Magnetoelectric polarizability and axion electrodynamics in crystalline insulators

Andrew M. Essen, Joel E. Moore, and David Vanderbilt

1Department of Physics, University of California, Berkeley, California 94720
2Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
3Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854

(Dated: April 27, 2013)

The orbital motion of electrons in a three-dimensional solid can generate a pseudoscalar magnetoelectric coupling, a fact we derive for the single-particle case using a recent theory of polarization in weakly inhomogeneous materials. This polarization is the same parameter that appears in the axion electrodynamics Lagrangian $L_{\text{EM}} = (e^a \cdot B)$, which is known to describe the unusual magnetoelectric properties of the three-dimensional topological insulator (TMI). When spin-orbit interactions are included, the axial polarization and magnetic moment are related, and we compute for a simple model that accesses the topological insulator and discuss its connection to the surface Hall conductivity. The orbital magnetoelectric polarizability can be generalized to the many-particle wavefunction and describes the 3D topological insulator, like the IQHE, in terms of a topological ground-state response function.

PACS numbers: 73.43.-f, 85.75.-d, 73.20.At, 03.65.Vf, 75.80.+q

Magnetoelectric couplings in solids have recently been the subject of intense experimental and theoretical investigations [1,2,3]. A quantity of central importance is the linear magnetoelectric polarization ϵ_{ij} defined via

$$\epsilon_{ij} = \frac{\partial M_j}{\partial E_i} B = 0 = \frac{\partial P_i}{\partial B_j} E = 0 \quad (1)$$

where E and B are electric and magnetic fields, P and M are the polarization and magnetization, and the equality can be obtained from commutating derivatives of an appropriate free energy. In general the tensor has nine independent components, and can be decomposed as

$$\epsilon_{ij} = \epsilon_{ij} - \frac{\epsilon^2_i}{2\hbar} \epsilon_{ij} \quad (2)$$

where the first term is traceless and the second term, written here in terms of the dimensionless parameters, is the pseudoscalar part of the coupling. Here we focus on magnetoelectric coupling resulting from the orbital (frozen-lattice) magnetization and polarization, which we label the orbital magnetoelectric polarizability (OMP).

In axion theory, the pseudoscalar OMP coupling is said to generate axion electrodynamics [4], and corresponds to a Lagrangian of the form ($c = 1$)

$$L_{\text{EM}} = \frac{e^a}{2\hbar} E \cdot B = \frac{e^a}{16\hbar} F \cdot \bar{F} \quad (3)$$

An essential feature of the axion theory is that, when the axion field (r,t) is constant, it plays no role in electrodynamics; this follows because it couples to a total derivative, $F \cdot \bar{F} = 2 \partial (A \cdot F^a)$, and so does not modify the equations of motion. Moreover, the presence of the axion can have profound consequences at surfaces and interfaces, where gradients in (r,t) appear.

A second essential feature is that electrodynamics is invariant under T breaking. In order to reconcile this peculiar fact with the phenomenology of the magnetoelectric effect, observe that the axion coupling can alternatively be described in terms of a surface Hall conductivity H whose value $e^a = 2\hbar$ is determined by bulk properties, but only modulo the quantity e^a_0. More generally, at an interface between two samples, $H = (1 + 2r)2\hbar$, where the integer r depends on the details of the interface. Recall that, in general, a 2D gapped crystal has an integer TKNN invariant C in terms of which the 3D Hall conductivity is $H = Ce^a_0$. The moduli e^a_0 and r, discussed above correspond to C, characterizing the or interface by adsorbing a surface layer of nonzero C.

When time-reversal (T) invariance is present, the TKNN invariants vanish, but other invariants arise that have been the focus of much recent work. In 2D there is a 2 invariant [5] distinguishing ordinary from odd'' insulators, with quantum spin Hall'' states [4,6] providing examples of the latter. In 3D there is a similar invariant [7,8,9] that can be computed either from the 2D invariant on certain planes [10] or from an index involving the eight T-invariant on ends [11]. If this is odd, the material is a strong topological insulator'' (STI). In the context of OMP, note that T maps ϵ^a_0 to ϵ^a_0; the ambipolarity modulo 2 then implies that T invariance is consistent with either $\epsilon^a_0 = 0$ or $\epsilon^a_0 = 2\hbar$, with the latter corresponding to the STI [12]. Not that if T-invariance extends to the surface, these become metallic by virtue of topologically protected edge states, as observed experimentally for the Bi_2Se_3 system [13]. If the surface is gapped by a T-breaking perturbation, then $H = e^a = 2\hbar$ modulo e^a_0, at the surface of a STI [4,11,12].

In the noninteracting case, a Berry-phase expression for has been given in terms of the bulk bandstructure by O. Hughes, and Zhang [2] by integrating out electrons in one higher dimension. Defining the Berry connection $A_{ij} = i\hbar \bar{F}_{ij}$, where \bar{F} is the cell-periodic Bloch
function of occupied band and $\theta_j = \theta = \theta_k j$, they obtain

$$\frac{1}{2} \sum_{\mathbf{BZ}} \int d^3 \mathbf{k} \text{Tr}[A_j \theta_j A_k] \left(\frac{2}{3} \delta_{A_j A_k} A_k \right]$$

(4)

where the trace is over occupied bands. Note that wavevector-dependent unitary transformations (gauge transformations) on the set of occupied wave functions cannot affect bulk physical properties.

In the present letter, we first provide an alternate derivation of Eq. (4) for the OMP. Our derivation clarifies that is a polarizability and in fact describes a contribution to magnetoelectric polarizability from extended orbitals. The derivation follows from an extension [19] of the Berry-phase theory of polarization [18] to the case of slow spatial variations of the Hamiltonian. Indeed, the OMP angle is a bulk property in exactly the same sense as electric polarization [18,17]. We need that the OMP can be generalized to the interacting case and calculated from the many-particle wavefunction, even though Eq. (3) is not valid; this reflects a subtle difference between OMP and polarization. Explicit numerical calculations on model crystals are presented to validate the theory, establish the equivalence of Eq. (4) to the prior definition, and illustrate how a non-zero corresponds to a (fractional) quantum Hall effect at the surface of a magnetoelectric or topological insulator [12,14].

From Eq. (1), it is evident that the OMP can be viewed in several ways. (i) It describes the electric polarization arising from the application of a small magnetic field. (ii) It describes the orbital magnetization arising from the application of a small electric field. (iii) It also gives the (dissipationless) surface Hall conductivity at the surface of the crystal, provided that the surface is insulating. Note that (iii) follows from (ii): for a surface with uniaxial nematic and electric field E, the resulting surface current $\mathbf{K} = \mathbf{N} \times \mathbf{E}$ is proportional to $\mathbf{E} \times \mathbf{n}$. There is an elegant analogy here to the case of electric polarization, where the surface charge of an insulating surface is determined by the quantum $e\mathbf{S}$, by the bulk bandstructure alone (\mathbf{S} is the surface cell area).

The above discussion suggests two approaches to deriving a bulk formula for the OMP. One is to follow (ii) and compute the orbital magnetization [18,19] in an applied electric field. We focus here on (iii) instead, working via $dP_\mathbf{F} = dB$. The modern theory of polarization starts from the polarization current $\mathbf{J}_p = dP_\mathbf{F} = dE$ under slow deformations of the Bloch Hamiltonian, and contains, to second order in dE, one power of the Berry curvature defined below [18]. Using semiclassical wavepacket dynamics, Xue et al. [15] have shown how to compute the polarization current to second order and to incorporate slow spatial variations in the electronic Hamiltonian. For the case of an orthorhombic 3D crystal with M occupied bands in which the slow spatial variation occurs along the y direction in a supercell of length l_y, they obtain

$$h \mathbf{F}_x^{(m)} = \frac{e}{4} \sum_{\mathbf{BZ}} \int d^3 \mathbf{k} \frac{Z}{(2 \pi)^3} \int_0^{l_y} dy \mathbf{j}_k \text{Tr}[F_{ij} F_{kl}]$$

(5)

for the change in the supercell-averaged polarization arising from adiabatic currents that are inhomogeneously induced as a global parameter evolves from 0 to 1. Here indices i, j, k run over (k_x, k_y, k_z), $F_{ij} = 0, i, j, A_i, A_j, A_k$, A_j is the Berry curvature tensor $(A = \text{diag} [j i, j i, j i])$, and the trace and commutator refer to band indices.

Because F is gauge-covariant, the integrand in Eq. (5) is explicitly gauge-invariant; it is the non-Abelian second Chern class [20], so that Eq. (5) is path-invariant modulo a quantum $e a_s l_y$, where a_s is the lattice constant in the z direction. Moreover, the integral can be performed to obtain an expression in terms of the non-Abelian Chern-Simons 3-form [20]. Thus,

$$h \mathbf{F}_x^{(m)} = \frac{e}{4} \sum_{\mathbf{BZ}} \int d^3 \mathbf{k} \frac{Z}{(2 \pi)^3} \int_0^{l_y} dy \mathbf{j}_k \text{Tr}[A_j \theta_j A_k \mathbf{F}_{ij} F_{kl}]$$

(6)

where i, j, k now run only over (k_x, k_y, k_z). Here the integrand is not gauge-invariant, but the integral is gauge-invariant modulo the quantum $e a_s l_y$.

We apply this result to study the polarization

$$h \mathbf{P}_x^{(m)} = \frac{e}{4} \sum_{\mathbf{BZ}} \int d^3 \mathbf{k} \frac{Z}{(2 \pi)^3} \int_0^{l_y} dy \mathbf{j}_k \text{Tr}[\mathbf{A_j} \theta_j \mathbf{A_k} \mathbf{F}_{ij} F_{kl}]$$

(7)

induced by a magnetic field described by the inhomogeneous vector potential $A = B y\mathbf{z}$ with $B = h e a_s l_y$, i.e., a B-field along y with one ux quantum threading the supercell. This has the effect of taking $k_z = e B y = -\frac{1}{2} (a_s l_y)$, and this is the only y-dependence in the Hamiltonian, so that $\mathbf{F}_{ij} = \langle B \mathbf{e} \mathbf{j} = \mathbf{B} \mathbf{e} \mathbf{j} \mathbf{i} \rangle$ and where i, j, k now run over (k_x, k_y, k_z). Using Eqs. (1)[20] we arrive directly at Eq. (4).

There is an important geometrical relationship in this (noninteracting) derivation that applies equally well to the many-body case and gives a bulk interpretation of the 2 spin ambiguity in whose surface interpretation was in term of allowed surface SHE layers. Polarization in a crystal is defined modulo the quantum of polarization n which, for the 3D supercell of Eq. (4), is

$$P_z = e a_z l_y$$

Since the magnetic field is $B_z = h e a_z l_y$, it follows that $P_z = B_x = e \frac{B_x}{h}$. Hence the unit-cell independent ambiguity of $dP_\mathbf{F} = dB$ results from the relationship a finite periodic system between the unit-celldependent polarization quantum and the quantization of applied ux, and this relationship remains valid in the many-body case.

Before studying the OMP in a specific model, we discuss its symmetries and properties and how to obtain it when Bloch states are unavailable, as in the many-particle case. Clearly the combination E_B in Eq. (4) is odd under T and under inversion P (although it is even under the
combination PT). It is also odd under any improper rotation, such as a simple mirror reflection. This implies that if the crystal has any of the above symmetries, this would force an apedon coupling to vanish, but since is only well-defined modulo 2, it actually only forces \(= 0 \) or \(\neq 0 \). Thus, one can obtain an insulator with quantized \(= \) only for \(T \)-invariant systems (regardless of whether they obey inversion symmetry), but also for inversion- and \(m \)-invariant metric crystals regardless of \(T \) symmetry [11]. When none of these symmetries are present, one generically has a non-zero (and non-) value of \(\), but still retaining the simple scalar form of Eq. (3).

In an interacting system, the OMP should be obtained from the many-particle wavefunction. However, modifying Eq. (3) to the Abelian Chern-Simons integral over the many-body wavefunction fails [12], in important contrast to the case of the polarization (the integral of \(A \)), where such a generalization works [13]. Instead, the OMP can be found using the change in the many-body polarization due to an applied magnetic flux to compute \(\text{d} \Phi \text{d}B \), i.e., the many-body version of the supercell \(\text{d} \Phi \text{d}B \) calculation. This fact is important beyond computing interactions, as it defines the topological insulator phase in the many-body case more simply than before [14]. Like the IQHE, the topological insulator is defined via a response function \(\Phi \text{d}B \) to a perturbation that, in the limit of a large system with periodic boundary conditions, is locally weak and hence does not close the insulating gap. In the IQHE, this response function is to a boundary phase (i.e., a flux that does not pass through the 2D system), while for the topological insulator, the defining response is to a magnetic flux through the 3D system.

In the remainder of this Letter, we demonstrate the above theory via numerical calculations on a tight-binding Hamiltonian that generates non-zero values of \(\) and discuss experimentally measured effects. We start with the model of Fu, Kane, and Mei [15] for a 3D topological insulator on the diamond lattice,

\[
H_{\text{FM}} = \sum_{hh} t_{ij} c_i^\dagger c_j + \frac{i}{\sqrt{2}} \sum_{hh} \sum_{ij} \left(d_{ij}^1 c_i^\dagger c_j + d_{ij}^2 c_j^\dagger c_i \right),
\]

In the first term, the nearest-neighbor hopping amplitude depends on the bond direction; we take \(t_{ij} = 3t_+ \) for direction [111] (in the conventional for unit cell of linear size \(a \)) and \(t_{ij} = t \) for the other three bonds. The second term describes spin-dependent hopping between pairs of second neighbors \(hh \), where \(d_{ij}^1 \) and \(d_{ij}^2 \) are the connecting nearest-neighbor legs and are the Pauli spin matrices. With \(j < 2t \) and \(\sum \) sufficiently large, this model has a direct band gap of \(2t \).

To break T, we add a staggered Zeeman field with opposite signs on the two for sublattices A and B, \(h \sum_{ij} \sum_{A} c_i^\dagger c_i + \sum_{ij} \sum_{B} c_i^\dagger c_i \). We take \(\sum_{ij} = m \sin \)

and choose \(h \) in the [111] direction; setting \(= m \cos \) and varying the single parameter keeps the gap constant and interpolates smoothly between the ordinary \((= 0 \) and the topological \((= \)) insulator.

We have calculated the OMP angle using four different methods with excellent agreement (Fig. 1). First, we obtain from Eq. (3); this requires a smooth gauge for \(A \), which can be found using now-standard

Wannier basis methods [23]. Results are shown for \(= -4 \) and \(= -2 \) (squares).

Next, we have calculated the polarization [16]

\[
P_i = e \sum_{BZ} \frac{3}{4} k_{BZ} \text{Tr} A_{i} : \quad (9)
\]

resulting from a single magnetic flux quantum in a large supercell. Varying the supercell size (and thereby \(B \)) allows us to approximate \(\Phi \text{d}B \), yielding the open squares in Fig. 1. The points in Fig. 1 are from the surface Hall response in a slab geometry, described below. Finally, to obtain the curve in Fig. 1, we also computed \(\Phi \text{d}B \) from the second Chern expression [15,16]

\[
\Phi = \frac{1}{16} \sum_{ij} \sum_{k} \langle k \rangle \left[\sum_{ij} d_{ij}^1 \text{Tr} F_{ij}(k; 0) F_{k}(k; 0) \right] \quad (10)
\]

(derived above as Eq. (5)). Clearly, the various approaches are numerically equivalent.

We now discuss the surface Hall conductivity, whose fractional part in units of \(e^2/h \) is just \(= 2 \) [24]. Consider a material with a coupling in a slab geometry that is \(\pi \) in the 2D direction and surrounded by \(= 0 \) vacuum. The slab plane \(x = x = \pi \) at the top surface and \(y = \pi \) at the bottom surface, for a total \(\pi x y \) of zero. We therefore generally, arbitrary surface quantum Hall layers change the total integer quantum Hall state, but not the fractional parts at each surface.

The spatial contributions to the Hall conductance in the slab geometry can be resolved as follows. The unit
cell is a supercell containing some number N of original unit cells in the z direction, with translational invariance remaining in the x and y directions. The TKNN integer for the entire slab is

\[C = \frac{1}{2} \sum_{n} d^2 k \text{Tr} [P_{ij} \Theta_{ij} \Theta_{i,j}] \]

where i and j take the values k_x and k_y, and P = θ_{ij} is the projection operator onto the occupied subspace (runs over occupied bands). To nd how different z layers contribute to C, define a projection P_n onto layer n within the supercell, and compute

\[C(n) = \frac{1}{2} \sum_{n} d^2 k \text{Tr} [P_{ij} \Theta_{ij} \Theta_{i,j}] P_{n} \]

The results, presented in Fig. 2, confirm that the surface layers have half-integer Hall conductance when = in and that the sign on each surface is switched by local T-breaking perturbations (in this example, a uniform Zeeman coupling in the surface layer).

To gain some insight into the microscopic origin of in the noninteracting case, using Eq. 4 we have calculated for a Hamiltonian that breaks PT (as well as P and T) by adding a weak, uniform (i.e., not staggered) Zeeman coupling. For some values of this lifts all degeneracies, enabling us to isolate the single-band and interband contributions to and to verify that, because interband contributions are non-zero in general, is a property of the whole occupied spectrum (alike polarization, which is a sum of individual band contributions). A single band can have nonzero only if there are more than two bands in total [24].

Experimental detection of spin-orbit coupling for a topological insulator than for a generic magnetic insulator because some T-breaking perturbation is needed to gap the surface state. Further, one, a large surface density of states, as in Bi_2Se_3, may complicate the measurement: while even a weak magnetic field will in principle lead to a gap and half-integer quantum Hall effect at each surface, the large number of mixed surface Landau levels may make it difficult to isolate the half-integer part of surface H. In the presence of broken discrete symmetries, as in antiferromagnets or multiferromics, the surface gap exists naturally and experiments are easier. For example, the theoretical methods of this paper could be used to compute the orbital part of the recently measured in Cr_2O_3 [3].

The authors acknowledge useful discussions with A. Selem and I. Souza. The work was supported by the Westerm Institute of Nanoelectronics (AM E), NSF DMR-0804413 (JEM), and NSF DMR-0549198 (DV).