First results from 2+1 dynamical quark flavors on an anisotropic lattice: light-hadron spectroscopy and setting the strange-quark mass

Huey-Wen Lin, Saul D. Cohen, Jozef Dudek, Robert G. Edwards, Balint Joo, and David G. Richards
Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

John Bulava, Justin Foley, and Colin Momingstar
Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213, USA

Eric Engelson and Stephen Wallace
Department of Physics, University of Maryland, College Park, MD 20742, USA

K. Jimmy Juge
Department of Physics, University of the Pacific, Stockton, CA 95211, USA

Nilmani Matthur
Department of Theoretical Physics, Tata Institute of Fundamental Research, Mumbai 400005, India

Michael J. Peardon and Sinead M. Ryan
School of Mathematics, Trinity College, Dublin 2, Ireland

(Dated: April 27, 2013)
(Hadron Spectrum Collaboration)

We present the first light-hadron spectroscopy on a set of $N_f = 2 + 1$ dynamical, anisotropic lattices. A convenient set of coordinates that parametrize the two-dimensional plane of light and strange-quark masses is introduced. These coordinates are used to extrapolate data obtained at the simulated values of the quark masses to the physical light and strange-quark point. A measure of the Sommer scale on these ensembles is made, and the performance of the hybrid Monte Carlo algorithm used for generating the ensembles is estimated.

PACS numbers: 11.15.Ha,12.38.Gc,12.38.Lg

I. INTRODUCTION

Understanding the internal structure of nucleons has been a central research topic in nuclear and particle physics for many decades. As detailed experimental data continue to emerge, improved theoretical understanding of the hadronic spectrum will be needed to learn more about the complex, confining dynamics of quantum chromodynamics (QCD). Lattice calculations offer a means of linking experimental data to the Lagrangian of QCD, allowing access to the internal structure of any resonance.

At Jefferson Laboratory (JLab), an ambitious program of research into a range of hadronic excitations is underway. To date, the Hall B experiment has collected a large amount of data regarding the spectrum of excitations of the nucleons. The Excited Baryon Analysis Center (EBAC) aims to review all observed nucleon excitations systematically and to extract reliable parameters describing transitions between resonances and the ground-state nucleons. The 12-GeV upgrade of JLab’s CEBAF accelerator will make possible the GlueX experiment, which will produce an unprecedented meson data set through photoproduction. A particular focus will be the spectrum of hadrons with exotic quantum numbers, which can arise when the gluonic field within a meson carries non-vacuum quantum num bers. Such “hybrid” mesons offer a window into the confining mechanism and will be studied theoretically in some detail using lattice methods. Lattice spectroscopy can determine the properties of isoscalar mesons as well, including any possible candidate glueballs.

An accurate resolution of excited states using lattice QCD has proven difficult. In Euclidean space, excited-state correlation functions decay faster than the ground-state and at large times are swamped by the larger signals of lower states. To improve the chances of extracting excited states, better temporal resolution of correlation functions...
Making the lattice discretization anisotropic comes with a price, however. Since hypercubic symmetry is broken down to just the cubic lattice, relevant (dimenion-four) operators can mix in the lattice action. To ensure the continuum limit of the lattice theory has full Lorentz invariance, a nonperturbative determination of the lattice action parameters that enforce the sym m etry at nine lattice spacing in some e low-energy observables has been performed [10].

In work to be reported elsewhere, a perturbative determination of these action parameters is also being carried out by this collaboration.

In this study, we perform three-avor dynamical calculations with two degenerate light quarks and a strange quark. In a previous study, we tuned a three-avor lattice action to ensure Lorentz symmetry is restored in appropriately chosen low-energy observables. We showed empirically that restoring the sym m etry at quark mass below 175 MeV requires only small changes to the action parameters, and no further determinations of these parameters is needed within the scope of this study. Our fermion action is a Sheikholeslami-Wohlert discretization, generalized to the anisotropic lattice [12]. The fermion field interacts with the gluons via 3-dimensionally stout-smear [13] links, and the gluon action is a symmetric improved at the tree level of perturbation theory. To assess the cost of these dynamical calculations, we study the efficiency of the hybrid Monte Carlo (HM C) algorithm in large-scale production simulations.

Using current algorithm and computing resources, it remains impractical to run calculations at the physical value of the light-quark mass. An extrapolation of the light-quark dependence of simulation data is needed. While simulations straddling the correct strange-quark mass have been performed, determining the appropriate choice of mass in the Lagrangian is also problematic; a priori, this value is unknown and changing the bare strange-quark mass affects all lattice observables in a delicate way. This work proposes a simple means of setting the strange-quark mass by examining dimensionless ratios with mild behavior in the light-quark chiral limit. A new set of coordinates, parameterizing the space of theories with different light and strange-quark masses is introduced to help this process. We use the ratios $l = 9m^2/4m^2$ and $s = 9(2m^2 - m^2) = 4m^2$, inspired by expanding the pseudoscalar meson mass to leading order in chiral perturbation theory.

With this framework in place, the spectrum of some ground-state mesons and baryons is determined and extrapolated to the physical strange-quark mass using leading-order chiral perturbation theory. The Sommer scale [14] is determined in units of the Omega-baryon mass on a subset of our ensembles and extrapolated to the physical strange-quark mass. Using this method, we intend to continue our exploration of excited-state hadrons, including pseudoscalar and hybrid mesons. A clear means of handling unstable states is needed, and our suite of measurement technology is currently under further development. A study of these techniques on $N_f = 2$ dynamical lattices gives us confidence that more precise understanding of these states will be forthcoming.

The structure of this paper is as follows: In Sec. II, we will discuss the actions and algorithm used in this work, and the perform ance of the method used to generate Monte Carlo ensembles is examined. The details of the measurement ensembles performed on these ensembles are presented in Sec. III. Sec. IV presents the method we propose to set the strangequark mass, including the dimensionless coordinates used for extrapolating quantities measured at unphysical quark masses to the physical value. Our determination of a selection of states in the hadron spectrum and the Sommer scale is given in Sec. V. Some conclusions and future outlook are presented in Sec. VI.

II. SIMULATION DETAILS

In this section details of the lattice action and the performance of the hybrid Monte Carlo algorithm are presented. Monte Carlo simulations were performed on lattices with grid spacings of a_s and a_t in the spatial and temporal directions respectively and with physical volumes L_s^3, L_t where $L_s = N_s a_s$ and $L_t = N_t a_t$. Lattices with extents N_s^3, $N_t = 12^3$, 163, 243, 323 were employed.

A. Action

The gauge and fermion actions used in this work are described in detail in our previous work [13]. For completeness in this paper, we briefly review the essential definitions. For more detailed definitions, see Ref. [14].
For the gauge sector, we use a Sym anzík–improved action with tree-level tadpole–improved coefficients:

\[
S_G[U] = \frac{8}{N_c g} \sum_{x,p,s} \frac{5}{6u_h^2} P_{s,x}^{pe} + \frac{1}{12u_h^2} R_{s,x}^{pe} + \frac{4}{3u_h^2} P_{s,x}^{1e} + \frac{1}{12u_h^2} R_{s,x}^{1e} ; \quad \text{(1)}
\]

where \(g \) is the Wilson hopping term connecting odd sites with even (even sites with odd). The \(N_c = 3 \) indicates the number of colors, and \(u_h \) and \(u_e \) are the spatial and temporal tadpole factors. This action has leading discretization error at \(O(a_h^2) \) and possesses a positive-definite transfer matrix, since there is no length-two rectangle in the Hamiltonian.

In the fermion sector, we adopt the anisotropic clover fermion action:

\[
S_F[U; \bar{\psi}] = \frac{1}{2} \sum_{x,m,s} \bar{\psi}_m^{x,s} (1 + \frac{1}{u_e}) \psi_m^{x,s} + \frac{1}{2} \sum_{x,m,s} \bar{\psi}_m^{x,s} \gamma_5 \gamma_5 \psi_m^{x,s} + \bar{\psi}_m^{x,s} \gamma_5 \gamma_5 \psi_m^{x,s} \quad ; \quad \text{(2)}
\]

where \(\frac{1}{u_e} \) is the bare fermion anisotropy and \(a_h = a_t \) is the renormalized anisotropy. \(u_e, u_f, u_s, u_t \) are the elements of the Dirac matrixes. \(u_s \) denotes the dimensionless variables which connect to dimensionful quantities as: quark \(u_s = a_s = a_t \) and \(a_h^2 \) (with \(= \frac{1}{4} \)).

Tuning the anisotropy for all quark masses (even below the chiral limit) gives the desired \(g_P \) and \(g_\gamma \):

\[
g_P = 4 \beta; \quad g_\gamma = 3 \alpha
\]

B. Algorithm

We use the rational HMC (RHM C) algorithm for gauge generation. The theoretical aspects of our procedure were discussed in detail in Ref. The paper. Here we discuss only the aspects that are specific to the calculations presented in this work.

We use rational approximations for both the light-quark \(a_h \) and for the strange quarks \(a_s \). One \(a_h \) for each light-quark flavor and another one for the strange. We employ even-odd preconditioning for the Wilson clover operator, obtaining the Hamiltonian

\[
H = \frac{1}{2} \sum_{x} \text{Tr} \left(\frac{1}{2} \sum_{x} \log A_{ee} (m_1) \right) \sum_{x} \log A_{ee} (m_2) + S_F (m_1) + S_F (m_2) + S_G (m_3) \quad \text{(5)}
\]

where \(A_{ee} \) are the matrix conjugate to the gauge \(a_h \); terms involving \(A_{ee} \) contribute due to the parts of the preconditioned clover determinant coming from the submatrix connecting even sites; \(S_F (m_2) \) and \(S_G (m_3) \) are the parts of the gauge action involving loops in the spatial directions only and with loops including the time direction respectively; and \(S_F (m_1) \) are pseudofermion terms for the rational approximation to the fermion action corresponding to the light- and strange-quark \(a_h \), which we discuss below.

The pseudofermion terms \(S_F (m_1) \) employ a rational approximation to the fermion determinant coming from the submatrix connecting the odd sites for a quark with mass \(m \). This submatrix is

\[
M (m; U) = A_{ee} (m; U) \quad D_{ee} (U) A_{ee}^{-1} (m; U) D_{ee} (U) \quad ; \quad \text{(6)}
\]

where \(A_{ee} \) is the clover operator on the odd sites, \(A_{ee}^{-1} \) is the inverse clover operator on the even sites and \(D_{ee} \) is the Wilson hopping term connecting odd sites with even (even sites with odd). In all the expressions, \(U \) denotes stout-smearing gauge \(a_h U \), which were smearing as described in Subsection II A.
We solve the linear system resulting from applying R^\dagger to pseudofermion fields using the multi-shift conjugate gradient algorithm [18]. We use a stopping relative residual $r < 10^{-8}$ in our energy calculations where the residual for pole i is
\[r_i = \frac{M^\dagger M + q_i}{M^\dagger M + q_i}; \]
where q_i is the pseudofermion field and i is the solution corresponding to the i^{th} pole. However, since the multi-shift algorithm cannot be restarted, our stopping was based on estimates of r_i accumulated with the short-term recurrence in the solver algorithm, which may be slightly different from the true residual as defined in Eq. (8) due to solver stagnation and rounding effects. To minimize rounding effects we accumulated sums and inner products using double precision.

Our pseudofermion action terms are
\[S_F = \sum_i \frac{X_i}{p_i}; \]

\[X = R^\dagger M^\dagger M = \sum_i \frac{X_i}{p_i}; \]

individually for eachavor. We do not need to employ multiple pseudofermion fields peravor in this study.

During our simulation, we adjusted our approximation range by measuring eigenvalue bounds every trajectory during the process of their realization. Thereafter we continued to measure the bounds to ensure we do not suffer from boundary violations.

Our molecular dynamics process employs a rational force
\[F = \sum_i \frac{X_i}{p_i} \frac{dM^\dagger M + M^\dagger M}{dU}; \]

where i runs over the number of poles in the approximation R^\dagger. The derivatives are evaluated over the stoutened gauge U, and only the normal is recycled down to compute the force for the thin links U.

We employ a multiple-tim escale integration scheme for the molecular dynamics evolution [13] by nesting a second-order Omelyan [20, 21] integration step at each time scale. Our largest forces come from the temporal directions: the gauge force from S_G^{τ} and the temporal forces generated by the pseudofermion ions. To mitigate the numerical ort
TABLE III: Requested residua for the poles in the MD force approximation from the smallest shifts (leftmost) to larger shifts (rightmost).

<table>
<thead>
<tr>
<th>V</th>
<th>(a.m.; a.m.s)</th>
<th>poles for a.m.</th>
<th>residua</th>
<th>poles for a.m.s</th>
<th>residua</th>
</tr>
</thead>
<tbody>
<tr>
<td>24^3 128 (0.0840; 0.0743)</td>
<td>12</td>
<td>10^4;10^4;5 10^3;5</td>
<td>10^5;10^5;10^4;10^3;5</td>
<td>10</td>
<td>10^4;10^4;5 10^3;5</td>
</tr>
</tbody>
</table>

TABLE IV: The two timescales used in the molecular dynamics integration. The spatial timescale for the coarse scale is \(\Delta t_s \), and for the finer scale it is \(\Delta t_f \), which we display as a fraction of \(\Delta t_c \) here. We also show our MD time step anisotropy. On each scale, \(\Delta t_c = \Delta t_s = \Delta t_f = \Delta t_m = \Delta t_D \). Finally, we show the average acceptance rate for the molecular dynamics with these step sizes.

\[
\begin{array}{cccc}
V & (a.m.; a.m.s) & \Delta t_s & \Delta t_f \\
24^3 128 & (0.0840; 0.0743) & \frac{1}{5} & 3.5 \quad 0.71
\end{array}
\]

C. Thermalization and Autocorrelation

During the first segment of each gauge ensemble generation, some special conditions apply. We do not apply the acceptance test during the first 10 trajectories in each series, which allows a fast initial approach to the vicinity of the equilibrium. Such a scheme is particularly important in the case of simulations starting from totally ordered or disordered configurations. Wherever possible, however, we begin the algorithm with an equilibrated configuration from a simulation at nearby parameters. Also, during this phase (as mentioned above), the minimum and maximum eigenvalue bounds are updated every 5 trajectories.

Figure 1 shows its plaquette history for 24^3 128 volume and a.m. = 0.0840. Both plaquette histories (one excluding temporal links and the other including only plaquettes with temporal links) show that equilibrium is reached long before 1000 RHMC trajectories. Therefore, to allow for thermalization of our gauge ensembles during the RHMC, we discard the initial 1000 trajectories from each set.

Figure 2 shows a histogram of the lowest eigenvalues of the Dirac operator \(M^\dagger M \) for the light and strange quarks from the ensemble with 24^3 128 volume and a.m. = 0.0840. The lowest eigenvalues remain above the minimum eigenvalue bounds in which our rational approximation is valid. In addition, they show a clear gap away from zero, where the stability of the algorithm might be compromised.
The autocorrelation function is defined as
\[\langle t \rangle = \langle h(O(t^2)\ h^{\dagger} i)(O(t^2 + t)\ h^{\dagger} i)\rangle; \tag{12} \]
where \(h^{\dagger} i \) means taking an average over the samples, \(t \) is the trajectory difference in the autocorrelation (from \(t=1 \) to \(N \) total trajectories), and different \(t^2 \) (also indexing trajectory number) are averaged. To calculate the integrated autocorrelation length \(\langle t \rangle \), with jackknife-estimated errorbar, we first divide the configurations into blocks of size \(N_b \); we calculate \(\langle j(t) \rangle \) for jackknife index \(j \) by ignoring contributions when either \(t^2 + t \) is located within the \(j^{th} \) block and replace \(h^{\dagger} i \) by \(h^{\dagger} i_j \), the mean value without the \(j^{th} \) block. With a jackknife data set of length \(N=N_b \), we calculate integrated autocorrelation length,
\[\langle t \rangle_{\text{int}}(t_{\text{max}}) = \frac{1}{2} \sum_{t=1}^{N_{\text{max}}} \langle \chi_{\text{int}}(t) \rangle; \tag{13} \]
using standard jackknife procedure. The autocorrelations of the spatial plaquette from gauge ensemble \(a_{\mu_1} = 0.0808, 16^3 \ 128 \) are shown in Figure 3; the integrated autocorrelation length for the stout-smear plaquette is about 30 trajectories, which is about twice as large as the un-smear ones. The integrated autocorrelation length for lowest light and strange eigenvalues are about 13 and 10 trajectories respectively; shown in Figure 4. Figure 5 shows the case of pion and proton correlators at \(t = 30 \) on our largest spectrum measurement (518 configurations) ensemble, \(a_{\mu_1} = 0.0808, 16^3 \ 128 \). The integrated autocorrelation length is about 30 trajectories.
FIG. 3: Autocorrelation (t) and integrated autocorrelation length $
ho_{\text{int}}$ (in trajectories) for the unsmoothed (above) and smoothed (below) plaquette involving only spatial links from the ensemble with $16^3 \times 128$ volume and $a \cdot m = 0.0808$.

FIG. 4: Autocorrelation (t) and integrated autocorrelation length $
ho_{\text{int}}$ (in trajectories) for the up/down (above) and strange (below) quark eigenvalues from the ensemble with $16^3 \times 128$ volume and $a \cdot m = 0.0808$.
III. MEASUREMENT TECHNIQUES

In this section, the methods used to determine relevant spectroscopy data on the Monte Carlo ensembles are described. We have used well-established lattice spectroscopy technology throughout this calculation.

To better access ground-state correlation functions, we use the variational method \[24,26\]. Consider the generalized eigenvalue problem

\[
C(t) = \rho(t) C(t_0) \rho(t); \quad (14)
\]

where \(t_0 \) is chosen as the earliest time at which our model (given below) well describes the correlator \(C \). \(C_{ij}(t) \) is a two-point correlation function, composed from the operators \(O_i \) and \(O_j \). The correlation matrix can be approximated by a sum over the lowest \(N \) states:

\[
C_{ij}(t) = \sum_{n=1}^{N} z_{ni} z_{nj} e^{E_n(t-t_0)} \quad (15)
\]

\[
u_n(t) = \sum_{n=1}^{N} u_{ni} u_{nj} e^{E_n(t-t_0)} \quad (16)
\]

where \(E_n \) is the energy of the \(n^{th} \) state, and \(u_m \).

We extract the energies from the eigenvalues

\[
C(t_0) C(t) = C(t_0) \rho(t) \quad (17)
\]

which are obtained by solving

\[
C(t_0) C(t) = C(t_0) \rho(t) \quad (18)
\]

A. Hadron Correlation Functions

We perform measurements starting from trajectory 1000 on every 10\(^{th}\) trajectory, using the EiCG inverter (developed by A. Stathopoulos et al. in Ref. \[24\]) to calculate quark propagators (with CG residual set to \(10^{-8}\)). We use
Figure 6: Pion and rho (above) and proton and Delta (below) fitted masses as functions of t_{min} where t_{source} has been shifted to $t=0$. The bands indicate the final fitted masses summarized in Tables V and VI.

$$\newcommand{\source}{\text{source}} \newcommand{t}{t}$$

$\newcommand{\meson}{\text{meson}} \newcommand{\interpolat}{\text{interpolating}} \newcommand{\interpolatorm}{\text{interpolating operator}}$

TABLE V: Meson interpolating operators. States are sorted into columns according to the degree of strangeness from 0 (left two columns) to 1 (right column) and then according to total isospin.

<table>
<thead>
<tr>
<th>J^P</th>
<th>I</th>
<th>I^*</th>
<th>S</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^+</td>
<td>s</td>
<td>s</td>
<td>K</td>
<td>a_0</td>
</tr>
<tr>
<td>1^+</td>
<td>s</td>
<td>1</td>
<td></td>
<td>a_1</td>
</tr>
<tr>
<td>1^-</td>
<td>s</td>
<td></td>
<td>b</td>
<td>b_1</td>
</tr>
</tbody>
</table>

4 sources on each configuration, where a random source location is selected for the first source, and the remaining three are uniformly shifted by $N_{x,y,z}=2$ and $N_{t}=4$; this arrangement should reduce potential autocorrelations between configurations. We bin the data over spans of 5 m measurements.

In this work, we construct a 3×3 correlator matrix C_{ij} by using 3 different Gaussian smoothing widths (2 $f_{3/2}; 5f_{5/2}; 6f_{5/2}$) on the hadron operators. We extract the ground-state principal correlator and fit the ground-state mass using a cosh form. (We also try an exponential form on the principal correlator, and the results are consistent.) The t_{min} dependences (with $t_{\text{max}} = 50$) of the fitted masses are shown in Figure 6 for the pion, rho, nucleon and Delta. The fitted masses are very consistent between various choices of starting time in the ts.

We use meson interpolating fields of the form $q_i q_j$, which overlap with the physical states listed in Table V; charge conjugation C applies only to particles with zero net flavor. The estimated mass is $\frac{1}{2}m_1^2 + \frac{1}{2}m_2^2$. The ground-state masses are summarized in Table VI. We have two volumes (12^3 and 16^3) of the lightest ensemble, $m_s = 0.0540$, and two (16^3 and 24^3) on $a_1m_s = 0.0743$; no major finite-volume effects are observed, except for the a_1 mass from the $a_1m_s = 0.0743$ ensemble and baryon states from $a_1m_s = 0.0540$.

The octet baryons are calculated using the interpolating field $(q_i C \bar{q}_i q_j)\bar{q}_k$ (with $q_i = u=d$ or s quark); the uses 2 $(uC \bar{u}d) + (sC \bar{s}d)$ and the decuplet uses 2 $(q_i C (1+2)(1+4) q_j)\bar{q}_k + (q_i C (1+2)(1+4) q_j)\bar{q}_k$ (with $i = x, y$). The calculated octet and decuplet ground-state masses are summarized in Table VII. We observe a nice-volume discrepancy in the baryon sector on the lightest ensemble, $a_1m_s = 0.0540$. When we extrapolate the hadron masses to the physical limit, we will exclude the smallest volume sets: 12^3 with $a_1m_s = 0.0540$ and 16^3 with $a_1m_s = 0.0743$. Figures 7 and 8 show the squared (pion-mass dependence of these quantities. We note that for
At low pion masses, not all the states we calculate on the lattice are safe from decays. To check which particles may decay, we compare the particle masses to the threshold for two-particle energies in each channel. The vector mesons could decay to two pseudoscalars in a P-wave: \((p^+)(p^-)K^+K^-\) and \((p^+)(p^-)K^+K^-\), where the m in m* allowed m cm etrix p on the lattice is \(\frac{1}{\sqrt{2}}\). In Figure 5, we plot the lowest two-particle energy threshold for the \(m = 0.0540\) data with our two lattice extents (dotted-dashed line) and \(a_{\text{lat}} = 0.0743\) (dashed). All vector mesons in our calculation are well below threshold. The scalar mesons could decay to an S-wave, which puts the states slightly below the threshold. Similarly for the \(a_1\) and \(b_1\) mesons: \(a_1^+(0)\) and \(b_1^+(0)\) and \(b_1^+(0)\). In this case, we approximate the \(p^\) by the \(p\), since their masses are similar. The \(a_0, a_1\) and \(b_1\) (especially for the \(m = 0.0743\) ensemble) are slightly below the decay threshold. Fortunately, we have two volumes on the lightest \(m_j\); if these states are not single-particle, the ratios of their overlap factors between the two volumes should be of order 2 or higher [23]. We find the ratios (using point-point correlators) to be 0.87(2), 0.97(6) and 1 ± 0.6(1), which indicates that our measurements are of single-particle states. The decuplet baryons are free from decays into octet baryons. The lowest decay modes are: \(N(p^+)(p^+)(p^+)(p^-)\) and \(\bar{N}(p^+)(p^-)(p^-)(p^-)\) as shown in Figure 8. Overall, most of the particles are stable.

Finally, we ensure the renormalized fem ion anisotropy on the \(N = 2 + 1\) lattices. We tuned the fem ion anisotropy in the three-color action calculation in Ref. [14], where we found that the fem ion action coe cients are consistent for bare PCAC quark masses up to about 175 MeV. Figure 9 shows the m enon dispersion on the 24 128, \(a m_j = 0.0840\) and \(a m_j = 0.0743\) ensembl e. The effective mass plots are show n for the ground-state principal correlators at m enon p = \(\frac{1}{m}\) with n 201; 2; 3g; the tted range and extracted energies are show n as straight lines across the e cctive mass plots. The inset shows the tted renormalized fem ion anisotropy at each n.\(^2\). The speed of light is measured from the energy of the boosted hadron using \(a^2E_H (p^2) = a^2E_H (0)^2 + \frac{4}{3} \frac{p^2}{m_j^2}\). The values of c from the pion and rho mesons are about two and three standard deviations away from unity. Such a small deviation is also expected

Table V: Meson masses for \(N_f = 3\) and \(N_f = 2 + 1\) (in temporal lattice units).

<table>
<thead>
<tr>
<th>(N_f)</th>
<th>(m_{\text{lat}})</th>
<th>(m_{\text{en}})</th>
<th>(m_{\text{ed}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>96</td>
<td>0.0540</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0699</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0794</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0826</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0826</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0618</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0743</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0840</td>
<td>0.2781(9)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0840</td>
<td>0.2781(9)</td>
</tr>
</tbody>
</table>

Table VI: Baryon masses for \(N_f = 3\) and \(N_f = 2 + 1\) (in temporal lattice units).

<table>
<thead>
<tr>
<th>(N_f)</th>
<th>(m_{\text{lat}})</th>
<th>(m_{\text{en}})</th>
<th>(m_{\text{ed}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>96</td>
<td>0.0540</td>
<td>0.0540</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0699</td>
<td>0.0699</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0794</td>
<td>0.0794</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0826</td>
<td>0.0826</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0826</td>
<td>0.0826</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0618</td>
<td>0.0618</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0743</td>
<td>0.0743</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0840</td>
<td>0.0840</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0840</td>
<td>0.0840</td>
</tr>
</tbody>
</table>
FIG. 7: Al lm measured m eson m asses as functions of the squared pseudoscalar m asses. The diamonds and squares are m esured with \(m_s = 0.0540 \) but with two different vol um es, \(12^3 \times 96 \) and \(16^3 \times 96 \); the upwar d- poi nt ing t ri angl es are those with \(m_s = 0.0618 \) and \(12^3 \times 96 \) vol um es; the downwar d triangles and pentagons are m esured with \(m_s = 0.0743 \) and two di erent vol um es, \(16^3 \times 128 \) and \(24^3 \times 128 \). The (red) dot-dashed lines indicate the decay thresholds for the \(12^3 \) (upper) and \(16^3 \) (lower) m asses, while the (blue) dashed lines are for the \(16^3 \) (upper) and \(24^3 \) (lower) m asses. The lowest decay thresholds are

\[
\begin{align*}
(0)_+ + (0)_- & \rightarrow \Gamma \\
(0)_+ + \bar{K} & \rightarrow (0)_+ + (0)_- \\
K & \rightarrow (0)_+ + (0)_- \\
K & \rightarrow (0)_+ + (0)_- \\
\end{align*}
\]

where the minimum allowed m om entum \(p \) on the lattice is \(\frac{2L_s}{3} \).

on isotropic lattices. For example, c for the pi on and rho are about two standard deviations away from unity on the M ILC coarse asq ated lattice ensembles [29].

B. Static-Quark Potential

\(V(r) \), the energy of two static color sources separated by distance \(r \) provides a useful reference scale for spectrum calculations. This is m ost usefully described by the Som m er param et er \(r_0 \), defined by the condition

\[
r^2 \frac{\partial V(r)}{\partial r} \bigg|_{r = r_0} = 1.65
\]

(19)

The potential is computed by \(m \) easuring correlations between operators creating a static color source in the fundamental representation of SU (3), connected via a gauge covariant parallel transporter to a source in the 3 representation. The gauge connector can be formed by any sum of path-ordered products of link variables that respects the sym m etry of rotations about the inter-source axis. Better ground-state operators are formed by using stout-smear ed link variables in the path-ordered connections and by using an operator optim ized using the variationalm ethod.

A basis of ve operators is constructed from the set of straight connectors and staples linking the mid-point between the two color sources. In forming the ten temporal correlators, straight, unstap ed ten temporal links are used for the propagator of the static source. A ve-by- ve correlation m atrix, \(G_{ij}(r;t) \) is then computed for a range of time
Figure 8: All measured baryon masses as functions of the squared pseudoscalar masses. The diamonds and squares are measured with $m_s = 0.0540$ but with two different volumes, $12^3 \times 96$ and $16^3 \times 96$; the upward-pointing triangles are those with $m_s = 0.0618$ and $12^3 \times 96$ volume; the downward triangles and pentagons are measured with $m_s = 0.0743$ and two different volumes, $16^3 \times 128$ and $24^3 \times 128$. The (red) dot-dashed lines indicate the decay thresholds for the 12^3 (upper) and 16^3 (lower) $m_s = 0.0540$ ensembles, while the (blue) dashed lines are for the 16^3 (upper) and 24^3 (lower) $m_s = 0.0743$. The lowest decay thresholds are: $\Lambda N(p) + (p)$, $\Lambda (p) + (p)$, $\Lambda (p) + (p)$, where the minimum allowed momentum p on the lattice is $\frac{1}{2} L$.

Separations t and values of r for 11 $N_s = 2q$ along a lattice axis. As outlined in the previous subsection, this correlation matrix can be analysed using the variational method to make a more reliable ground-state energy extraction.

Once the potential energy for a range of values of r has been determined, the data are compared with the Cornell model,

$$V(r) = V_0 + \frac{-1}{r} + \frac{1}{r};$$

(20)

and best-fit values for the parameters V_0 and V_0 are determined. See an example from one of our ensembles ($a_{\ell m_1} = 0.00808$ and $a_{\ell m_2} = 0.0743$) in Figure 10. In all cases, a small range of r values that span r_0 are used. Once values of these parameters are computed, a value of r_0 was derived from Eq. 19. The QCD flux-tube is expected to break in the presence of dynamical quarks and the ground-state of the system should not be modelled by the Cornell potential at large separations. We the data to Eq. 19 in a sufficiently small range of r such that this issue does not arise. No good evidence of this "string-breaking" effect was observed in our data at larger separations. This observation is consistent with previous investigations [30], which established the need to include appropriate operators that construct two disconnected static-source-light-quark system to measure the full spectrum.
FIG. 9: Effective-mass plots using the ground-state principal correlators from the pion and rho-meson m-sets at 4 different m-confs on the lightest ensemble ($m_s = 0.0743$) with volume 24^3. The insets show the energy squared in temporal lattice units versus n^2, which is related to the momentum by $p^2 = \frac{2}{n_s^2} n^2$.

FIG. 10: Results for the static-quark potential for the $a_t m_s = 0.0808$, $a_t m_s = 0.0743$ mass set. The left panel shows the effective energies, $a_t V(r)$ for each r. The right panel shows the resulting fit to the potential using Eq. 20.

IV. CHOOSING THE BARE STRANGE-QUARK MASS

The appropriate value for the strange-quark mass in the lattice action is not known a priori. The Wilson formulation makes the task of choosing a sensible value for this parameter more difficult, as the breaking of chiral symmetry at the action level induces an additive mass renormalization. In dynamical simulations, changes to the strange-quark mass parameter in the action cause all observables to change. We suggest a helpful starting point for solving this issue is to determine where reference simulations lie in a parameterized two-dimensional coordinate system. Note that to leading order in chiral perturbation theory, the pseudoscalar masses are related to the quark masses via

$$m_P^2 = 2B (m_{q_1} + m_{q_2});$$ \hspace{1cm} (21)

where B is a low-energy constant and m_{q_i} are the quark masses that compose the meson. The light-quark dependence can be eliminated using the linear combination $(2m_P^2 - m_0^2)$. A useful property of a new coordinate system would be to remove all explicit dependence on the lattice cutoff. Such a dependence can be suppressed (if not completely removed) by taking ratios of hadron masses. One good candidate is the baryon mass, which is stable against QCD decays and which has a simplified chiral extrapolation due to its lack of light valence quarks. An alternative is the $(1/2)$, which also decays only weakly and is statistically clean to measure. Appendix A shows a comparison between
TABLE IX: Values of l and s.

<table>
<thead>
<tr>
<th>N_f</th>
<th>$a m_s$</th>
<th>$a m_t$</th>
<th>$a m_n$</th>
<th>$a m_{a}$</th>
<th>$r_0=a_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>96</td>
<td>0.0826</td>
<td>0.0540</td>
<td>3.221(25)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0794</td>
<td>0.0540</td>
<td>3.110(31)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0699</td>
<td>0.0540</td>
<td>2.752(77)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0540</td>
<td>0.0540</td>
<td>2.511(14)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0618</td>
<td>0.0618</td>
<td>2.749(37)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>0.0840</td>
<td>0.0743</td>
<td>3.646(10)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>0.0808</td>
<td>0.0743</td>
<td>3.511(12)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>128</td>
<td>0.0743</td>
<td>0.0743</td>
<td>3.214(10)</td>
<td></td>
</tr>
</tbody>
</table>

TABLE V: Some other scale $r_0=a_s$.

<table>
<thead>
<tr>
<th>N_f</th>
<th>$a m_s$</th>
<th>$a m_t$</th>
<th>$a m_n$</th>
<th>$a m_{a}$</th>
<th>$r_0=a_s$</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>96</td>
<td>0.0540</td>
<td>0.0540</td>
<td>0.564(14)</td>
<td>0.564(14)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0699</td>
<td>0.0540</td>
<td>0.85(10)</td>
<td>0.1992(17)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0794</td>
<td>0.0540</td>
<td>2.314(10)</td>
<td>0.1939(17)</td>
</tr>
<tr>
<td>12</td>
<td>96</td>
<td>0.0826</td>
<td>0.0540</td>
<td>0.148(6)</td>
<td>0.1144(19)</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>0.0618</td>
<td>0.0618</td>
<td>0.549(19)</td>
<td>0.2322(15)</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>0.0743</td>
<td>0.0743</td>
<td>0.397(7)</td>
<td>0.1483(2)</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>0.0808</td>
<td>0.0743</td>
<td>0.231(6)</td>
<td>0.384(11)</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>0.083</td>
<td>0.0743</td>
<td>0.154(4)</td>
<td>0.363(8)</td>
</tr>
<tr>
<td>16</td>
<td>96</td>
<td>0.0840</td>
<td>0.0743</td>
<td>0.124(4)</td>
<td>0.367(10)</td>
</tr>
<tr>
<td>24</td>
<td>128</td>
<td>0.0840</td>
<td>0.0743</td>
<td>0.1205(15)</td>
<td>0.363(4)</td>
</tr>
</tbody>
</table>

These two choices. Therefore, we suggest two dimensionless coordinates, l and s:

\[l = \frac{9m_a^2}{4m_s} \] \hspace{1cm} (22)

\[s = \frac{9(2m_a^2 - m_s^2)}{4m_s} \] \hspace{1cm} (23)

where the factor of 9=4 is a convenient normalization which makes $l = s = 1$ in the static-quark limit. Note that three-avor-degenerate theories lie on the diagonal line across the unit square. Table IX summarizes all the f1;g values calculated in this work. Hadron masses are taken from Tables V and VII in Sec. V.

In Figure II, we locate all the simulations performed in this work using their l-s coordinates. The dashed line runs horizontally from the physical point. We add two more strange-mass candidates: 0.0618, 0.0743 which are the points on the diagonal line. The choice of 0.0743 seems to anchor the correct m_s value for $N_f = 3$ within one standard deviation of physical. Since we expect only a few percent deviation coming from the next-to-leading effects on s, we settle on $a m_s = 0.0743$ for our final choice of strange bare mass; the points to the left of the $N_f = 3$ points are $N_f = 2 + 1$ points with xed strange input parameters. At the lightest simulation point, s only differs from $N_f = 3$ by less than 2%. The running of the quantity s is indeed small and is thus a good means for tuning the strange-quark mass for xed-simulation. We note however, that the trajectory followed by simulations as bare lattice parameter changes is dependent on the details of the lattice action and is not universal; different actions may follow different paths as their bare parameter change.
Figure 11: The location of the dynamical ensembles used in this work in the s-l plane. The circle (black) indicates the physical point f^{phys}, s^{phys}. The (red) diamonds and squares are generated on 123 96 and 163 96 lattices with $a_m s = 0.0540$; the (green) upper triangle is the ensemble on a 123 96 lattice with $a_m s = 0.0618$ and (blue) upside-down triangles and pentagons represent the ensembles on 163 128 and 243 128 lattices with $a_m s = 0.0743$. Detailed parameters can be found in Table IX. The horizontal dashed (pink) line indicates constant s from the physical point and the diagonal line indicates three-avor degenerate theories.

V. EXTRAPOLATION TO THE PHYSICAL QUARK MASSES

Following the discussion in Sec. IV, we adopt the coordinates l and s to perform extrapolation of the meson and baryon masses. To avoid the ambiguity in the lattice-spacing determination, we extrapolate mass ratios $\frac{m_H}{m_m}$ using the simplest ansatz consistent with leading order chiral effective theory,

$$\frac{m_H}{m} = c_0 + c_1 l + c_2 s$$ (24)

with $n = 2$ for pseudoscalar mesons and $n = 1$ for all other hadrons. With such a parametrization, care is needed to take account of the statistical errors of l and s in the t. Consider a general t of the form $f = a + bx + cy$ where f, x and y are all quantities with statistical error. We wish to find the combination of a, b, c which minimizes

$$\sum_i \left(f_i(a;b;c;x_i;y_i) - \frac{hf_i}{l^2 + b^2 x_i^2 + c^2 y_i^2} \right)^2$$ (25)

where i indexes different data points $f(x,y)$, h is a mean over all configurations and f is the statistical error of each quantity. The extrapolation (minimizing a quantity as in Eq. 24 with $f = \frac{m_H}{m}$, $x = l$ and $y = s$) is taken to physical f, x, y and we then take m as experimental input to make physical predictions.

A. Hadrons

The 2-dof for the ts of hadronic data are all around or smaller than 1 for both meson and baryon masses. Figures 12 and 13 show the "sliced" plots of selected mass ratio with xed l (or s). The s are almost a constant for the same sea $a_m s$; this is why we see almost a single extrapolated line in the left column of the figures. The hadron masses linearly increase with l and decrease with s. The ratio of $f = m$ is almost constant with respect to s, indicating its insensitivity to the sea strange mass. The strange-mass dependence is almost completely canceled.
out in such a combination. Later in the appendix, we see the quantity \((2m_x^2 - m^2) = m^2 \) is relatively constant with respect to changes in \(m^2 \).

Figure 14 and the first column in Table X summarize all of our extrapolated masses along with the experimental values. The second half of the plots shows the relative discrepancy in percent between our calculation and the experimental numbers. The meson sector appears to have good agreement with experiment; overall, 0.1\% discrepency from experimental values. The biggest discrepancy comes in the \(K \), which we estimate using a combination of light and strange pseudoscalar mesons. All the vector mesons are in good consistency with experiment; the \(\phi \) meson is only 12\% away. These vector mesons are below the decay threshold on our ensemble; no decays are observed. The extrapolated scalar meson \(a_0 \) is consistent with the resonance at 980 MeV. The \(b_0 \) meson is slightly higher than \(a_0 \), and both of them are 2\(\frac{3}{3} \) away from experiment.

The baryon sector, on the other hand, does not work as well as the meson extrapolation. Non-strange baryons, such as nucleon and Delta, have the biggest discrepancy, by as much as 8.5\%. This is likely due to contributions from next-to-leading-order chiral perturbation theory (or pion-loop contributions), which are not as negligible as the meson ones. This becomes evident as we increase the number of strange quarks in the baryon: the discrepancy is smaller in the Sigma and cascade. To have better control of the chiral extrapolation to higher order, we must have better statistics on these meson ensembles; this will be a task for the near future once we combine all of our gauge generation.

Finally, we compare the extrapolation results using all \(a_0m_5 \) ensembles and using a single ensemble of either \(a_0m_5 = 0.0540 \) or \(a_0m_5 = 0.0743 \) alone; results are summarized in Table X. In both cases, the meson ensembles are in good agreement with experiment; this is expected once we go to 1.672 GeV. However, the kaon masses from \(a_0m_5 = 0.0540 \) ensemble are almost 17\% away from experimental ones. This is also not surprising since the \(a_0m_5 = 0.0540 \) ensemble was selected using the J parameter strange-quark mass setting, where M ILC had seen 14(25\% discrepancy in the strange-quark mass tuning. The kaon mass from the \(a_0m_5 = 0.0743 \) ensemble, on the other hand, is only 3\% away from the physical one, which is relatively close for a tuning using degenerate light and strange masses. The extrapolations using \(a_0m_5 = 0.0743 \) alone versus all \(a_0m_5 \) ensembles are in rough agreement within a few\%, indicating that \(a_0m_5 = 0.0743 \) is a good candidate for gauge generation.

B. Sommer Scale at the Physical Quark Masses

Using the static-potential data in Table VII, we can extrapolate \(r_0m \) to the physical limit using \(f_{1s}g \) coordinates and the simplest functional form:

\[
r_0m = f_0 + f_1l + f_2s \tag{26}
\]
Figure 12: Selected meson mass ratios as functions of l and s. Differently shaded (or colored) points correspond to the a_{π}, m_{π} combinations in Figure 15; detailed numbers can be found in Table 5. The smaller-volume ensembles with $a_{\pi}, m_{\pi} = f_{0,0625}; 0.0540$ and $f_{0,0743} g_{0,0840}; 0.0743$ are excluded from the fits. The lines indicate the "projected" leading chiral extrapolation at l and s while keeping the other one fixed. The black (circular) point is the extrapolated point at physical l and s.

\begin{align*}
(\frac{m_{\pi}}{m_{\eta}})^2 \\
\frac{m_{\eta}}{m_{\eta}} \\
\frac{m_{e^{-}}/m_{\pi}}{m_{e^{-}}/m_{\pi}} \\
\frac{m_{e^{+}}/m_{\pi}}{m_{e^{+}}/m_{\pi}} \\
\frac{m_{e^{-}}/m_{\pi}}{m_{e^{-}}/m_{\pi}} \\
\frac{m_{e^{+}}/m_{\pi}}{m_{e^{+}}/m_{\pi}} \\
\frac{m_{e^{-}}/m_{\pi}}{m_{e^{-}}/m_{\pi}} \\
\frac{m_{e^{+}}/m_{\pi}}{m_{e^{+}}/m_{\pi}}
\end{align*}
\begin{figure}
\centering
\includegraphics[width=\textwidth]{figs/fig13}
\caption{Selected baryon mass ratios as functions of the l and s. Differently shaded (or colored) points correspond to the $a_{s_{1/2}}$ combinations in Figure 15; detailed numbers can be found in Table V. The smaller-volume ensembles $a_m = 0.026$, 0.0540 and 0.0743 are excluded from the fits. The lines indicate the "projected" leading chiral extrapolation to l and s while keeping the other one fixed. The black (circular) point is the extrapolated point at physical l and s.}
\end{figure}
FIG. 14: Summary of the extrapolated hadron masses compared with their experimental values.

FIG. 15: The assignment of colors from different ensembles in coordinates $a_t f m_1 m_s g$. The convention will remain consistent when used again for later extrapolations.

Once this parameterization is known, m serves as experimental input and r_0 becomes a physical prediction. Using this technique, we determine the Sommer scale in the physical limit, r_0^{phys}. We compute a dimensionless ratio $\frac{a_t}{r_0}(a_t m)$ and extrapolate using Eq. (25). After a chiral extrapolation including all three strange ensembles, we find the dimensionless ratio $r_0 m = r = 1.100(11)$. The "sliced" fits projected on to a single parameter l (left) and s (right) at each point are shown in Figure 16. Then we substitute in the physical Omega mass to find

$$r_0^{\text{phys}} = 0.454(5) \text{ fm},$$

with $2\text{dof} = 1.5(0.7)$ and $\text{dof} = 6$. The biggest $^2_\chi^2$ contribution comes from the $a_t m = 0.0618$ ensemble. If we drop it, we improve $2\chi^2 = 0.92(0.60)$ but only a small change to $r_0^{\text{phys}} = 0.451(5) \text{ fm}$. Extrapolating using a ratio with m rather than m_s gives $r_0^{\text{phys}} = 0.446(4) \text{ fm}$. These data are consistent with the MILC result in Ref. [3], which gave a continuum-extrapolated value of 0.462(12) fm.

C. Scale Setting

We determined the lattice cut-off (in physical units) at the physical point. Again, we follow the strategy of using the Omega-baryon to set the scale in physical units. A best fit of all simulation data to the model

$$a_t m = d_0 + d_1 l + d_2 s$$

has $2\text{dof} = 310$. Inputting the physical coordinates $f l ; s g = f 0.9153; 0.379g$ yields $a_t = 0.03506(23) \text{ fm}$ and $a_s = 0.127(8) \text{ fm}$. The low quality of the fit provides us with further incentive to avoid expressing the lattice cut-off.
scale in physical units except in an extrapolation to the continuum. No continuum extrapolation is possible with our current data set, since all our ensembles have a common value of the gauge coupling.

VI. CONCLUSION AND OUTLOOK

This paper presents our first investigation of a number of states in the light hadron spectrum of QCD with \(N_f = 2+1 \) dynamical flavors. Simulations were performed on anisotropic lattices with the ratio of spatial and temporal scales xed non-perturbatively to \(a_s = a_t = 0.15 \).

The focus of this work has been to test a simple method for determining the bare strange-quark mass, to allow us to approach the physical theory. Conventionally, this has been di cult to achieve, as there is delicate coupling between lattice action parameters and the cut-o scale. We found it extremely useful to introduce a pair of coordinates, \(s \) and \(l \) to parameterize the two-dimensional space of quark mass values. The degenerate three-flavor theory corresponds to the line \(l = s \). To leading order in the chiral effective theory, these two coordinates are proportional to the strange and light-quark masses. These coordinates have been shown to be useful for our simulations since they show mild dependence on changes to the lattice light-quark mass. This shows that a good approximate value of the strange quark mass can be found by following the three-flavor degenerate line to the point where \(s \) takes its physical value before changing the light-quark mass, a strategy adopted in this calculation.

With a lattice strange-quark mass close to the physical value, a number of the simplest light hadrons were investigated. The nine-volume eects for the mesons were checked on our data sets and found to be mild. Of the states we investigated, the \(a_0; a_1; b_1 \) mesons could have decayed on our lattices. However, checking the overlap factors of the interpolating operators with the ground states on different volumes suggests that the states we measured are predominantly resonances. For the octet and decuplet baryons, a similar analysis predicts that they are stable in our study. At the heavy strange-quark mass where calculations on \(12^3 \) lattices were performed, some nine-volume eects were seen, but they were negligible on the larger lattice volumes.

Physical predictions have been made by extrapolating simulation data as a function of these coordinates to the physical point, \(f_1; g = f_0 \pm 0.153 \pm 0.0379 \). These extrapolations have been seen to be robust and have the advantage of making no reference to the lattice cut-o. This should enable reliable contact with chiral effective theories to be made. In this analysis, only the most na"ive extrapolations have been performed, and some discrepancy between extrapolated hadron masses and experimental data remains. It is encouraging to note that at worst, this discrepancy is less than 5% for mesons. The largest mismatch occurs in the u-mass determination, which disagrees with experiment by 8%. It is likely that the use of a naive extrapolation is responsible. No extrapolation to the continuum \(\text{lim} \) has been carried out; at present, calculations at a single value of the gauge coupling have been performed, so no such analysis is possible.

The collaboration has begun to explore more challenging measurements on the ensembles described in this work. The anisotropic lattice should allow us to resolve heavier excited states and those states which have traditionally been statistically rather in precise with better accuracy. These more delicate calculations include the hybrid and isoscalar mesons, including the glueballs. We are con dent that a detailed picture of a broad range of light-hadron physics will emerge soon from these analyses.
This work was done using the Chrom a software suite [32] on clusters at Je er son Laboratory using time awarded under the USQCD Initiative. We thank Andreas Stathopoulos and Kostas Orginos for implementing the EigCG inver- [23]or in the chroma library, which greatly speeded up our calculations. This research used resources of the National Center for Com putational Sciences at Oak Ridge National Laboratory, which is supported by the Office of Science of the Department of Energy under Contract DE-AC05-00OR22725. In particular, we made use of the Jaguar Cray XT facility, using time allocated through the U.S. DOE INCITE program. This research was supported in part by the National Science Foundation (NSF-PHY-0653315 and NSF-PHY-0510020) through Teras Grid resources provided by Pittsburgh Supercom putting Center (PSC), San Diego Supercom putting Center (SDSC) and the Texas Advanced Com puting Center (TACC). In particular, we made use of the BigBen Cray XT3 system at PSC, the Blue Gene/L system at SDSC, and the Rangers in the IBM Constellation Cluster at TACC. JJ, JF, and CM were supported by grants NSF-PHY-0653315 and NSF-PHY-0510020; EE and SW were supported by DOE grant DE-FG-02-93ER-40762; NM was supported under grant No. DST-6R/S2/RJN-19/2007. MP and SR were supported by Science Foundation Ireland under research grants 04/BRG/0275, 04/BRG/0266, 06/RFP/PHY061 and 07/RFP/PHYF168. MP and SR are extremely grateful for the generous hospitality of the theory center at TJNAF while this research was carried out. Authorized by Je er son Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a non-exclusive, paid-up, irrevocable, worldwide license to publish or reproduce this manuscript for U.S. Government purposes.

In this work, we have been using the dimensionless parameters \(f_{\text{sg}} \) (defined in Eq. 22) to set the strange-quark mass and to extrapolate hadron mass ratios. In this section, we discuss alternatives to the : 1. the strange vector meson, which like the contains no valence up or down quarks; 2. the octet, which is statistically cleaner to measure than the decuplet; 3. a linear combination of octet baryons, where the linear combination is selected to hopefully cancel out the leading-order up/down-quark dependence.

We first look at the \(s_X \) dependence on the sea strange mass, a similar strategy as described in Sec. IV. Figure 17 is a similar to Figure 11, which we used to tune the sea strange quarks. The blue up-side-down triangles \((V = 16\) and pentagon \((24\) are points from the \(a_m = 0.0743 \) ensembles, the red diamonds \((V = 12\) and squares \((16\) are from \(a_m = 0.0540 \) and the green triangles are from \(a_m = 0.0618 \). The leftmost plot corresponds to \(X = 0 \), and it shows the strong dependence of \(s_X \) on \(a_m \) that we are looking for to tune the strange-quark mass. The \(X = 0 \) could be a alternative for setting the strange quark mass. This result also agrees with our choice of sea strange at \(a_m = 0.0743 \). The results from \(s (\text{middle plot}) \) show negligible sea strange dependence on \(N_f = 2 + 1 \); this makes it a poor index for tuning the bare strange quark, since we cannot distinguish when sea quarks are not degenerate anymore. Somewhat the sea quark freedom of the light quark in the baryon dominates the chiral behavior, since the \(a_m = 0.0743 \) set is running up toward the physical line. This running is greatly improved when we consider \(X = 2 \), which lies on the physical line for all \(X \). However, it is a poor candidate for tuning, since it shows little dependence on \(s_X \).

Let us move on to how the extrapolation behavior depends on the choice of \(X \). Table 5 summarizes the results for all choices of \(X \). The extrapolation (performed according to the minimization process described in Eq. 25) uses all three \(a_m \) ensembles without the smaller volume on the lightest ensemble of \(a_m = 0.0540 \) and \(a_m = 0.0743 \) sets. The \(X = 2 \) has the poorest \(\chi^2 \text{dof} \) among them; all we will throw it away for reliable extrapolation comparison. The \(X = 0 \) has similar \(\chi^2 \text{dof} \) to the but slightly worse. This is possibly due to its insensitivity to \(s \) during the extrapolation. The \(X = 0 \) should be quantitatively comparable to \(X = 0 \) coordinates. However, due to the lightness of the mass, it is not difficult to see that the next-leading-order contributions to the extrapolation would be larger than the \(X = 0 \), causing it to be a slightly poorer at leading order. Even though the \(X = 0 \) has smaller statistical error, we expect the systematic error to be higher than \(X = 0 \). We will leave estimation of the systematics to future precision calculations, where statistical error will be more reasonable. Still, we see good consistency between \(X = 0 \) and \(X = 0 \) results, which reinforces our belief in the stability of extrapolations using the dimensionless coordinates \(f_{\text{sg}} \).

![Figure 17: The \(s_X - k \) plot with \(X = 0 \) (left) and the linear combination \(X^\text{phys} = s_X^\text{phys} \). The (red) diamonds and squares are \(12 \) and \(16 \) from \(a_m = 0.0540 \) ensembles; (green) upper triangles are from \(12 \) and \(16 \) from \(a_m = 0.0618 \) and (blue) upside-down triangles and pentagons are from \(16 \) and \(12 \) and \(24 \) from \(a_m = 0.0743 \) ensembles. Detailed parameters can be found in Table 11. The horizontal dashed (pink) line indicates physical \(s_X \) and the straight diagonal lines indicate the \(SU(3) \) limit.](image-url)
TABLE XI: Hadron masses (in GeV) obtained from \(m_{\bar{d}} - m_{X} \) \(^2\) (n = 2 for pseudoscalar mesons and 1 for the other hadrons) extrapolations in terms of \(f_{\pi} s_{g} \) with X = 2 f ; \(s_{g} \) using all strange-ensemble ensembles. The square brackets indicate the \(^2\)-dof on the \(t \) and the second parentheses denote the central value deviations from experimental values in percent.

<table>
<thead>
<tr>
<th></th>
<th>(X = 1)</th>
<th>(X = 2)</th>
<th>(X = 3)</th>
<th>(X = 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_{m})</td>
<td>0.570(5)0.04</td>
<td>0.569(2)0.14</td>
<td>0.570(3)0.1</td>
<td>0.569(3)0.11</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>0.780(8)0.72</td>
<td>0.795(5)2.08</td>
<td>0.785(7)2.44</td>
<td>0.819(7)3.95</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>0.896(7)0.49</td>
<td>0.907(3)1.77</td>
<td>0.905(5)2.3</td>
<td>0.933(5)3.73</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.011(6)0.42</td>
<td>n/a</td>
<td>1.023(5)1.92</td>
<td>1.044(5)3.3</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>0.986(6)0.3</td>
<td>0.99(6)0.29</td>
<td>0.977(7)0.33</td>
<td>1.00(7)0.3</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.193(0)7</td>
<td>1.213(3)0.76</td>
<td>1.183(3)1.42</td>
<td>1.233(3)1.73</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.263(1)0.39</td>
<td>1.283(3)0.85</td>
<td>1.273(3)0.9</td>
<td>1.323(3)2.58</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.020(12)0.49</td>
<td>1.029(10)0.89</td>
<td>1.007(6)0.56</td>
<td>1.048(9)0.83</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.216(10)0.62</td>
<td>1.226(8)1.21</td>
<td>1.211(4)2.7</td>
<td>1.243(7)3.81</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.319(9)0.8</td>
<td>1.323(7)1.42</td>
<td>n/a</td>
<td>1.345(4)3.47</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.166(10)1.18</td>
<td>1.176(8)1.86</td>
<td>1.161(3)0.54</td>
<td>1.194(6)1.6</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.325(12)0.97</td>
<td>1.335(17)1.38</td>
<td>1.312(18)1.68</td>
<td>1.356(19)2.66</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.464(19)0.27</td>
<td>1.464(15)1.41</td>
<td>1.450(15)1.41</td>
<td>1.490(17)2.49</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>1.566(6)1.2</td>
<td>1.568(12)1.03</td>
<td>1.561(13)1.15</td>
<td>1.593(15)2.22</td>
</tr>
<tr>
<td>(a_{m})</td>
<td>n/a</td>
<td>1.685(10)0.37</td>
<td>1.683(12)0.89</td>
<td>1.708(12)1.82</td>
</tr>
</tbody>
</table>

APPENDIX B: STRANGE-SETTING COMPARISONS

The \(J \) parameter [5] is one common way to set the strange-quark mass; it is defined as

\[
J = \frac{d m_{\nu}}{d m_{p}} = \frac{m_{p} (m - m_{s})}{2 (m_{s} - m_{p})}.
\] (B1)

Here we examine how the parameter works for setting the strange-quark mass in our calculation. The upper four points in Figure 18 are from \(N_{f} = 2 + 1 \) at \(x_{m} \) with \(m_{s} = 0.0540 \) and \(m_{s} = 0.0699 \); \(0.0774 \) and \(0.0826 \) from right to left with two volumes on \(0.0826 \) (12\(^{3}\) and 16\(^{3}\)). We fit the experimental value \(J_{exp} \) with the \(m_{st} = 0.0699 \) and the remaining points are within 1 of \(J_{exp} \). However, when we tried to extrapolate the kaon mass (see Sec. V), we found that this mass scale the experimental value by about 17%. Such a mass shift resulting from tuning the strange mass using the \(J \) parameter has previously been reported in the literature. For example, MILC also found their lattice \(J \) parameter on their coarse and fine lattices agrees with \(J_{exp} \), but after extrapolation they found the sea strange-quark mass to be only 25% and 14% on the coarse and fine lattices respectively. Although the discrepancy seems to become smaller for the finer lattices, the \(J \) parameter does not seem to be an ideal quantity for strange-quark tuning. Similar conclusions can also be reached by observing the 4 lower points in Figure 18 which correspond to a \(m_{s} = 0.0743 \) \(N_{f} = 2 + 1 \) simulation, these are only two away from the points for \(m_{s} = 0.0540 \). The \(J \) parameter is not sensitive enough to changes in the strange-sea-quark mass.
FIG. 18: J-parameter plot for $N_f = 2 + 1$ at $\Lambda = 1.5$. The upper diamond, upside-down triangle, pentagon ($V = 12^3$, 96) and square ($V = 16^3$, 96) points are from $m_\alpha = 0.0540$ ensembles and the triangle, lower diamond, upside-down triangle ($V = 16^3$, 128) and square ($V = 24^3$, 128) points are from $m_\alpha = 0.0743$; the circle (black) indicates the physical point $f_\text{phys}^2, J_{\text{phys}}^2$; the dashed line indicates the physical J value.