Universality of Quantum Gravity Corrections

Saurya Das
Department of Physics, University of Lethbridge,
4401 University Drive, Lethbridge, Alberta T1K 3M4, Canada

Elias C. Vagenas
Research Center for Astronomy & Applied Mathematics,
Academy of Athens,
Soranou Efesiou 4, GR-11527, Athens, Greece

We show that the existence of a minimum measurable length and the related Generalized Uncertainty Principle (GUP), predicted by theories of quantum gravity, in uncease quantum Hamiltonians. Thus, they predict quantum gravity corrections to various quantum phenomena. We compute such corrections to the Lamb Shift, the Landau levels and the tunnelling current in a Scanning Tunnelling Microscope (STM). We show that these corrections can be interpreted in two ways: (a) either that they are exceedingly small, well beyond the reach of current experiments, or (b) that they predict upper bounds on the quantum gravity parametere in the GUP, compatible with experiments at the electroweak scale. Thus, more accurate measurements in the future might either be able to test these predictions, or further tighten the above bounds and predict an intermediate length scale, between the electroweak and the Planck scale.

We know that gravity is universal. Anything which has energy creates gravity and is affected by it, although the smallness of Newton’s constant G often means that the associated effects are too weak to be measurable. In this article, we show that certain effects of Quantum Gravity are also universal, and can in essence manifest themselves with a well-defined Hamiltonian. The result of these effects is generally quite small, being proportional to the square of the Planck length $\ell_P^2 = G \sim c^3$. However, with current and future experiments, bounds may be set on certain parameters relevant to quantum gravity, and in proved accuracies could even make them measurable.

An important prediction of various theories of quantum gravity (such as String Theory) and black hole physics is the existence of a minimum measurable length. The prediction is largely model independent, and can be understood as follows: the Heisenberg Uncertainty Principle (HUP), $\Delta x \Delta p \sim h$, breaks down for energies close to the Planck scale, when the corresponding Schwarzschild radius is comparable to the Compton wavelength (both being approximately equal to the Planck length). Higher energies result in a further increase of the Schwarzschild radius, resulting in $\Delta x \Delta p \sim h$. The above observation, along with a combination of thought experiments and rigorous derivations, suggest that the Generalized Uncertainty Principle (GUP) holds at all scales, and is represented by [1]

$$\left(x_i p_i \right)^2 \sim \frac{1}{2} \left[1 + (p)^2 + <p>^2 \right] \left(p_i^2 - p_i >^2 \right), \quad i = 1; 2; 3 \quad (1)$$

where $p_j = \frac{p_0}{M_{Pl}}$, $p_j = \sqrt{M_{Pl}^2 c^2 - E^2}$, $M_{Pl} = \text{Planck mass}$, and $M_{Pl} c^2 = \text{Planck energy}$.

Implications of the GUP in various fields, including High Energy Physics, Cosmology and Black Holes, have been studied. Here, we examine its potential experimental signatures in some familiar quantum systems. It is normally assumed that the dimensionless parameter ℓ_0 is of the order of unity. However, as we shall see in this article, this choice renders Quantum Gravity effects too small to be measurable. On the other hand, if one does not impose the above condition on parameters relevant to quantum gravity, and in proved accuracies could even make them measurable.

It was shown in [2], that inequality (1) is equivalent to the following modified Heisenberg algebra

$$\left[\chi_i, p_j \right] = i \epsilon_{ij} \left(p_j^2 + 2 p_j p_j \right) : \quad (2)$$

This form ensures, via the Jacobi identity, that $\left[\chi_i, \chi_j \right] = 0 = \left[p_i, p_j \right]$. Next, defining

$$\chi_i = \chi_0 ; \quad p_i = p_0 \quad (3)$$

where $p_0^2 = \frac{p_0^2}{M_{Pl}} \text{ and } \chi_0, p_0$ satisfying the canonical commutation relations $\left[\chi_0, p_0 \right] = i \epsilon_{ij} \gamma_{ij}$; it is easy to show that Eq.(2) is satisfied to order γ_{ij} (henceforth we neglect terms of order γ_{ij} and higher). Here, p_0 can be interpreted as the momentum at low energies (having the standard representation in position space, i.e. $p_0 = \frac{1}{2\Delta x}$, and p_i as that at higher energies.)

E-mail address: saurya.das@uleth.ca
E-mail address: evagenas@academyofathens.gr

Using (3), any Hamiltonian of the form

\[H = -\frac{p^2}{2m} + V(\mathbf{r}) \quad [\mathbf{r} = (x_1; x_2; x_3)] \quad (4) \]

can be written as [4]

\[H = H_0 + H_1 + O \left(\frac{1}{r} \right) ; \quad (5) \]

where \(H_0 = -\frac{p^2}{2m} + V(\mathbf{r}) \) and \(H_1 = \frac{e^4}{m} \) :

Thus, we see that any system with a well-defined quantum (or even classical) Hamiltonian \(H_0 \), is perturbed by \(H_1 \), or more generally, near the Planck scale. In other words, Quantum Gravity effects are in some sense universal! It seems to cut the corrections to various phenomena due to the Hamiltonian \(H_1 \). In this article, we study its effects on the well-understood quantum phenomena, the Lamb shift, the Landau levels, and the Scanning Tunneling Microscope.

I. The Lamb shift

For the Hydrogen atom \(V(\mathbf{r}) = \frac{e^2}{r} \), \(k = e^2/4 \), \(0 = -c, e = \) electronic charge. To first order, the perturbing Hamiltonian \(H_1 \), shifts the wave-functions to [5]

\[j_{n' m} = j_{n m} + \frac{\hbar^2}{\epsilon n^2 m^2} \epsilon_{n n' m} H_{j n m} (7) \]

where \(n' m \) have their usual significance, and \(\epsilon_{n m} \epsilon_{n' m} \) have usual \(\hbar^2 \) dependence. Using \(\hbar^2 = 2m \) and \(\hbar^2 = 3m \),

\[H_1 = (4 m) \left(\frac{1}{r} \right) + \frac{1}{r} H_0 + \frac{1}{r} \left(\frac{1}{r} H_0 \right) + \frac{k}{r} \frac{1}{r} \quad (8) \]

Thus,

\[\frac{\hbar}{m} \epsilon_{n n' m} \epsilon_{n' n m} \]

\[+ k \left(\epsilon_{n m} + \epsilon_{n' m} \right) \epsilon_{n' m} H_{j n m} (9) \]

It follows from the orthogonality of spherical harmonics that the above are non-vanishing if and only if \(P = 1 \) and \(m = m' \). Thus, the first order shift in the ground state wave-function is given by (in the position representation)

\[100(x) = 2 \left(\frac{E_0}{E_1} \right) \left(\frac{E_0}{E_2} \right) 200(x) \]

\[= \frac{928}{81} \left(\frac{E_0}{E_2} \right) 200(x) \quad (10) \]

Next, consider the Lamb shift for the \(n \)th level of the Hydrogen atom [6]

\[E_n = \frac{4 m}{3} \ln \frac{1}{n} j_{n m}(0) \quad (11) \]

Varying \(n \) (0), the additional contribution due to GUP in proportion to its original value is given by

\[\frac{E_{n(GUP)}}{E_n} = \frac{2 j_{n m}(0)}{j_{n m}(0)} \quad (12) \]

Thus, for the ground state, using \(100(0) = a_0 \) and \(200(0) = a_0 \), where \(a_0 \) is the Bohr radius, we get

\[\frac{E_{1(GUP)}}{E_0} = \frac{2 j_{100(0)} j_{100(0)}}{E_0} \]

\[= \frac{928}{81} \left(\frac{E_0}{E_2} \right) 200(x) \quad (13) \]

The above result may be interpreted in two ways. First, if one assumes \(a_0 \), then it predicts a non-zero, but virtually unmeasurable effect of Quantum Gravity/GUP. On the other hand, if such an assumption is not made, the current accuracy of precision measurement of Lamb shift of about 1 part in \(10^{12} \) [4, 7], sets the following upper bound on \(a_0 \)

\[0 < 10^{-16} \quad (14) \]

This bound is weaker than that set by the electroweak scale, but is not comparable with it. Moreover, with more accurate measurements in the future, this bound is expected to be reduced by several orders of magnitude, in which case, it could signal new and unimagined scale between the electroweak and the Planck scale.

II. The Landau Levels

Next consider a particle of mass \(m \) and charge \(e \) in a constant magnetic field \(B = B \mathbf{z} \), described by the vector potential \(\mathbf{A} = B \mathbf{y} \) and the Hamiltonian

\[H_0 = \frac{p_x^2}{2m} + \frac{p_y^2}{2m} + \frac{eB}{m} yp_x + \frac{eB^2}{2m} x^2 \quad (15) \]

Since \(p_y \) commutes with \(H_0 \) replacing \(i \) with its eigenvalue \(-k \), we get

\[H_0 = \frac{p_x^2}{2m} + \frac{1}{2} \left(\frac{1}{m} \right)^2 \quad (16) \]

where \(c = eB = m \) is the cyclotron frequency. This is nothing but the Hamilsonian of a harmonic oscillator in \(x \) direction, with its equilibrium position given by \(x_0 = -k = m \left(\frac{1}{2} \right) \). Consequently, the eigenfunctions and eigenvalues are given by

\[k \psi_n(x) = e^{iky} n(x - x_0) \]

\[E_n = -\frac{1}{2} m \left(\frac{1}{2} \right)^2 \quad n \in N \quad (17) \]

where \(n \) are the harmonic oscillator wavefunctions.

Following the procedure outlined in the introduction, the GUP-corrected Hamilsonian assumes the form

\[H = \frac{1}{2m} p_0^2 + \frac{1}{m} p_0^2 + \frac{1}{m} p_0^4 \quad (18) \]

\[H_0 + 4 \frac{m}{H_0} \quad (19) \]
where in the last step we have used Eq. (14). Evidently, the eigenfunctions remain unchanged, which alone guarantees for exam ples, that the GUP will have no effect at all on phenomena such as the Quantum Hall Effect, the Bohm-Aharonov effect, and Dirac Quantization. However, the eigenvalues shift by

$$E_{n(GUP)} = 4 \ h \ h_0 \ j_0^2 \ j_n + 4 \ (\hbar c)^2 \ n + \frac{1}{2} \ ;$$

or

$$E_{n(GUP)} = 4 \ m \ (\hbar c)^2 \ n + \frac{1}{2} \ ;$$

For an electron in a magnetic field of 10 T, $\hbar c = 10^8$ GHz and we get

$$E_{n(GUP)} < 10^{50} \ ; \quad (21)$$

Once again, if $n = 0$, this correction is too small to be measured. Without this assumption, an accuracy of 1 part in 10^5 in direct measurement of Landau levels using a STM (which is somewhat optimistic) [8], the upper bound on $n = 0$ follows

$$0 < 10^{50} \ ; \quad (22)$$

This bound is far weaker than that set by electroweak measurements, but compatible with the latter (as was the case for the Lamb shift). Once again, better accuracy should tighten this bound and perhaps predict an intermediate length scale.

III. Potential Barrier and STM

In a STM, electrons of energy E (close to the Fermi energy) from a metal tip at $x = 0$, tunnel quantum mechanically to a sample surface a small distance away at $x = a$. This gap, across which a bias voltage may be applied, is associated with a potential barrier of height $V_0 > E$ [9]. Thus

$$V(x) = V_0 \left[(x) - (x + a) \right] \ ; \quad (23)$$

where (x) is the usual step function. The wave-functions for the three regions, namely $x < 0$, $0 < x < a$, and $x > a$, are 1, β, and γ, respectively, and satisfy the following GUP corrected Schrödinger equation ($d = dx$)

$$\begin{align*}
&d^2 \beta_1 + k^2 \beta_1 + \frac{P}{2 \ m} \ \beta_2 + 1 \beta_1 = 0 \ ; \\
&d^2 \beta_2 + k^2 \beta_2 + \frac{P}{2 \ m} \ \beta_2 + 2 \beta_1 = 0 \ ;
\end{align*}$$

where $k = \frac{P}{2 \ m} (E = E_0)$; $k_1 = \frac{P}{2 \ m} (V_0 = E_0)$. The solutions to the above leading order in γ_1 are

$$\begin{align*}
1 &= A e^{i k_1 x} + B e^{i k_1 x} + A_i e^{i k_1 x} \ ; \\
2 &= F e^{i k_1 x} + G e^{i k_1 x} + H e^{i k_1 x} + L e^{i k_1 x} \ ; \\
3 &= C e^{i k_1 x} + D e^{i k_1 x} \ ;
\end{align*}$$

where $k_1 = k_1 + k_2$, and $k_1 = k_1 - k_2$. Note the appearance of new exponential terms, which drop out in the γ_1 limit. In the above, we have omitted the left-over from γ_2 and the exponentially growing terms from both γ_1 and γ_2. The boundary conditions

$$\begin{align*}
d^2 \beta_1 + k_0 \beta_1 + k_0 \beta_2 + 1 \beta_1 &= 0 \ ; \\
&n = 0; \beta_1 ;
\end{align*}$$

$$\begin{align*}
d^2 \beta_2 + k_0 \beta_2 + k_0 \beta_2 + 1 \beta_1 &= 0 \ ; \\
&n = 0; \beta_1 ;
\end{align*}$$

on wave-functions (24-26) yield the following transmission coefficient

$$T = \frac{C}{A} = 1 + \left(k_0^2 + k_0^2 \right) \sin^2 \left(\frac{k_0 a}{2} \right) \ ; \quad (29)$$

The transmission coefficient $R = | \beta - \beta_1 |^2 = T$. Using Eq. (29) and the definitions of $k_1; k_2; k_3$, it can be shown that when $k_1; a < 1$, which is the limit relevant for STM s, the transmission coefficient is approximately

$$T = T_0 \left[1 + \left(\frac{2 m (V_0 \ E)}{V_0} \right) \right] \ ; \quad (30)$$

where $T_0 = \frac{16E (V_0 \ E)}{V_0^2} e^{2k_1 a}$; \quad (31) T_0 being the standard tunnelling amplitude. The current I owing from the tip to the sample is proportional to T, and is usually magnified using an amplifier gain G. From Eq. (30) the enhancement in current due to GUP is given by

$$I = \frac{I_0}{T_0} = \frac{4 m (2E \ V_0)^2 + 2 a}{V_0^2} \ ; \quad (32)$$

Thus, assuming the following approximate (but realistic) values [9]

$$\begin{align*}
m &= m_0 = 0.5 \ m \ eV = c^2 \ ; \\
E &= V_0 = 10 \ eV \ ; \\
a &= 10^{-10} \ m \ ; I_0 = 10^{-9} \ A \ ; G = 10^8 \ ;
\end{align*}$$

we get

$$I = \frac{I_0}{T_0} = 10^{48} \ 0 \text{ and } I \ G \ I = 10^{48} \ 0 \ A \ ; \quad (32)$$

Thus, for the GUP induced excess current I to add up to the charge of just one electron, $e = 10^{-19} \ e$, one would have to wait for a time

$$\frac{e}{I} = 10^{29} \ 0 \text{ s} \ ; \quad (33)$$

If $0 < 1$, this is far greater than the age of our universe (1018 s). However, if the quantity I can be increased by a factor of about 1021, say by a combination of increase in I and G, and by a larger value of n_o, the above time will be reduced to about a year (108 s), and one can hope to measure the effect of GUP. Conversely, if such a GUP induced current cannot be measured in such a time-scale, it will put an upper bound

$$0 < 10^{21} \ ; \quad (34)$$
Note that this is more stringent than the two previous examples, and is in fact consistent with that set by the electroweak scale! In practice however, it may be easier to experimentally determine the apparent barrier height $A V_0 E$, and the (logarithmic) rate of increase of current with the gap. From Eq.(30) they are related by

$$P_A = \frac{\omega}{8m} \frac{d\ln I}{da} \left(\frac{\omega^2}{4} \frac{d\ln I}{d\ln a} \right)^2$$ \hspace{1cm} (35)

The cubic deviation from the linear $P_A vs d\ln I$ curve predicted by GUP may be easier to spot and the value of estimated with improved accuracies.

To summarize, our results indicate that either the predictions of GUP are too small to measure at present ($0 \leq 1$), or that they signal a new intermediate length scale ($0 \leq 1$). It is not inconceivable that such a new length scale may show up in future experiments in the Large Hadron Collider. Perhaps more importantly, our study reveals the universality of GUP effects, meaning that the latter can potentially be tested in a wide class of quantum mechanical systems s, of which we have studied just a handful here. Promising areas include statistical systems (where a large number of particles may set the smallness of), study of whether normally forbidden transitions and processes can be allowed by the GUP corrected Hamiltonian, and processes which may get corrected by a fractional power of 0. We hope to report on some of these in the near future. In the best case scenario, this could open a much needed "low-energy window" to Quantum Gravity Phenomenology.

Acknowledgement

We thank K. Ali, B. Belchev, A. Dasgupta, R. B. Mann, S. Sur and M. Walton for useful discussions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada and by the Perimeter Institute for Theoretical Physics.