati-Salam-like [14] subgroup SU(4) \times SU(2)$_L$ \times U(1)$_B$. Can also be used to enforce $m^D = m_u$.\]
years been widely used to try to understand the tribimaximal form [21] that is consistent with the experimentially measured PMNS matrix.

In the models presented below, combined effect of the mass-relating symmetry and the flavor symmetry will be to produce a relation of the form $m^D = K \, m_{\text{eff}}$, or u, where K is given by a known diagonalization matrix.

IV. SOME REPRESENTATIVE MODELS

In this section, we construct three realistic models that can enforce $m^D = K \, m_{\text{eff}}$, or u, and subsequently lead to relations (4.13) and (4.24) respectively.

A. Relating m^D to m_ν via a flipped SU(5) model

We consider a flipped SU(5) group [44] augmented by A_4 flavor symmetry [22,24]:

$$G_1 = \text{SU}(5) \quad U(1)_k \quad A_4 ;$$

$$\text{SU}(3)_c \quad \text{SU}(2)_L \quad U(1)_Y \quad A_4 ;$$

with hypercharge Y given by a linear combination of T and X. The choice of this gauge group is for the reason discussed in the previous section: one naturally obtains the useful mass relation $m^D = m_\nu$, while avoiding $m_e = m_d$.

The role of the flavor symmetry is then purely to ensure that all diagonalization matrices are completely determined.

For this model, the particle contents and their transformation properties under G_1 are given by:

$$L = \begin{pmatrix}
0 & 1 & 3 & \bar{3} \\
1 & 2 & 2 & 2 \\
3 & \bar{3} & 1 & 0 \\
\bar{3} & 1 & 0 & 1
\end{pmatrix} \quad \text{and} \quad L = \begin{pmatrix}
0 & d^c_R & d^c_L & u_r^1 \, d^1_r \\
d^c_R & 0 & d^c_L & u_r^2 \, d^2_r \\
d^c_L & d^c_L & 0 & u_r^3 \, d^3_r \\
u_r^1 & u_r^2 & u_r^3 & 0
\end{pmatrix} \quad \text{SU}(3)_c \quad \text{SU}(2)_L \quad U(1)_Y \quad A_4 ;$$

$$\begin{pmatrix}
(1;5) & (0;1) & (0;3) \\
(3) & (1;5) & (0;1) & (0;3)
\end{pmatrix} \quad \text{SU}(3)_c \quad \text{SU}(2)_L \quad U(1)_Y \quad A_4 ;$$

$$\begin{pmatrix}
0 & 1 & 3 & \bar{3} \\
1 & 2 & 2 & 2 \\
3 & \bar{3} & 1 & 0 \\
\bar{3} & 1 & 0 & 1
\end{pmatrix} ;$$

where the superscripts 1, 2 and 3 and Greek letters are the color and SU(5) indices respectively. In matrix form, the G_1 invariant interaction Lagrangian then contains the following term s:

$$L = \frac{\alpha}{\pi} \left[2 Y_1 \left(\begin{pmatrix}
0 & 1 & 3 & \bar{3} \\
1 & 2 & 2 & 2 \\
3 & \bar{3} & 1 & 0 \\
\bar{3} & 1 & 0 & 1
\end{pmatrix} \right) + \frac{Y_3}{4} \left(\begin{pmatrix}
0 & 1 & 3 & \bar{3} \\
1 & 2 & 2 & 2 \\
3 & \bar{3} & 1 & 0 \\
\bar{3} & 1 & 0 & 1
\end{pmatrix} \right) \right] + h.c. ;$$

and when the neutral components of and obtain nonzero VEVs, one gets mass term s of the form

$$= \frac{\alpha}{\pi} \left[2 Y_1 \left(\begin{pmatrix}
0 & 1 & 3 & \bar{3} \\
1 & 2 & 2 & 2 \\
3 & \bar{3} & 1 & 0 \\
\bar{3} & 1 & 0 & 1
\end{pmatrix} \right) + \frac{Y_3}{2} \left(\begin{pmatrix}
0 & 1 & 3 & \bar{3} \\
1 & 2 & 2 & 2 \\
3 & \bar{3} & 1 & 0 \\
\bar{3} & 1 & 0 & 1
\end{pmatrix} \right) \right] + h.c. ;$$

Note that h_i, which provides the heavy Majorana mass, breaks G_1 down to the SM, and is expected to be at a much higher energy scale than h_i, which breaks electroweak symmetry.
Writing out the A_4 structure of the Y_1– and Y_2– terms in Eq. (4.12) with the vacuum $h_{(3)}^0 i$, $h_{(3)}^0 i = (V_{(3)}; V_{(3)}; V_{(3)})$, where $V_{(3)}$ is a rotation, one gets

\[m_\sigma: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[m_u: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

\[m_d: \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \]

Expanding out the A_4 invariants using the results in the appendix, one obtains

\[m_\sigma = U_1 \Phi \sigma \; ; \; m_u = \Phi \sigma U_1 \; ; \; m_d = U_1 \Phi \sigma \; ; \; \text{where } U_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} \]

where $\Phi \sigma = \text{diag}(0, 1, 0, 1, 0, 1)$. From (4.12), we deduce that

\[V_{\text{el}}^Y = U_1 \; ; \; V_{\text{ul}}^Y = V_{\text{el}} = V_{\text{ur}} = V_{\text{ar}} = U_1 \; ; \]

and hence

\[m_d = V_{\text{el}}^Y \Phi \sigma \]

Putting this into (2.7) gives

\[\Phi \sigma \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \]

and hence we arrive at

\[\Phi \sigma = U_{\text{PMNS}} \Phi \sigma U_{\text{PMNS}} \]
where \(Z_{QL} \) is the discrete quark-lepton symmetry that relates SU(3) \(\times \) SU(3)\(_q \) while hypercharge \(Y \) is given by a linear function of \(X \) and \(T \). The field contents are

\[
\begin{align*}
F_L &= N_L \quad E_L \quad (3;1;2; \quad 1=3)(1) \quad \text{where}
\end{align*}
\]

\[
E_R \quad (3;1;2;4=3)(1) \quad \text{and the exotic leptons again mass when} \quad \text{(4.19)} \quad \text{is given by}
\]

\[
N_R \quad (3;1;2;3)(1) \quad \text{are triplet in SU(3) space:} \quad \text{(4.16)}
\]

\[
E_{L, R} = \begin{pmatrix} E_{1L, R} & C_n \end{pmatrix} \quad \text{and} \quad \text{(4.17)}
\]

We arrange \(h_{1i} \neq 0 \) to give a large Majorana mass while keeping \(h_{2i} = 0 \). The \(G_2 \) will break electroweak symmetry as usual. In order to avoid domain walls\(^6\) and allow the implementation of the seesaw mechanism, we demand the following hierarchy for the energy scales:

\[
h_{1i} > T_{\text{Planck}} > h_{1i} > h_{2i} > h_{1i} > 0 \quad \text{GeV} \quad \text{(4.18)}
\]

Overall, the \(G_2 \) invariant interaction Lagrangian takes the form:

\[
L = f_1 L_L F_L (0) + \frac{1}{2} L_R \quad Q_L (0) + f_2 \quad E_R (0) + Q_R (0) + \frac{1}{2} N_R (1) + \frac{1}{2} \quad \text{(4.19)}
\]

where \(\bullet \) are SU(3)\(_q \) indices and the terms proportional to \(\epsilon_{i\beta} \) are the mass terms of the exotic fermions. From \((4.19) \) and taking \(h_{1i} = v_1 \), \(h_{2i} = v_2 \) and \(h_{1i} = v_3 \), we expect the following mass relations:

\[
\begin{align*}
m_u &= g_1 v_1 + g_2 v_2 \quad \text{and} \quad m_d = g_3 v_3 \quad \text{(4.20)}
m_e &= g_1 v_2 + g_2 v_1 \quad \text{and} \quad m_d = g_3 v_3 \quad \text{(4.21)}
\end{align*}
\]

\(\text{Cosmological domain walls will form when the discrete quark-lepton symmetry is spontaneously broken. Arranging for this breaking scale to be large allows these observationally unacceptable topological defects to be inhibited away.} \)
So, in general, $m_\text{e} \neq m_u$ but $m^D = m_A$. Writing out the A_4 structure for the above m matrices, we have:

$$m_\text{e} : g_1 \begin{pmatrix} e_L \ h_1 \ i \ \end{pmatrix} e_R + g_2 \begin{pmatrix} e_L \ h_1 \ i \ \end{pmatrix} u_R + g_3 \begin{pmatrix} e_L \ h_1 \ i \ \end{pmatrix} d_R + \text{h.c.};$$

$$m_\text{u} : g_1 \begin{pmatrix} u_L \ h_1 \ i \ \end{pmatrix} u_R + g_2 \begin{pmatrix} u_L \ h_1 \ i \ \end{pmatrix} d_R + g_3 \begin{pmatrix} u_L \ h_1 \ i \ \end{pmatrix} L + \text{h.c.};$$

$$m_\text{d} : g_1 \begin{pmatrix} d_L \ h_1 \ i \ \end{pmatrix} d_R + g_2 \begin{pmatrix} d_L \ h_1 \ i \ \end{pmatrix} L + g_3 \begin{pmatrix} d_L \ h_1 \ i \ \end{pmatrix} e_R + \text{h.c.};$$

$$m^D : g_1 \begin{pmatrix} L \ h_1 \ i \ \end{pmatrix} L + g_2 \begin{pmatrix} L \ h_1 \ i \ \end{pmatrix} u_R + g_3 \begin{pmatrix} L \ h_1 \ i \ \end{pmatrix} d_R + \text{h.c.};$$

Choosing the vacuum patterns: $h_0^{\text{PMNS}} = \begin{pmatrix} v_1^\text{PMNS}; v_2^\text{PMNS} \end{pmatrix}$ and following the A_4 rules in the appendix, we get:

$$m_\text{e} = U_1 e_\text{e}; m_\text{u} = U_1 e_\text{u}; m_\text{d} = m^D = U_1 e_\text{d};$$

$$\text{PMNS} = V_{PMNS},$$

where $e_\text{e} = \text{diag}(3g_1v_2, g_1v_3, \cdots)$, $e_\text{u} = \text{diag}(3(g_1v_2 + g_2v_3), \cdots)$, and $e_\text{d} = \text{diag}(3(g_1v_1 + g_2v_3), \cdots)$. In addition, it can be shown that when the A_4 singlets h_0^{PMNS}, h_1^{PMNS}, and h_2^{PMNS} acquire nonzero V_{PMNS}s, the resulting neutrino mass matrix M_R, is an arbitrary complex symmetric matrix. Using the results (4.26) and (4.27), we can conclude that in this model M_R is an arbitrary complex symmetric matrix, and from the results (4.26) and (4.27), we can conclude that in this model M_R is an arbitrary complex symmetric matrix.

C. Relating m^0 to m_u via a Left-Right model

Finally, we consider a Left-Right model [15] with A_4 flavor symmetry. The symmetry group is

$$G_3 = SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_B \times A_4.$$}

Here, the in position of the discrete $L \times R$ parity symmetry is not necessary, and hence will be omitted for simplicity. The complete list of relevant particle contents for this setup is:

$$L^R = \begin{pmatrix} e_L \ h_1 \ i \ \end{pmatrix} e_R + \begin{pmatrix} e_L \ h_1 \ i \ \end{pmatrix} u_R + \begin{pmatrix} e_L \ h_1 \ i \ \end{pmatrix} d_R + \text{h.c.};$$

$$\text{PMNS} = V_{PMNS},$$

where $e_\text{e} = \text{diag}(3g_1v_2, g_1v_3, \cdots)$, $e_\text{u} = \text{diag}(3(g_1v_2 + g_2v_3), \cdots)$, and $e_\text{d} = \text{diag}(3(g_1v_1 + g_2v_3), \cdots)$. In addition, it can be shown that when the A_4 singlets h_0^{PMNS}, h_1^{PMNS}, and h_2^{PMNS} acquire nonzero V_{PMNS}s, the resulting neutrino mass matrix M_R, is an arbitrary complex symmetric matrix. Using the results (4.26) and (4.27), we can conclude that in this model M_R is an arbitrary complex symmetric matrix, and so, unless $V_{PMNS} \neq 1$, one expects the product of the two would be very dissimilar to the identity.
where we have deliberately embedded the same Higgs doublet into \(L \), to form a real bi-doublet. In matrix form, the \(G_3 \) invariant Lagrangian has the following form:

\[
L = y_1 \bar{\tau}_L \tau_R + e_{y_1} \bar{\tau}_L \phi^{-1} \tau_R + y_2 \bar{\tau}_L \phi^{-1} \tau_R + e_{y_2} \bar{\tau}_L \phi^{-1} \tau_R + y_3 \bar{\tau}_L \phi^{-1} \tau_R + e_{y_3} \bar{\tau}_L \phi^{-1} \tau_R + y_4 \bar{\tau}_L \phi^{-1} \tau_R + h.c.
\]

(4.31)

When the symmetry is broken spontaneously by the nonzero VEVs,\(h \), we obtain mass relations of the form:

\[
m_u = (y_2 \bar{\nu}_y) \nu_R + y_3 \nu_R + e_{y_3} \nu_R;
\]

\[
m_d = (y_2 \bar{\nu}_y) \nu_R + y_3 \nu_R + e_{y_3} \nu_R;
\]

\[
m_e = (y_1 \bar{\nu}_y) \nu_R.
\]

(4.32)

In flavor space, the charged-lepton and neutrino Dirac mass terms become

\[
m_e = \begin{pmatrix} y_1 \bar{\nu}_y \nu_R & + \bar{y}_1 \nu_R y_L \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix};
\]

\[
m_d = \begin{pmatrix} y_2 \bar{\nu}_y \nu_R & + \bar{y}_2 \nu_R y_L \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix};
\]

\[
m_e = \begin{pmatrix} y_1 \bar{\nu}_y \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}.
\]

(4.33)

Invariance space, the charge-lepton and neutrino Dirac mass term become

\[
ym_{\nu L} = (y_{\nu L} \nu_R)_L = (y_{\nu L} \nu_R)_L
\]

\[
ym_{\nu R} = (y_{\nu R} \nu_R)_R = (y_{\nu R} \nu_R)_R
\]

\[
ym_{\nu R} = (y_{\nu R} \nu_R)_R
\]

(4.34)

Weighting the number of neutrino \(M = \begin{pmatrix} y_{\nu L} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.35)

where \(\nu_L = \nu \begin{pmatrix} y_{\nu L} \nu_R \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.36)

Taking \(h^0 \) and \(h^0 = (\nu_{\nu R})^2 \nu_R \) and then comparing Eqs. (4.35) and (4.36), one gets

\[
M_{\nu L} = U_{\nu L} M_{\nu L} U_{\nu L}^T;
\]

\[
M_{\nu R} = U_{\nu R} M_{\nu R} U_{\nu R}^T;
\]

where \(U_{\nu L} = \text{diag}(y_{\nu L} \nu_R)_L \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.37)

\[
M_{\nu R} = \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.38)

gives rise to a mass matrix of the form

\[
m_{\nu L} = \begin{pmatrix} y_{\nu L} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.39)

while it can be shown that mass matrix \(m_{\nu L} \) also has a similar structure:

\[
m_{\nu L} = \begin{pmatrix} y_{\nu L} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.40)

where \(A_1 = y_{\nu L} \nu_R \) and \(B_{\nu L} \) are complicated functions of the VEVs and Yukawa couplings. Equations (4.39) and (4.40) imply that the diagonalization matrix \(V_{\nu L} \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.39)

while it can be shown that mass matrix \(m_{\nu L} \) also has a similar structure:

\[
m_{\nu L} = \begin{pmatrix} y_{\nu L} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.40)

where \(A_1 \) and \(B_{\nu L} \) are complicated functions of the VEVs and Yukawa couplings. Equations (4.39) and (4.40) imply that the diagonalization matrix \(V_{\nu L} \)

where \(U_{PMNS} = V_{\nu L} V^T = U_{PMNS} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.41)

where \(U_{PMNS} = V_{\nu L} V^T = U_{PMNS} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.41)

where \(U_{PMNS} = V_{\nu L} V^T = U_{PMNS} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix} \begin{pmatrix} y_{\nu R} \nu_R \end{pmatrix} \begin{pmatrix} m_\nu \end{pmatrix}
\]

(4.41)
V. PHENOMENOLOGY

The general conclusion from the previous section is that it is possible to use symmetries to construct the relation

$$M_R \phi U_{PMNS} \Phi U_{PMNS}^\dagger f = e^d u;$$

(5.1)

that links the high-energy seesaw sector to low-energy observables. Using the current experimental data on quarks and leptons, the properties of the heavy RH Majorana neutrinos in these models can therefore be inferred directly, and interesting consequences may arise.

While the mixing matrix U_{PMNS} can be in general written as

$$U_{PMNS} = \begin{pmatrix} C_{23} & S_{23} & S_{13} e^{i \phi} \\ -S_{23} & C_{23} & 0 \\ S_{13} & 0 & C_{13} \end{pmatrix}$$

(5.2)

where $s_{m n} = \sin m_n \theta_{m n}$ is the CP-violating Dirac phase, and 1 and 2 denote the two Majorana phases, it is often more convenient to absorb the Majorana phases into θ in (5.1) and allow the m_1's to be complex masses instead. When numerical analysis is required, we use the best-fit values with 1σ errors for the mixing angles $[11]$

$$\sin^2 \theta_{12} = 0.304^{+0.022}_{-0.016}$$

(5.3)

But for our analytical work, we assume that U_{PMNS} has an exact tribimaximal form [21], with

$$\sin^2 \theta_{12} = \frac{1}{3}$$

(5.4)

The inputs to the light neutrino mass matrix $m^2_{
u}$ are restricted by the squared-mass differences:

$$m^2_{
u 12} = 7.85^{+0.23}_{-0.20} \times 10^{-5} \text{ eV}^2$$

(5.5)

obtained from neutrino oscillation experiments [11,14,11] and the cosmological bound on the sum of all neutrino masses: $\sum m_{\nu} < 0.05 \text{ eV} (95\% \text{ C.L.})$, which implies an absolute upper limit of

$$m_{\nu} < 0.05 \text{ eV} (95\% \text{ C.L.})$$

(5.6)

In the following, we study (5.1) by taking a generic form for $\theta_1 \phi f \{1 2 3\}$ where $1 2 3$ is assumed. It is obvious that once $\theta_1 \phi f$ has been chosen (i.e. i's are known), only ϕ (or f for the inverted hierarchy case) can potentially change the form of M_R and its eigenvalue spectrum. Moreover, if $\phi = 0$, it is expected that the D-mixing phase, ϕ, would not play a significant role.

So, to understand the leading behaviors of the mass spectrum for M_R, we approximate U_{PMNS} with the tribimaximal form (see (5.2)) and absorb 1ϕ into $m_{1\phi}$ respectively. After expanding out the RHS of (5.1), we have

$$M_R = M_R^T = \begin{pmatrix} 2m^2_1 & 0 & 0 \\ 0 & 2m^2_2 & 0 \\ \frac{1}{2}m_1 & \frac{1}{2}m_2 & \frac{1}{2}m_3 \end{pmatrix}$$

(5.7)

There are two limiting cases of Eq. (5.7) which can provide important insights into the dependence of the heavy RH Majorana masses M_1 on the mass scale of the lightest LH neutrino.

7 It should be pointed out that when 13-mixing is nonzero, say at the best-fit value of ϕ_1, the choice of Dirac phase can influence the mass eigenvalues by almost two orders of magnitude for certain sets of Majorana phases and ϕ_1 values, as our parameter space scans have indicated.
A. Fully hierarchical light neutrinos

For the normal hierarchy scheme, we have $m_{1j} = 0$ with m_{12j} related to m_{1j} via (2.8). Therefore, in this limit, we can write Eq. (5.7) as

$$M_R = M_{R0} + M_R; \quad \text{where } M_{R0} \approx \begin{bmatrix} 0 & \frac{2}{m_1} & \frac{1}{m_1} \\ \frac{1}{m_1} & \frac{1}{m_1} & \frac{1}{m_1} \\ \frac{1}{m_1} & \frac{1}{m_1} & \frac{1}{m_1} \end{bmatrix} C.$$ \hspace{1cm} (5.8)

is the dominant part of the matrix as m_{1j}'s are chosen to be orthogonal to each other. Solving $M_{R0}u_{10} = E_{10}u_{10}$ for E_{10}, one immediately gets

$$E_{10} = 0; \quad E_{30} = \frac{4\frac{1}{m_1} + 2\frac{1}{m_2} + \frac{1}{m_3}}{6}, \quad \frac{2}{6m_1}.$$ \hspace{1cm} (5.9)

where u_{10}'s are chosen to be orthonormal to each other. Solving $M_{R0}u_{10} = E_{10}u_{10}$ for E_{10}, one immediately gets

$$E_{10} = 0; \quad E_{30} = \frac{4\frac{1}{m_1} + 2\frac{1}{m_2} + \frac{1}{m_3}}{6}, \quad \frac{2}{6m_1}.$$ \hspace{1cm} (5.10)

and subsequently

$$E_{1}' = \frac{3}{2m_2}; \quad E_{2}' = \frac{2}{2m_3}; \quad E_{3}' = \frac{2}{2m_2}.$$ \hspace{1cm} (5.11)

In the limit of m_{1j}, m_{2j}, and m_{3j}, the heavy RH neutrino masses are

$$m_{1j}' = \frac{3}{2m_2}; \quad m_{2j}' = \frac{2}{2m_3}; \quad m_{3j}' = \frac{2}{2m_2}.$$ \hspace{1cm} (5.12)

Hence, we can see that due to the large neutrino mixing, the expected correspondence between m_1 and the Dirac masses, $m_1/\frac{1}{m_2}$, no longer holds and that only the largest RH neutrino mass is a function of m_{1j}. Substituting in the running fermion masses at 10^5 GeV [28] as typical values for m's, we have the following predictions for RH neutrino masses in the normal hierarchy case:

$$m_u : \quad m_{1j}' = 5.5 \quad 10^5 \text{ GeV}; \quad m_{2j}' = 5.5 \quad 10^5 \text{ GeV}; \quad m_{3j}' = 2.0 \quad 10^4 \text{ GeV};$$ \hspace{1cm} (5.13)

$$m_d : \quad m_{1j}' = 2.3 \quad 10^5 \text{ GeV}; \quad m_{2j}' = 1.1 \quad 10^5 \text{ GeV}; \quad m_{3j}' = 3.8 \quad 10^5 \text{ GeV};$$ \hspace{1cm} (5.14)

$$m_e : \quad m_{1j}' = 9.0 \quad 10^5 \text{ GeV}; \quad m_{2j}' = 4.8 \quad 10^5 \text{ GeV}; \quad m_{3j}' = 5.7 \quad 10^5 \text{ GeV};$$ \hspace{1cm} (5.15)

The plots of $M_{12\beta}$ as a function of m_{1j} for the case $m_\beta = m_u$ and for many different values of $m_{1\beta}$ are shown in Fig. 4. These numerical results validate the trend predicted by the theoretical analysis. The tallest spikes in the diagrams of Fig. 4 are locations where level crossing occurs ($M_{1\beta}$ or $M_{2\beta}$ are quasi-degenerate) for certain special values of Dirac and Majorana phases, an effect that has been previously studied in [26,23]. Plots of $M_{1\beta}$ for the case $m_\beta = m_d$ are shown in Fig. 4.

For the inverted hierarchy scheme, $m_{1j} = 0$, m_{2j}' and m_{3j}' and hence, we take

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \frac{1}{m_1} & \frac{1}{m_1} & \frac{1}{m_1} & \frac{1}{m_1} \\ \frac{1}{m_1} & \frac{1}{m_1} & \frac{1}{m_1} & \frac{1}{m_1} \end{bmatrix} C; \quad (5.16)$$

8 These results are consistent with those in references [26,23].
which then leads to the following expressions for the M_R masses:

$$M_{1j'} = \frac{2}{3} \frac{j'}{m_{1j}}, \quad M_{2j'} = \frac{2}{3} \frac{j'}{m_{2j}}, \quad M_{3j'} = \frac{2}{3} \frac{j'}{m_{3j}} + \frac{2}{3} \frac{j'}{m_{2j}} + \frac{2}{3} \frac{j'}{m_{2j}}.$$ \hspace{1cm} (5.17)

The resulting numerical values for this case are similar to those shown in Eqs. (5.13) to (5.15) although they are in general slightly smaller.

B. Quasi-degenerate light neutrinos

When the lightest neutrino mass approaches the upper bound of 5.20, we get $J_{1j'} = J_{2j'} = J_{3j'}$. Assuming that the Majorana phases θ_{ij} are negligible, then Eq. (5.17) becomes

$$M_R = \begin{pmatrix} 0 & 2 & 1 \\ 2 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$ \hspace{1cm} (5.18)

From this, we can immediately deduce the approximate scale for the M_1's:

$$m_u : J_{1j'} = 8.5 \times 10^6 \text{ GeV} ; \quad J_{2j'} = 6.8 \times 10^6 \text{ GeV} ; \quad J_{3j'} = 5.9 \times 10^3 \text{ GeV} ;$$

$$m_d : J_{1j'} = 3.4 \times 10^6 \text{ GeV} ; \quad J_{2j'} = 1.3 \times 10^6 \text{ GeV} ; \quad J_{3j'} = 1.1 \times 10^3 \text{ GeV} ;$$

$$m_e : J_{1j'} = 1.4 \times 10^6 \text{ GeV} ; \quad J_{2j'} = 5.9 \times 10^6 \text{ GeV} ; \quad J_{3j'} = 1.7 \times 10^3 \text{ GeV} ;$$

These estimates agree well with the numerical results shown in Fig. 1 and 2.

C. Thermall Leptogenesis

Using the M_α mass spectrum information presented above, several general comments on the possibility of baryon asymmetric generation via thermall leptogenesis for the models discussed in Section IV can be made. First of all, from the fact that M_1 is typically in the range of $10^3 - 10^4$ GeV for all setups, it is clear that conventional leptogenesis where the asymmetry is generated predominantly by the decays of N_1's would not be successful [7,26]. However, there exist other special solutions to the leptogenesis scenario.

As was pointed out earlier, the tall spikes in the plots of Figs. 4 and 5 indicate that there are regions in the parameter space for these models where M_1 and M_2 become almost degenerate. Consequently, it has been shown in [26] that a sufficient baryon asymmetric can be generated from resonant enhancement [3] to the raw CP violating in the decays of N_1's. Furthermore, a similar enhancement to the decay of the next-to-the-lightest RH neutrino N_2, when M_2 and M_3 become degenerate, can also produce the desired asymmetric principle, as long as washout effects mediated by the lighter N_1's are sufficient [31].

Another interesting observation is that, recently, Ref. [32] discussed the possibility of successful leptogenesis (without the need for resonant enhancement) in models with $SO(10)$-inspired mass relations which have properties similar to those presented here (see also [33]). In the analysis of [32], they explored the situation where the asymmetric is not generated by N_2 decays at a temperature where avor e ects (34) are important. Specifically, the relevant range of θ_{ij}. $M_2, 10^{12}$ GeV leads to a two-avlor regime where the lepton asymmetric will be stored in the θ_{ij}-componen, as well as a coherent superposition of (e+) componen. Subsequently, avor dependent washout e ects coming from interactions with N_1's may not completely erase all componen of the asymmetric generated by the N_2's. One central conclusion in [32] is that, for this mechanism to generate enough asymmetric, the mass of the next-to-the-lightest RH neutrino must be about 10^{11} GeV.

Inspecting the M_1-plot of Fig. 1 (corresponding to the $m_{\nu} = m_\tau$ case), we can see that the condition of $M_2 \approx 10^{11}$ GeV can be marginally met by a small region of the parameter space (near the various spikes in the region where
FIG. 1: Plots of $M_{1,2,3}$ vs. $|m_1|$ in the $m_\ell = m_u$ case with normal hierarchy for light neutrino masses assumed. Input running masses used: $m_u(\tau) = 1.2 \text{ MeV}$, $m_e(\tau) = 0.073 \text{ GeV}$, $m_\tau(\tau) = 11 \times 10^2 \text{ GeV}$, where $'10^9 \text{ GeV}$. Each plot contains approximately 3×10^8 data points produced by systematically sweeping the $|m_1|$ and $\pm 2 (0,2)$ parameter space.
FIG. 2: Plots of M_{12} vs. j_{m_1} in the $\hat{m}_1 = \hat{m}_d$ case (LEFT column) and $\hat{m}_1 = \hat{m}_e$ case (RIGHT column) with normal hierarchy for light neutrino masses assumed. Input running masses used: (LEFT) $m_d(\tau) = 26$ MeV, $m_s(\tau) = 52$ MeV, $m_b(\tau) = 15$ GeV, and (RIGHT) $m_s(\tau) = 0.52$ MeV, $m_b(\tau) = 1.1 \times 10^3$ MeV, $m(\nu) = 1.8$ GeV, where $^9 \times 10^9$ GeV. Each plot contains approximately 1.0×10^5 data points produced by systematically sweeping j_{m_1} and the j_{m_2} parameter space.

j_{m_1} is between 2×10^3 to 8×10^2 eV, whereas the $\hat{m}_1 = \hat{m}_{d,e}$ cases are definitely ruled out for this scenario due to the smallness of M_2. Therefore, it appears that for some special values of j_{m_1} with certain sets of phases (j_{m_2}), leptogenesis via N_2 decays taking into account the effects of flavor is also possible (for the $\hat{m}_3 = \hat{m}_3$ model) in addition to resonant leptogenesis.

Moreover, if this picture ofavored N_2-leptogenesis is indeed the mechanism responsible for generating the baryon asymmetry of the Universe, then the corresponding sets of low energy phases in our model (j_{m_2}) which make this possible will generally lead to modifications of the neutrinoless double beta decay rate through the quantity 35

$$m = \sum_{i=1}^{X^3} \frac{U^2}{U^2_{ei}} m_i.$$

For example, taking $j_{m_1} = 0.070$ eV and assuming normal hierarchy, the phases in played by N_2-leptogenesis will lead to $m = 0.047$ eV, which is a noticeable reduction from 0.070 eV in cases where both Majorana phases are turned off. However, present experimental upper limits on m lie somewhere between 0.16 and 0.68 eV 36, and so it is difficult to distinguish such differences. The detection of this may only be possible in future experiments such as CUORE 37 and GERDA 38 which have a projected sensitivity down to about 0.05 eV.

In summary, while the models presented in Sec. IV do not generically lead to successful baryon asymmetry generation via them all leptogenesis, some fine-tuned special cases do exist. It is possible that the enlargement of the workable

\footnote{The reason we have picked $j_{m_1} = 0.070$ eV in this discussion is because so far we have not found any set of phases for $j_{m_1} = 0.08$ in which N_2-leptogenesis is actually viable.}
param et er space for leptogenesis can result from modiﬁcations to the Higgs sector of these models, but such analyses are beyond the scope of this work.

D. Collider Signatures

It is interesting to note that in the model with \(m_\ell = m_\nu \), the lightest heavy Majorana neutrino mass \(M_1 \) can be about 1 TeV making one wonder if it is possible to see signals of such a particle at the Large Hadron Collider (LHC) and or a future International Linear Collider (ILC). However, since the heavy Majorana neutrinos are dominantly right-handed singlets which do not have gauge interactions, the interactions of the heavy neutral leptons with SM gauge bosons arise through their mixing between light neutrinos. The interaction Lagrangians are paramaterized through mixing angles \(V_{13} \) (\(\ell = e, \mu \)) of order \(m_\nu = M_1 \) as per

\[
L_W = \frac{g}{2} V_{13}^{10} \bar{P}_L N W + h.c.;
L_L = \frac{g}{2} \cos \theta W_{13} V_{13}^{10} \bar{P}_L N Z + h.c.;
\]

where \(P_{L,R} = (1 \ 0) = 2 \).

With these interactions, it is possible to produce signals for heavy neutral leptons through \(q \bar{q} \to W^+ \nu \to \ell^+ \nu \) followed by \(N \rightarrow W^+ \ell^- \gamma \). The production of \(N \) by \(q \bar{q} \to N \to Z \) \(N \) is much harder to study due to large backgrounds. However, in a model-independent study in Ref. [40], such a mechanism was found to lead to a detectable heavy neutral lepton signal only if the mass is of order 100 GeV or less, for the initial stage of LHC running with luminosity of order 10 fb\(^{-1}\). Besides, the amplitudes of \(V_{13} \) in our models are far too small. Even assuming \(V_{13} \to 0.2 \mathrm{eV} \) which will saturate the bound of \(\partial \), and in the best case scenario with inverted hierarchy and special choice of phases, one obtains \(\mathcal{V}_{13} \to 2 \times 10^{-2} \) (with \(M_1 \to 1.2 \times 10^{-2} \mathrm{GeV} \)) which is much less than the minimum \(0 \to 10^{-2} \) required to produce an observable signal in any of the channels [40]. The suppression is even greater for the \(N \) flavor. As a result, it is very diﬃcult to detect the heavy neutral leptons through this mechanism even with an integrated luminosity up to 300 fb\(^{-1}\).

If there is only one Higgs doublet, there is also a light neutrino and heavy neutral lepton interaction with the Higgs particle given by

\[
L_H = \frac{g m_\nu}{2 m_W} \left(\bar{V}_{13}^{10} - \bar{P}_L N H + h.c. \right);
\]

This interaction, although not of much help in the production of heavy neutral leptons through \(q \bar{q} \to \ell \nu \), does provide another channel for \(N \) decay. If the Higgs mass is not too much larger than the \(W \) boson mass, the decay rate is similar to that for \(N \to W \ell \). In our models we are considering, there are several Higgs doublets. The neutral Higgs couplings to light neutrinos and heavy neutral leptons are then not necessarily proportional to \(V_{13} \) \(V_{13} \) and can increase the decay rate. Also, in our models there are charged Higgs bosons interacting with light neutrinos and heavy neutral leptons which also provide additional channels for detection of the \(N \) 's. But given the smallness of the mixing \(V_{13} \) mentioned above, it is still very diﬃcult to detect a heavy neutral lepton with mass of order 1 TeV at the LHC even with 300 fb\(^{-1}\) of luminosity.

Charged Higgs couplings to charged-leptons and heavy neutral leptons may have interesting signals at an ILC through \(e^- e^+ \to H^+ \to H^- H^0 \) with \(t \)-channel heavy Higgs exchange, and \(e^- e^+ \to H^- H^0 \) with \(u \)-channel \(N \) exchange [41]. In particular, the processes \(e^- e^+ \to H^- H^0 \) are very sensitive to the heavy neutral lepton mass. It has been shown in Ref. [42] that if \(V_{13} \) is in the range of \(10^{-2} \) to \(10^{-4} \), the ILC with an energy of 500 GeV can probe heavy neutral lepton masses up to \(10^4 \) TeV. In our case, the charged-Higgs coupling to charged-leptons and heavy neutral leptons can be larger than \(V_{13} \) \(m_\ell = M_1 \), but still too small to be probed using the processes mentioned above.
VI. CONCLUSION AND OUTLOOK

The main point of this paper was to demonstrate through general arguments backed up by explicit models that symmetries can be used to connect the standard model neutrino mass matrix to low-energy observables such as charged-lepton ion masses, mixing angles and CP-violating phases. If a model of this type were to actually describe nature, then the benefit would be that high-mass seesaw sector would be completely determined from low-energy observations, improving the predictability and testability of the seesaw neutrino mass generation mechanism. Since this mechanism can also be used to understand the cosmological matter-antimatter asymmetry through leptogenesis, such constrained models are also important for cosmology.

We focused on the simplest models of this type, which yielded $M_R = U_{PMNS}^T U_{PMNS} \Phi_f$, where $f = e\tau d\nu$. Our phenomenological analysis showed that successful leptogenesis is possible for the $f = u$ case in certain fine-tuned corners of parameter space. We also noted that the $e = f$ case can also supply a heavy neutral lepton with a mass of about 1 TeV, opening the prospect for collider detection, though detailed analysis showed that this mass is still too large to plausibly expect detection at either the LHC or a future ILC.

Future work in this area could explore a possible role for the CKM matrix rather than the more obvious PMNS matrix in the formula for M_R. A iso, the use of Clebsch-Gordan coefficients to generalize the relationship between the neutrino Dirac mass matrix and Φ_f away from being a strict equality is another obvious line of investigation. Finally, our explicit models used flavor symmetry to render the right-handed diagonalization matrices to be simply identity matrices. It could also be of interest to loosen this constraint.

Acknowledgements

SSCL and RRV thank Nicole Bell for discussions. XGH would like to thank K ITPC for hospitality where part of this work was done. This work was supported in part by the Australian Research Council, the Commonwealth of Australia, the NSC and NCTS.

APPENDIX A: PROPERTIES OF THE A_4 GROUP

A_4 is the alternating group of order 4. It is isomorphic to the group representing the proper rotational symmetries of a regular tetrahedron. It has 12 elements and 4 conjugacy classes: one containing the identity, two sets containing four 3-fold rotations each and one set of three 2-fold rotations. By the dimensionality theorem, we know that A_4 must have four irreducible representations: 1^0, 1^0, 2^0, and 3, where 1 is the trivial representation, 1^0 and 1^0 are non-trivial one-dimensional representations that are complex conjugate of each other, while 3 is a real three-dimensional representation.

Some basic tensor product rules:

\[
\begin{align*}
1 \times 1 &= 1; \\
1^0 \times 1^0 &= 1; \\
2^0 \times 2^0 &= 1^0; \\
3 \times 3 &= 1^0 \oplus 1^0 \oplus 3 \oplus 3^s;
\end{align*}
\]

where subscripts a and s denote \textit{asymmetric} and \textit{symmetric} respectively. Suppose $x_a = (x_1; x_2; x_3)$ and $y_a = \ldots$
(y_1; y_2; y_3) are triplets in A_4. Then Eq. (A_3) means

\begin{align}
(x_1 y_1)_1^1 &= x_1 y_1 + x_2 y_2 + x_3 y_3; \\
(x_1 y_1)_2^1 &= x_1 y_1 + x_2 y_2 + x_3 y_3; \\
(x_2 y_2)_2^1 &= x_1 y_1 + x_2 y_2 + x_3 y_3; \\
(x_1 y_2)_2^1 &= (x_2 y_3)_2^1 \quad (x_1 y_1)_2^1 \quad (x_1 y_2)_2^1 \quad (x_1 y_3)_2^1; \\
(x_3 y_3)_2^1 &= (x_2 y_3)_2^1 \quad (x_1 y_1)_2^1 \quad (x_1 y_2)_2^1 \quad (x_1 y_3)_2^1; \\
\end{align}

where ! = e^2 i=3 and we have abbreviated (x_2 y_3)_2^1 with (x_2 y_3)_2^1.