Generalized Painlevé-Gullstrand metrics

Chun-Yu Li

Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan.

An obstruction to the implementation of spatially flat Painlevé-Gullstrand(PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordström and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. With these generalized PG metrics, problematic contributions to the imaginary part of the action in the Parikh-Wilczek derivation of Hawking radiation due to the obstruction can be avoided.

PACS numbers: 04.20.Cv, 04.70.Dy

Keywords: Painlevé-Gullstrand metrics, spatial flatness, Hawking radiation, Parikh-Wilczek method

I. OVERVIEW

Painlevé-Gullstrand(PG) coordinates\[1, 2\] have often been employed to study the physics of black holes. They have the advantage of remaining regular at the horizons, and among the various regular coordinatizations for spherically symmetric spacetimes, PG coordinates feature spatially flat slicings with interesting physical interpretations (see, for instance, Ref.\[2\]). They have also been employed to analyse quantum dynamical black hole metrics\[3\], and used extensively in derivations of Hawking radiation as tunneling following the work of Parikh and Wilczek\[6\]. The existence\[4, 5\] and uniqueness\[6\] of spatially flat PG coordinates for spherically symmetric spacetimes have also been discussed previously.

In this brief note we demonstrate an obstruction to the implementation of spatially flat PG slicings. In general the vierbein fields for different coordinatizations of a metric are related by local Lorentz transformations, and PG metrics can be obtained from the standard form of spherically symmetric metrics (Eq.(1) below) by local Lorentz boosts. It is often taken for granted that spatially flat PG coordinates can be achieved for arbitrary spherically symmetric spacetimes. However, the insistence on spatial flatness is an additional requirement which can lead to complex PG metric variables which cannot be attained through physical Lorentz boosts. In the next section, the general condition for real PG metric variables realized through physical Lorentz boosts is derived. This allows a general discussion of the obstruction to spatially flat PG slicings which we also illustrate with the explicit examples of Schwarzschild-anti-deSitter(SAdS) and Reissner-Nordström(RN) metrics. Spatially flat real PG slicings become problematic at large distances in the former and at small distances in the latter. Generalized PG coordinates which remain regular at all distances are then introduced, and constant curvature slicings are explicitly constructed and illustrated with Schwarzschild-(anti-)deSitter spacetimes. A generalized PG metric which is valid for RN black hole is also constructed explicitly.

In discussions of black hole evaporation with the Parikh-Wilczek method\[6], PG metrics are often employed because they are regular at the horizon through which the tunneling occurs. The tunneling amplitude is associated with the imaginary contribution of the action which is attributed entirely to the pole in the integrand. However, the obstruction to spatially flat PG coordinates can give rise to additional spurious contributions which are ambiguous and problematic both to the computation of the tunneling rate and to the universality of the results for different metrics. We demonstrate that these problems can be completely avoided by using suitably generalized PG coordinates, and end with a summary of the explicit results of the tunneling process for several metrics. We adopt natural units \(\hbar = c = 1\), and \(k_B = 1\).

II. GENERALIZED PAINLEVÉ-GULLSTRAND COORDINATES

We focus on spherically symmetric metrics in four dimensions for concreteness, although the constructions to be discussed below may be generalized to higher dimensions. To wit, the most general form of the metric can be expressed as (see, for instance Sec. 11.7 of Ref.\[10\])

\[
ds^2 = N(R(t))dt^2 + f(R(t))dR^2 + R^2d\Omega^2.
\]

To transform to generalized PG coordinates, we introduce the PG time through\[1\] \(dt_P = dt + \frac{c}{\kappa}d\tau\), and define \(L_g(\tau)\) \(R(\tau)\) with real positive constant length \(L\). \(dt_P = dt + \frac{c}{\kappa}d\tau\), and define \(L_g(\tau)\) \(R(\tau)\) with real positive constant length

1 Electronic address: 2891112@mail.ncku.edu.tw

2 Electronic address: cposo@mail.ncku.edu.tw

3 For \(dt_P\) time to remain a perfect differential even in the time-dependent case, an integrating factor should be included so that \(dt_P = e^{\int c/\kappa d\tau} [dt + (c/\kappa d\tau) d\tau]\), together with the requirement \(\theta_\tau \theta_\tau = \delta_\tau (e^{\int c/\kappa d\tau})\) which uniquely specifies \(e^{\int c/\kappa d\tau}\) given its initial value. The metric is still of the form in \[2\], but with \(dt_P \neq e^{\int c/\kappa d\tau}\). This does not effect the expression of and the rapidity of the Lorentz boost to be discussed later on.
It follows that
\[ds^2 = N \, dt_p^2 + 2 \, N \, dt_p \, dr + L^2 f^{-1} \, g^{pq} \, \nabla^2 N \, dr^2 + L^2 g^2(r) d \, \Omega^2. \]

By choosing \(f = (N \, e^{-2\phi})^{-1} \) with \(g^2(r) = \frac{ds^2(r)}{dt} \), the 3-metric on constant-\(t_p \) hypersurfaces will take the form \(L^2 \, p \, dr^2 + g^2(r) d \, \Omega^2 \); and the 4-metric can thus be written as
\[ds^2 = N \, f^{-1} \, g^{pq} \, p \, dt_p^2 + p \, g^{pq} \, dr + dt_p \, N \, f^{-1} \, p \, L^2 \, g^2 \, p \, dt_p^2 + R^2 d \, \Omega^2. \]

It can be verified that the vierbein fields of this PG metric is related to those of the standard form (1) by a local Lorentz boost.

As mentioned earlier, this is also precisely the condition that the PG metric can be obtained from the standard form through physical Lorentz boosts.

To discuss both the obstruction and the extensions to generalized PG coordinates explicitly, we henceforth consider the case \(p = 1 \) in this section. By letting \(f = g(r) \, r \, \sin r \) or \(\sinh r \), and thus \(g^0(r) = \frac{1}{1 + \frac{L}{r} - \frac{R \, \sin^2 r}{3}} \), we obtain constant-\(t_p \) hypersurfaces which correspond respectively to slicings with flat, elliptic and hyperbolic 3-geometries.

In particular, for Schwarzschild-(anti-)deSitter metrics, \(N = f = 1 + \frac{2GM}{r} - \frac{1}{3} \); and the resultant PG metrics are
\[ds^2 = 1 + \frac{2GM}{R} - \frac{1}{3} \, L^2 \, R^2 \, d \, \Omega^2. \]

These have constant curvature 3-metrics \(L^2 \, d \, \Omega^2 + g^2(r) d \, \Omega^2 \) with Ricci scalar \(R = 6kL^2 \). The usual spatially flat PG metric for Schwarzschild black hole coincides with \(= k = 0 \), and the criterion \((g^0) \, f) = \frac{2GM}{R} - \frac{1}{3} \) clearly holds. However with non-vanishing, in particular negative, cosmological constant \(< 0 \), we observe that \((g^0) \, f) = \frac{2GM}{R} + \frac{1}{3} \, L^2 \, R^2 \, d \, \Omega^2 \) if we insist on having spatially flat \(k = 0 \) slicings. Thus there is an explicit obstruction which prevents us from achieving spatially flat PG coordinates through physical Lorentz boosts.

This naturally leads to generalization of PG metrics which are not necessarily spatially flat but remain regular at the horizon(s). PG coordinates with non-vanishing constant curvature 3-metrics are the obvious candidates to consider. To wit, our construction above is already adapted to this analysis. For Schwarzschild-(anti-)deSitter metrics, the criterion \((g^0) \, f) = \frac{2GM}{R} + \frac{1}{3} \, L^2 \, R^2 \, d \, \Omega^2 \) can be guaranteed for all \(R \) if \(\frac{L}{R} \). This means that for the case of \(\) spatially flat \((k = 0) \) slicings can be attained, but for the anti-deSitter case, hyperbolic \((k = 1) \) 3-geometry is needed. Note that for \(> 0 \), all spatial topologies \(k = 0 \); 1 are allowed, but for \(k = 1 \) the range of \(R \) is governed by \(\frac{L}{R} \) \(\sinh r \), yielding \(R \) L which can be as large as possible since \(L \) is an arbitrary parameter which does not affect the 4-metric.

Generalization to PG coordinates beyond constant curvature slicings may also be required when more generic spherically symmetric metrics are taken into account. In particular, despite the attempt to construct flat slicings in [12], the same obstruction appears near the singularity of the RN metric. Using our construction above, but now with \(g(r) = \frac{f}{r^2} - L^2 \, a^2 \) and \(f = 1 + \frac{2GM}{R} + \frac{Q}{R^2} \) for RN metric, the resultant metric from Eq. (2) is then
\[ds^2 = 1 + \frac{Q^2}{R^2} \, dt_p^2 + \frac{R}{R^2 + \frac{Q^2}{R^2}} \, d \, \Omega^2 + dt_p \, 2GM \, R \, R^2 + \frac{Q^2}{R^2} \, d \, \Omega^2. \]

Actually the Kruskal extension of the standard Schwarzschild metric, covering both black and white holes, must include PG time coordinates \(dt_p \). In particular, the Eddington-Finkelstein coordinates \((p = 0) \) thus only covers half of the Kruskal extension (see, for instance, Sec.5.5 of Ref. [12]).
wherein $O = 0$ corresponds to spatially flat slicings which fail to satisfy the criterion \((g^2 - 1) = \frac{2G M}{R} - \frac{Q^2}{R^2} - 0 \) and give rise to complex PG coordinates for $R < R_c$. This “defect” was considered to be an asset of the PG formalism signaling the presence of unphysical negative interior mass M within R_c (see for instance the discussion in Sec. 31.6 of Ref. [11]). But it is possible to avoid complex PG coordinates if we give up spatially flat slicings. To wit, we observe that our criterion (3) here is $\frac{dR}{R} + \frac{d\theta}{\sin \theta} \neq 0$, which holds if we choose $R^2 > Q^2$. This implies the constant-t_p hypersurfaces (which are regular for $R > 0$) are no longer flat; but they can be characterized by the eigenvalues of the 3-dimensional Ricci tensor which are $\pm (0; 0; \frac{2G M}{R^2})$ indicating that these hypersurfaces are deviations from flat slicings due to the parameter O. In general, given f, an appropriate choice of g can be chosen to obtain the corresponding trouble-free PG coordinates which however do not always result in spatial flatness.

III. HAWKING RADIATION AS TUNNELING

PG metrics, which have the advantage of being regular at the horizon, have also been employed to study the physics of black hole evaporation. In their seminal work, Parikh and Wilczek[6] derived Hawking radiation as a tunneling process. Subsequently the method was generalized to cases with non-vanishing cosmological constant[14, 15, 16]. In what follows, we briefly recap the analysis with our generalized PG coordinates, and illustrate how ambiguities and difficulties which arise from the obstruction discussed earlier can be avoided by adopting our generalized PG metrics.

Hawking radiation is treated as tunneling across the horizon from initial position R_i to R_f of massless semiclassical s-wave emission carrying total positive energy $!$, and the black hole with initial mass parameter M shrinks by an amount ΔM in the process thereby maintaining energy conservation. The metric satisfying Einstein’s equations is taken to be $\frac{dM}{dt} = \frac{1}{L} g^0 \cdot \frac{g^2}{P} \cdot \frac{P}{i \frac{1}{H}} \cdot \frac{\partial \Phi}{\partial R}$.

The decay rate comes from the imaginary part of the particle action which is associated with $[6, 15]$

$$I = \int_{R_i}^{R_f} \frac{dR}{R} - \int_{R_i}^{R_f} \frac{d\theta}{\sin \theta} \cdot \left(\frac{dV}{dR} \right) ;$$

wherein $\frac{dV}{dR}$ in the integrand is evaluated at $M = 0$, and the pole is located at the horizon through which the tunneling occurs i.e. at R_i with $f(R_h) \equiv \frac{dV}{dR} = 0$. The integral over R is defined by deforming the contour to go through an infinitesimal semicircle $R = R_i + \epsilon i$ around the pole$, and its imaginary part is then

$$\text{Im} \int_{R_i}^{R_f} \frac{dR}{R} = \int_{R_i}^{R_f} \frac{d\theta}{\sin \theta} \cdot \left(\frac{dV}{dR} \right) ;$$

provided $\frac{dV}{dR}$ remains real (which is the same as criterion (3)). The final result

$$\text{Im} I = \frac{1}{2} \frac{dV}{dR} \left(\frac{dV}{dR} \right) ;$$

governing the decay rate is, remarkably, independent of $g(\tau)$, and hence the same for all our generalized PG coordinates discussed earlier. In Ref. [17] it was shown that $\text{Im} I$ is independent of the coordinates chosen as long as the metric is regular at the horizon. However, this proof still assumes the imaginary part of the action can be attributed entirely to the deformed contour around the pole. For PG coordinates, the result would be different and problematic due to the spurious contributions from the failure of (3) if spatially flat PG slicings are insisted upon. In particular, (3) will then acquire an additional spurious contribution from the imaginary part of the Cauchy principal value $\text{Im} \int_{R_i}^{R_f} \frac{dR}{R} g^0 \cdot \frac{g^2}{P} \cdot \frac{P}{i \frac{1}{H}} \cdot \frac{\partial \Phi}{\partial R}$.

To take the RN metric as an explicit example: if we define $1 = \frac{Q^2}{g R_p^2}$ with $0 < 1$ ensuring the existence of

\[3\] A positive decay rate is associated with clockwise traversal of the semicircle in the contour $\left(\frac{dR}{dR} \right)$.

an outer horizon, it can be seen that $R_b - R_c = GM \left(\frac{p}{c^2} - \right)$ can be arbitrarily small (albeit for rather extreme values of M and Q) and thus the tunneling region will involve values of $R < R_c$ for which spatially flat PG coordinates becomes problematic\(^4\). Similarly, with the SAdS metric, $R_b = \frac{2\rho}{\sinh \left(\frac{1}{2}\sqrt{3GM/R_\text{h}} \right)}$, and $R_c - R_b$ can also be small enough to create difficulties and ambiguities in the computation of $\Im I$ for spatially flat PG slicings. These problems can be avoided altogether by adopting our generalized PG metrics which are not spatially flat in general but chosen to ensure the physical requirement $\frac{\sqrt{p}}{\sqrt{c^2 - p^2}}$ remains real.

The change of the Bekenstein-Hawking entropy from $S = 2\Im I$ yields, at the lowest order, the temperature from the first law $T_{\text{eff}} \equiv \frac{1}{4} \frac{R_b^2 - R_c^2}{4\pi G M}$, which agrees with the Hawking temperature\(^{18}\) $T_H = \frac{1}{2\pi R_b}$; but deviations from pure thermal physics indicated by higher order corrections in $\Im I$ of Table I are displayed in the table below.

<table>
<thead>
<tr>
<th>Schwarzschild</th>
<th>Reissner-Nordström</th>
<th>Schwarzschild (anti-)deSitter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f = 1$</td>
<td>$g = \frac{2\rho}{\sinh \left(\frac{1}{2}\sqrt{3GM/R_\text{h}} \right)}$</td>
<td>$f = 1$ $g = \frac{2G M}{\sinh \left(\frac{1}{2}\sqrt{3GM/R_\text{h}} \right)}$</td>
</tr>
<tr>
<td>$2\Im I$</td>
<td>$8\pi G (M)$</td>
<td>$8\pi G (M)$</td>
</tr>
</tbody>
</table>

Table I: In the table, values of $\frac{\Im I}{\pi G}$ for various spherically symmetric spacetimes are shown for tunneling through the outer horizon of RN metric, and through the black hole horizon for the others. For the SAdS case, the expression $\frac{\Im I}{\pi G}$ should be understood as $\frac{\Im I}{\pi G}$, and the results are compatible with those for the case of $4 + 1$ dimensions in Ref.\([14]\). For pure Schwarzschild and RN metrics, the results agree with Ref.\([16]\). Note also that $S = 2\Im I$ as evaluated from \([15]\) coincides with the computation from the area law $S = \frac{\pi G}{\pi G} = \frac{\pi G}{\pi G}$.

Acknowledgments

This work has been supported in part by funds from the National Science Council of Taiwan under Grant No. NSC95-2112-M-006-011-MY3, and by the National Center for Theoretical Sciences, Taiwan.

\[\text{References}\]

1. Gullstrand A 1922 Allgemeine Lösung des statischen Einkörperproblems in der Einstein'schen Gravitationstheorie Arkiv. Mat. Astron. Fys. 16 1
5. Husain V and Winkler O 2005 Flat slice Hamiltonian formalism for dynamical black holes Phys. Rev. D71 104001 (gr-qc/0503031)
17. Zhou S J 2007 Hawking radiation as tunneling of self-gravitating shell Master’s thesis National Central University, Taiwan

\[^4\] The case of tunneling through both RN horizons for which expressions \([6]\) and \([7]\) will receive contributions from both of the poles has been discussed with Eddington-Finkelstein ($p = 0$) coordinates in Ren J Tuning effect of two horizons from a Reissner-Nordström black hole Int. J. Theor. Phys. DOI 10.1007/s10773-008-9818-7.